Geometric Group Theory

Problem Sheet 4

We use the notation from Lecture Notes, $X \sim Y$, for two metric spaces that are quasi-isometric.

1. i) Show that the relation of quasi-isometry of metric spaces \sim is an equivalence relation.

ii) Let S_1, S_2 be finite generating sets of a group G. Show that $\Gamma(S_1, G) \sim \Gamma(S_2, G)$.

2. Given $\epsilon, \delta > 0$ a subset N of a metric space X is called an (ϵ, δ) -net (or simply a net) if for every $x \in X$ there is some $n \in N$ such that $d(x, n) \leq \epsilon$ and for every $n_1, n_2 \in N$, $d(n_1, n_2) \geq \delta$.

A set N that satisfies only the second condition (i.e. for every $n_1, n_2 \in N$, $d(n_1, n_2) \geq \delta$) is called δ -separated.

i) Show that any metric space X has a (1, 1)-net.

ii) Show that if $N \subset X$ is a net then $X \sim N$.

iii) Show that $X \sim Y$ if and only if there are nets $N_1 \subset X, N_2 \subset Y$ and a bilipschitz map $f : N_1 \to N_2$.

iv) Let G be a f.g. group. Show that H < G is a net in G if and only if H is a finite index subgroup of G.

3. Prove that for every $K \ge 1$ and $A \ge 0$ there exists $\lambda \ge 1$, $\mu \ge 0$ and $D \ge 0$ such that the following is true. Given a (K, A)-quasi-geodesic $q: I \to X$ of endpoints x, y in a geodesic metric space X there exists a (continuous) path $\alpha: I' \to X$ of endpoints x, y such that:

1. for all $t, s \in I$,

 $length(\alpha([t,s])) \le \lambda d(\alpha(t), \alpha(s)) + \mu;$

2. for every $x \in I$, $d(q(x), \alpha(I')) \leq D$;

3. for every $t \in I'$, $d(\alpha(t), q(I)) \leq D$.

4. Let X be a δ -hyperbolic geodesic metric space. If L is a geodesic in X and $a \in X$ we say that $b \in L$ is a projection of a to L if

$$d(a,b) = \inf\{d(a,x) : x \in L\}.$$

Show that if b_1, b_2 are projections of a to L then $d(b_1, b_2) \leq 2\delta$.

5. Let X be a geodesic metric space.

If $\Delta = [x, y, z]$ is a geodesic triangle in X, then there is a metric tree (a 'tripod' if Δ is not degenerate) T_{Δ} with vertices x', y', z' (the endpoints when T_{Δ} is not a segment) such that there is an onto map $f_{\Delta} : \Delta \to T_{\Delta}$ that restricts to an isometry from each side [x, y], [y, z], [x, z] to the corresponding segments [x', y'], [y', z'], [x', z'] in the tree. We denote by c_{Δ} the point $[x', y'] \cap$ $[y', z'] \cap [x', z']$ of T_{Δ} .

We say that a geodesic triangle $\Delta = [x, y, z]$ in a geodesic metric space is δ -thin if for every $t \in T_{\Delta} = [x', y', z']$, $diam(f_{\Delta}^{-1}(t)) \leq \delta$.

Prove that the following are equivalent:

- 1. There is a $\delta \ge 0$ such that all geodesic triangles in X are δ -slim.
- 2. There is a $\delta' \ge 0$ such that all geodesic triangles in X are δ' -thin.
- **6.** Let $G = \langle S \rangle$ be δ -hyperbolic for some $\delta \in \mathbb{N}, \delta \geq 1$.
 - 1. Assume that for some $g \in G, x \in \Gamma(S, G)$ with $d(x, gx) > 100\delta$ we have that $d(x, g^2x) \ge 2d(x, gx) 12\delta$.

Prove that

$$d(x, g^n x) \ge nd(x, gx) - 16n\delta$$

for all $n \in \mathbb{N}$.

2. Assume that g is an element of infinite order in G. Prove that there are constants $c > 0, d \ge 0$ such that

$$d(1,g^n) \ge cn - d$$

for all $n \in \mathbb{N}$.

3. Show that G has no subgroup isomorphic to $\langle x, t | txt^{-1} = x^2 \rangle$.

7. Let $G = \langle S | R \rangle$ be a Dehn presentation of a of a δ -hyperbolic group. Show that we can decide whether a word w on S represents an infinite order element.

8. Let $G = \langle S | R \rangle$ be a Dehn presentation of a δ -hyperbolic group. Show that we can decide whether a word w on S lies in the subgroup $\langle v \rangle$.