$R=k\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over alfebraically closed field k $I \subseteq R$ ideal $X=V(I)=\left\{a \in k^{n}: f(a)=0 \quad \forall f \in I\right\} \quad$ affine variety The topological space closed sets: $V(I)$ Affine space: $\mathbb{A}^{n}=k^{n}$ with Zariski topology: \angle $X \leq \mathbb{A}^{n}$ subspace topology: $x \cap U_{I}$ The functions on it $\begin{aligned} & R \cong \operatorname{Hom}\left(\mathbb{A}^{n}, \mathbb{A}^{\prime}\right), \quad f \longmapsto\left(a \stackrel{e v_{f}}{\longmapsto} f(a)\right) \\ & \mathbb{I I}(X)=\{f \in R: f(X)=0\} \\ & \text { Remark } V(\mathbb{I}(X))=X \text { for affine varieties } X \end{aligned}$ Coordinate ring $k[X]=R / \mathbb{I}(X)$ \square 3) Hilbert's Nullstellensatz: $\mathbb{I}(V(I))=\sqrt{I}$ Lemma There are enough functions to separate points Morphisms between affine varieties 2) $\operatorname{Hom}(x, y) \cong \operatorname{Hom}_{k-a l g}(k[y], k[X])$ Equivalence of categories open sets: $U_{I}=\mathbb{A}^{n} \backslash V(I)$ basis of open sets: $=\bigcup_{f \in I} D_{f}$ $D_{f}=\left\{a \in k^{n}: f(a) \neq 0\right\}, f \in R$ \longleftarrow The function on A^{n} are vanishing on x \leftarrow The folyomial finctions \leftarrow The functions on X are polynomials in the coordinates Keyfacts: 1) Hilbert's basis theorem: R Noetherian, so $R[X]$ Noetherian 2) Hiebert's weak nullstellensatz : maximal ideals of R (and of $k[x]$) are $m_{a}=\mathbb{I}(\{a\})=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$, so correspond to points : $\{a\}=\mathbb{V}\left(m_{a}\right)$ Pf $a \neq b \in X \subseteq \mathbb{A}^{n} \Rightarrow$ some coordinate $a_{i} \neq b_{i} \Rightarrow x_{i} \in k[X]$ separates a, b. D $\operatorname{Hom}\left(\mathbb{A}^{n}, \mathbb{A}^{m}\right) \cong R^{m} \quad \leftarrow$ polynomial maps $\quad a \mapsto\left(f_{1}(a), \ldots, f_{m}(a)\right)$ Hom $(X, Y)=$ restriction of a polynomial map $\mathbb{A}^{n} \rightarrow \mathbb{A}^{m}$ s.t. $X \rightarrow Y$ Facts: 1) $k[x] \cong \operatorname{Hom}\left(X, A^{\prime}\right) \leftarrow \begin{gathered}\text { "values of functions are enough } \\ \text { to determine the abstract function" }\end{gathered}$ Remark The "same" (up to isomorphism) X can be embedded in various \mathbb{A}^{n}. E.g. cuspidal wbic $\mathbb{V}\left(y^{2}-x^{3}\right)=-1 \in \mathbb{A}_{x, y}^{2}$ is $\cong \mathbb{V}\left(y^{2}-x^{3}, z-x\right) \subseteq \mathbb{A}_{x, y, z}^{3}$	

Prof. Alexander F. Ritter
Univesity of Oxford
HT 2020 .
ritter @ maths.ox.ac.uk

C2.6 introduction to Schemes
Feedback and corrections are welcome!
Main Reference
2019 Lecture Notes by Prof. Damian
References

http: // stacks. math. columbia. edu \longleftarrow search defus, theorens, proof hyruars bre 8 argopiou!

Eisenbud \& Harris, The Geometry of Schemes, Springer GTM 197

Classic books by: Mumford (Red Book of Varieties \& Schemes)
Hartshore (Algebraic GGometry)
Shafarevich
 My C3.4 Algebraic geometry notes (see C2.1 course webpage) try + fill the gap between classical alfebraic geometry (C3.4) and C2. Prerequisites
(e.g. Atiyah - MacDonald, Introduction to Comm.Al

Category theory - or willingness to read things up as necessary Homological algebra - or willingness to read things up as necessary
fter
That you read the notes and the main reference regularly after
each class.
Not everything can be covered in detail in class, so you need to be
willing to look things up as necessary.
Conventions
Diagrams commute unless we say otherwise
Ring means commutative ring with unit 1.

Ring means commutative ring with unit 1.

${ }^{*}+$

$$
4 \quad 1 \begin{array}{ll}
1 & 1_{s}:= \\
3
\end{array}
$$

hporb!un arb suoypos 'y

$$
5
$$

 Rok Another example of adjoint functors, for R-modules, are $\operatorname{Hom}(M, \cdot)$ and $\otimes M$:
 1.10 Morphisms of ringed spaces
Def $(f, \varphi):\left(X, \theta_{x}\right) \longrightarrow\left(y, \theta_{y}\right)$ morph of ringed spaces means

$$
x \xrightarrow{f} y
$$

continuous map of topological spaces
locally ringed spaces want in addition:
 is local ring hoo Equivalently:
$\varphi_{S}^{-1}\left(m_{s}\right)$ Equivalently:
$\varphi^{-1}\left(m_{s}\right)=m_{R}$ since this 5 is prime
and contains
m_{R}
 g_{x} is a functor so $g_{*}(1$
means: apply
g_{*} to $f_{*} \theta_{x} \stackrel{f^{\#}}{\leftarrow} \theta_{y}^{*}$ of sheaves on y So: $\theta_{x}\left(f^{-1} V\right) \underset{\text { ringhom }}{\varphi_{v}} \theta_{y}(V)$ for $V \subseteq y$, compatibly with restricts)
For a morphism of locally ringed spaces want
1.10 Morphisms of ringed spaces
$\stackrel{\varphi}{\leftarrow} \theta_{y}$ morph of sheaves of rings \leftarrow
Def $(f, \varphi) \cdot\left(x, \theta_{x}\right)$
Theorem 1) B-sheaf F extends uniquely (up to unique iso)
$\forall x \in U_{i} \cap U_{j} \exists$ basic $x \in U_{k} \subseteq U_{i n} U_{j}$ with
1.11 A sheaf defined on a topological basis

$$
\begin{aligned}
& \text { A sheaf defined on a topological basis } \\
& X \text { top. space with a basis } B \text { of open subsets } \leftarrow
\end{aligned}
$$ local-to-global condition:

\forall basic U with $U=U U_{i}^{\text {-basic }}$
"shodsoro wo halloo buiararo" (in) $\pm \ni$'s A

$$
\hat{+}
$$

$$
\text { B of open subsets } \leftarrow<
$$

$$
\text { Rmk } \underset{\sim}{\text { stalk }} F_{x}=\underset{x\left(\operatorname { l n } \left(\lim _{i, v)}\right.\right.}{ } F(V) \text {. }
$$

$$
\text { - homs } F(U) \rightarrow G(U) \text { for }
$$

$$
\begin{aligned}
& \text { basic sets cv } \\
& =B_{1}, B_{2}, x \in B_{1},
\end{aligned}
$$ $\left({ }^{(} n\right) \neq \exists^{n_{n}}\left|!_{s}={ }^{a_{n}}\right|{ }_{s}$ $(u) \rightarrow F(N) \rightarrow F(W)$ for

$$
\Rightarrow \exists \frac{\text { unique }}{n} s \in F(u) \text { with }\left.s\right|_{u_{i}}=s_{i}
$$

$$
\begin{aligned}
& \text { 2) } B \text {-sheaves } F, G \text { then morph } F \rightarrow G \text { on the ex } \\
& \text { is unigely defined by data: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ting with restrict } \\
& \text { (for basic } \\
& \text { determined by } \\
& v^{F(V)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sic sets) } \\
& \text { al condition }
\end{aligned}
$$

2. GLOBAL SECTIONS AND THE FUNCTOR OF POINTS
 $\frac{\varphi(r)}{\varphi(s)}$
$\frac{\varphi(s)}{\varphi}$
$\frac{\varphi(r)}{\varphi(t}$
 and $f^{\#}=\varphi^{\#}$ since equal on stalks (by the diagram have $\left.f_{p}^{\#}=\varphi_{p}\right) 口$ Def Aff =category of affine schemes (and morphs of locally ringed spaces) \Rightarrow Spec: Rings \rightarrow Aff is an equivalence of categories. $\left(\begin{array}{c}\text { op } \\ \text { =opposite category } \\ \text { so articicilly make }\end{array}\right.$ 1.14 Closed affine subschemes

 $\left.\begin{aligned} & \text { Example } I=m \text { maxideal } \Rightarrow \text { get a closed point }\{m\}=\operatorname{Spec} R / m \hookrightarrow X . \\ & R_{m k} \operatorname{Spec}(R / J) \text { is closed subscheme of } \operatorname{Spec}(R / I) \text { means } J \supseteq I\end{aligned} \right\rvert\, \begin{aligned} & \text { Warning } \\ & \Rightarrow V(J)\end{aligned}$ $R_{m k} \operatorname{Spec}(R / J)$ is closed subscheme of $\operatorname{Spec}(R / I)$ means $J \supseteq I \leftrightarrow \Rightarrow V(J) \leq V(I)$
 Define sheaf of ideals $J=J_{x / y}$ on X : classical Alg. Geom: also: $J\left(D_{f}\right)=I \cdot R_{f} \subseteq R_{f}=\theta_{x}\left(D_{f}\right)$ ideal J J are the regular $\left(\begin{array}{l}\text { adeal sheaf }\end{array}\right) J\left(D_{f}\right)=I \cdot R_{f} \subseteq R_{f}=\theta_{x}\left(D_{f}\right)$ ideal Note

 RmK Later will consider more generally sheaves of R-modules and quasi-coherenc Think of these as the regular

路

$$
\overline{3}
$$

RmK $\exists 1: 1$ corre spondence \{closed subschemes of $X\} \longleftrightarrow\{$ quasi-coh. sheaves of ideals on X. p.
 $\begin{aligned} & Y=\operatorname{Supp} \theta_{x / J}=\left\{x \in X:\left(\theta_{x} / J\right)_{x} \neq 0\right\}=\left\{x \in X: J_{x} \neq \theta_{x, x},\right. \\ & \text { Example closed point } p \in X(\text { so } \overline{\{p\}}=\{p\}) \Rightarrow \text { pick affine } p \in \operatorname{Spec} R \leftrightarrows X \text { then } p \leftrightarrow\left(\begin{array}{l}\text { max } i d e a l\end{array}\right) \leq\end{aligned}$ $0=(\Lambda)^{\wedge}$ os) $\Lambda \neq d$ f! ($\left.\wedge\right)^{x} \theta=(\Lambda) C$ ha $x+C$ purpxa \Leftarrow yords vo $[$ froys \Leftarrow

"irredundant":
can't omit q_{i} Non-examinable (see (3.4 Notes on Lasker-Noether theorem)
 reals) ary ideals
9) ing)

Remarks about calculating closures of sets in $X=$ spec R
 2) For $\varphi: R \rightarrow S$ ring home, $\alpha: \operatorname{Spec} S \rightarrow S_{p e c} R, \alpha(p)=\varphi^{-1} p:$

Given $C=V(J) \subseteq S_{p e c} S, \quad \overline{\alpha(C)}=V\left(\varphi^{-1} J\right)$
Pf $p \in V(p) \Rightarrow \bar{p} \leq V(p) \quad($ since $V(p)$ closed)
converse: $p \in \bar{p} \xlongequal{〔} V(I) \Rightarrow I \subseteq p\} \Rightarrow I \subseteq p \subseteq q \Rightarrow q \in V(I) \square$
 $\begin{aligned} & =V_{0}\left(\rho_{1}\right) \cup \ldots \cup V_{0}\left(\rho_{k}\right) \mathbb{K}_{\text {where }} V_{+}(\cdot) \text { is } V(\cdot) \text { calculated in } \mathbb{A}_{B^{*}}^{n} \\ \Rightarrow \overline{x^{*}} & =V\left(\rho_{1}\right) \cup \ldots \cup V\left(p_{k}\right) \subseteq \mathbb{A}_{B}^{n} \text { \& since } p_{i} \in X^{*} \subseteq \overline{x^{*}}\end{aligned}$ $=V\left(p_{1} \cdot p_{2} \ldots p_{k}\right) \quad$ and $p_{i} \in \overline{V_{*}\left(p_{i}\right)} \leq V\left(p_{i}\right)=\overline{p_{i}}$

Example

 a morph $f: F \rightarrow G$ can be uniquely defined from data: a:
$=f_{j} \mid \circ \varphi_{u_{i j}}$ St. via identifications $\left.F\right|_{u_{i}} \simeq F_{i},\left.G\right|_{u_{i}} \simeq G_{i}$ recover $\left.f\right|_{u_{i}}=f_{i}$

$$
\text { open subschemes }\left(u_{i i}=u_{i}\right)
$$ u_{i} schemes, $u_{i j} \subseteq$

$\varphi_{i j}: u_{i j} \cong$
gluing conditions $u_{j i}$
l) $\varphi_{i i}$
$u_{i j} \cap u_{i k} \rightarrow u_{k}$

$$
x!n u!n 51 x: n u
$$

 4.2 Gluing schemes

$$
\leftarrow\left(\text { think "go from } u_{i} \text { to } u_{j}\right. \text { ") }
$$

今
5. PRODUCTS
 Vector spaces/abelianges/modules: " \quad " $U=$ direct sum, π_{i} are inclusions. $u=$ tensor product, $\pi_{i}(r)=\mid \otimes . \otimes r \otimes . \otimes 1$

 Pushout the opposite diagram (reverse arrows)
Example: for Rings the pushout of $B \rightarrow C, B \rightarrow D$ is the tensor product $C \otimes_{B} D \quad$ sec.4.2 Example: $B \xrightarrow{ \pm} C, B \xrightarrow{g} D$ inclusions of open subschemes, then pushout $C \Delta_{B} D$ is the goring! Exercise: (co) product, fiber product, pushout are unique up to unique iso if they exist. (Hint :compose unique maps between them (st. diagram commutes) then composites id by uniqueness of self-mpp)
Examples of fiber products in cat. of Sets or Top spaces: $C X_{B} D=\{(c, d): f(c)=g(d)\} \subseteq C \times D$ $C \xrightarrow{\subseteq} B, D \xrightarrow{C} B C C x_{B} D \cong C \cap D$
$D \xrightarrow{\triangle} B \Rightarrow C x_{B} D \cong f^{-1}(D) \subseteq C \quad$ for example $D=$ point $=b \in B$ get fiber $f^{-1}(b)$
$C=D \Rightarrow C x_{B} D=\{(x, y): f(x)=g(y)\} \subseteq C \times D \quad$ ("equaliser")
 Gluing Lemma Suppose we built X as above :x:•f

 $\stackrel{\rightharpoonup}{4} \mid$

 $=\cup \mathbb{A}_{x_{x_{i}}}^{n}$ where $X=U X_{i}$ affine open cove ${ }^{\prime} V_{V}$ biro pard)

 $h^{\prime} A^{n} T_{T o p}(x)^{\circ \rho}$ " by consequence above. Thus if the two functors agree on of affines then by sheaf property they agree everywhere. For affine $x=$ spec R just need compare global section

 Pf WLOG B affine $=$ Spec S and b is prime ideal $p \subseteq S$
$f^{-1}(B)=U$ Spec R_{i} given by $\varphi_{i}: S \rightarrow R_{i}$
WLOG just consider one affine, so $R=R_{i}$, so WLOG $X=5$. Forgetful functor $|\cdot|:$ Sch \longrightarrow Top Spaces,

$\Rightarrow \operatorname{spec} k(b) x_{B} X=\operatorname{spec}\left(K(b) \otimes_{S} R\right)$
$\Rightarrow \operatorname{Spec} k(b) x_{B} X=\operatorname{spec}\left(K(b) \otimes_{S} R\right)$
$\otimes^{d}(d / s)=y^{s} \otimes(q) x \Leftarrow{ }^{d}(d / s)=(q) x$
$Q_{S} \quad(S / p)_{p} \otimes_{S} R$
Warning $|X \times Y| \neq|X| \times|Y|$ in general, e.g. $\operatorname{s\rho ec} \mathbb{Z} / 2 \times \operatorname{spec} \mathbb{Z} / 3=\varnothing$
e.g. $\mathbb{A}_{\mathbb{Z}}^{2}=\mathbb{A}_{\mathbb{Z}}^{\prime} \times \mathbb{A}_{\mathbb{Z}}^{\prime}=\operatorname{spec} \mathbb{Z}[x, y]$ then $(x+y) \longmapsto(0)$ via both projections but $(x+y) \neq(0)$ R k k If x, y closed points of schemes x, y over k, and k algebraically closed, then fiber over (x, y) of $X x_{\text {speck }} Y$ is $\operatorname{Spec}(k(x) \otimes k(y))=\operatorname{Spec}(k \otimes k)=\operatorname{spec} k=(0)$ $k \longleftarrow($ so classical alg. geom.) Warning $\mathbb{A}_{k}^{2}=\mathbb{A}_{k}^{\prime} \times \mathbb{A}_{k}^{\prime}$ does not have the product topology, e.g. consider $V(x-y)$ Non-examinable $R_{m k}$ Working over an algebraically closed field k, the stalk of $X x_{\text {Speck }} Y$ at (x, y) is $\theta_{x, x} \otimes_{k} \theta_{y, y} e_{0}$ calised at max ideal $m_{x, x} \otimes \theta_{y, y}+\theta_{x, x} \otimes m_{y, y}$
Base change
5.3
Base change $\quad X_{A}:=X X_{B} A \rightarrow X$

5.5 Scheme structure on subsets

新

$\operatorname{Vect}(X)=\{$ vectorbundles on $X\} \subseteq \theta_{X}$-Mods, but not an abelian cat (ker, coker $\operatorname{coh}(X)=\left\{\right.$ coherent $\left.\theta_{x}-\bmod s\right\} \leftarrow$ Fact abelian category! (explains partly its imeortan Claim $F \in \operatorname{Coh}(X)$ and $F_{X} \cong \theta_{x, n}^{\oplus n} \Longrightarrow F \in \operatorname{Vect}(X) \quad \forall x \in X$, some $n \in \mathbb{N}$ ($\begin{aligned} & \text { we fix the rank }\end{aligned}$
shrinking U, get exact sequence $0 \longleftarrow$ such F are called locally finitely presented $(\operatorname{Ker} \varphi)_{x}=0$ by construction so $0 \rightarrow \operatorname{Ker} \varphi$ surjective at x, therefore after shrinking U further m times can assume $\psi\left(e_{i}\right) \in \operatorname{Ker} \varphi_{u}$ is in inage of
$0 \mid u \rightarrow \operatorname{ker} \varphi_{u}$, hence $\psi\left(e_{i}\right)=0$, so $\psi=0$, so φ iso. I 1 in i-th opy of θ_{u} in θ_{u}^{\oplus} $\operatorname{RmK} F \in \operatorname{Coh}(X) \Longrightarrow F$ locally finitely presented $\quad \begin{aligned} & \text { nothic hoo finiterness of } \\ & \text { also paged a }\end{aligned}$
 In sections below we will prove that because $\theta_{u}^{\oplus n}$. $F l_{u}$ are "quasi-coherent" the problem reduces to taking global sections: $\operatorname{Ker}\left(R^{n} \xrightarrow{\varphi} F(U)\right)$ and this is finitely geneated since R Noeth (so get exact seqence $R^{m} \rightarrow R^{n} \underline{\varphi} F(u) \rightarrow 0$ and this will imply $\theta_{u}^{\oplus m} \rightarrow \theta_{u}^{\oplus n \underline{\varphi}} F_{R^{n}} \rightarrow$ exact). प) $6.4 \theta_{x}$-module \tilde{M} on $X=\operatorname{Spec} R$, for R-mod $M \quad$ So its R-submods are. sheaf \widetilde{M} on $X=\operatorname{Spec} R$ by Sec. 1.12 method: $\quad M_{f}=$ localisation of M at f since R Noe $\begin{aligned} M_{P} & \cong M \otimes_{R} R_{f} \\ M_{P} & =S^{-1} M \text { localisation of } M \text { at } S=R \backslash \\ & \cong M \otimes_{R} R_{P}\end{aligned}$

 $D_{g} \subseteq D_{f} \Rightarrow \lim _{f} \tilde{M}\left(D_{f}\right)=\lim M_{f} \cong M_{p}$

- stalk $\widetilde{M}_{p}=\lim _{D_{f} \rightarrow p} M\left(D_{f}\right)=\lim _{D_{f} \exists_{p}} M_{f} \cong M_{p} \leftarrow\left(\lim _{M} M \otimes R_{f} \cong M \otimes \lim _{\rightarrow} R_{f} \cong M \otimes R_{p}\right.$ which are locally compatible:
 with $D_{f} m\left(=D_{f}\right)$ $\begin{array}{ll}\text { - could assume } t=\frac{m}{f} \text { since can replace } D_{f} \text { with } D_{f} m\left(=D_{f}\right) . & \begin{array}{l}\text { is imazel } \\ \text { vianatral } \\ M_{f} \rightarrow M_{x}\end{array}\end{array}$ $\widetilde{M}=$ sheafification of $U \mapsto M \otimes_{R} \theta_{x}(u) \quad$ EXAMPLES $\cdot \widetilde{R}=\theta_{x} \quad(x=\operatorname{sece} R$

 - ${ }^{-1}$

$\begin{aligned} & \text { sUMMARY: coherent } \Longrightarrow \text { locally finitely presented } \Rightarrow \text { quasi-coherent (}=\text { locally presented) } \\ & \text { vector bundle } \Longrightarrow \text { locally generated by finitely many sections } \Longrightarrow \text { locally generated by sections }\end{aligned}$ Lemma For $X=$ Spec $R:\left(\exists\right.$ exact sequence of θ_{x}-mods $) \Longleftrightarrow(F \cong \widetilde{M}$ some R-module $M)$

Lemma For $X=$ Spec $R:\binom{$ Exact sequence of θ_{x}-mods }{$\underset{i \in I}{ } \theta_{x} \longrightarrow \underset{i \in J}{\oplus} \theta_{x} \rightarrow F \rightarrow 0} \Leftrightarrow(F \cong \widetilde{M}$ some R-module $M)$
$\underline{P f} \Rightarrow$ Let $M=\oplus R / \operatorname{lm}(\oplus R \rightarrow \oplus R) \quad$ (taking global sections)
 Upshot $f: x \rightarrow y$ morph of ringed spaces $\Longrightarrow \operatorname{Mod}_{\theta_{x}}(X) \xrightarrow{f_{*}} M_{0 d_{\theta_{y}}}(y)$ and f^{*}
Theorem f^{*}, f_{*} are adjoint functors: $\operatorname{Mor}_{\theta_{x}}\left(f^{*} F, G\right) \cong \operatorname{Mor}_{\theta_{y}}\left(F, f_{*} G\right)$
$\begin{aligned} & \text { Upshot } f: X \rightarrow Y \text { morph of ringed spaces } \Longrightarrow \operatorname{Mod}_{\theta_{x}}(X) \xrightarrow{f_{*}} \operatorname{Mod} \theta_{y}(y) \text { and } \\ & \text { Theorem } \\ & \text { (exercise) }\end{aligned} f^{*}, f_{*}$ are adjoint functors: $\operatorname{Mor}_{\theta_{x}}\left(f^{*} F, G\right) \cong \operatorname{Mor}_{\theta_{y}}\left(F, f_{*} G\right)$.

$$
R \text {-mod, }
$$

Fact $\underset{\text { stucture s.t. }}{\exists!\theta_{x}-\bmod }: \underset{\text { product }}{\text { sheaftensor }}=\underbrace{f^{-1}(F)(U) \otimes_{f^{-1} \theta_{y}(u)} \theta_{x}(U)} \longrightarrow f^{*} F(U)$ is $\theta_{x}(u)-\bmod$ l
Example $f^{*} \theta_{y}=\theta_{x}$ (since $f^{-1} \theta_{y} \theta_{f}(U)-\bmod$ as by $^{-1} \theta_{y} \cong \theta_{x} \cong$ canonically)
Exercise. $\cdot x \xrightarrow{f} y \xrightarrow{g} z \Rightarrow f^{*} \circ g^{*}=(g \circ f)^{*} \quad$ (use last fact in 6.4 , using Se.. - $f^{*}\left(F \otimes_{\left.\theta_{y} G\right)}=f^{*} F \otimes_{\theta_{x}} f^{*} G\right.$ canonically \& functorial

M
asier
Ea
7.6 $Q \operatorname{Coh}(x), \operatorname{Coh}(x), \operatorname{Vect}(X)$ for $x=\operatorname{Spec} R$

Pf. Easy direction: $M \longmapsto F=\widetilde{M} \longmapsto F(x)=\widetilde{M}(x)=M$. Converse : given F want $F \cong \widetilde{F l}$ \Rightarrow locally $\forall p \in X, \exists p \in D_{f}$ s.t. $\left.F\right|_{D_{f}} \stackrel{\varphi_{f}}{\cong} \widetilde{N}$ some $R_{f}-\bmod N \quad\left\{\begin{array}{l}\text { By cor in } 7.1 \\ \text { using that } D_{f} \text { are }\end{array}\right.$ cover X by finitely many such, say N_{i} on $D_{f}, i=1, \ldots, n$, so $1 \in\left\langle a l l f_{i}\right\rangle$ basis of topology
\Rightarrow On overlaps: $\psi_{i j}: \widetilde{\left(N_{i}\right)} \xrightarrow{\varphi_{f:}^{-1}} F \mid \xrightarrow{\varphi_{f_{j}}} \widetilde{\left(N_{j}\right)_{f}}$ satisfy coccule conditionet since $\left(N_{i j} f_{j} f_{i}\right.$
 But then \widetilde{M}, F have isomorphic local gluing data for cover $X=D_{f}, \ldots \ldots \cup D_{f_{n}}$ so $\widetilde{M} \cong$ (Explicitly: $m \in M \mapsto m_{i}=\frac{m}{1} \in M_{f_{i}}=N_{i} \xrightarrow[f_{i}^{-1}]{ } s_{i} \in F\left(D_{f_{i}}\right)$ and $\left.s_{i}\right|_{D_{i, f}}=\left.s_{j}\right|_{D_{i, f} f_{j}}$) so globalier to $u n i q u$. Cor $X=\operatorname{Spec} R: F \in \operatorname{Coh} X \Leftrightarrow F=\tilde{M}$ for coherent module $M^{\text {M }} \quad \leftrightarrow \underset{F}{\text { and if } R \text { Noeth. get: }} \Leftrightarrow F(X) f . g$. R-mod

 Def F is flat $\theta_{x}-\bmod$ if $F \otimes_{\theta_{x}}$ is exact $\quad \begin{gathered}\Leftrightarrow M \text { is a direct summa } \\ \text { of some free } R \text {-mod }\end{gathered}$ $\leftrightarrow \begin{aligned} & \text { sinu e eractress can } \\ & \text { be che ced on stalks }\end{aligned}$ Example $U \rightarrow x$ open subsch. $\Rightarrow i_{*} \theta_{U}$ is flat $\theta_{x}-\bmod \quad H$ stalk is ifther oor $\theta_{x, x}$

 Claim $f: X \rightarrow Y$ flat $\Rightarrow f^{*}: \theta_{y}-\operatorname{Mod}^{-1} \rightarrow \theta_{x}-$ Mod is exact (not just right exac

$\stackrel{\underbrace{}_{f}-\theta_{y}}{\theta_{x}}$ exact by $R_{m k} \Rightarrow f^{*} F=f^{-1} F{ }_{f^{-} \theta_{y}}^{\otimes} \theta_{x}$ is composite of two exact functors \square

$\xrightarrow{R_{m k}} \underset{\Rightarrow \mathcal{L}^{-1}}{\mathcal{L}}$ line bundle with transition maps $\alpha_{i j}$ " " $\alpha_{i j}$ "-
FACT line bundles on \mathbb{A}^{n} are always trivial indeed vector bundles on \mathbb{A}^{n} are always trivial $\longleftarrow\left(\begin{array}{l}\text { Serre's Conjectre } \\ \text { Quillen-Sussin Theorem } \\ \text { 1976 }\end{array}\right)$
\mathcal{L} line bundle on $\left.\mathbb{P}_{k}^{\prime} \Rightarrow \mathcal{L}\right\|_{A_{i}}$ trivial since $A_{i} \cong \mathbb{A}^{\prime}$. $\left(\alpha_{10}:\left.\left.\mathcal{L}\right\|_{A^{\prime}} \rightarrow \mathcal{L}\right\|_{A^{0}}\right) \in k\left[t, t^{-1}\right]^{*}=\left\{a t^{i}: a \in k^{*}, i \in \mathbb{Z}\right\} \longleftarrow \hat{A}_{0}$ ote: $A_{1}=\operatorname{Seccc} k \mathbb{E}_{i}$ $\beta_{0} \in k[t]^{*}=k^{*}, \quad \beta_{1} \in k\left[t^{-1}\right]^{*}=k^{*} \quad$ execcise
Pic $\left(\mathbb{P}^{\prime}\right) \cong \stackrel{H}{1}^{\prime}\left(\mathbb{P}^{\prime}, \theta_{p^{\prime}}^{*}\right) \cong \mathbb{Z}$ $\theta(i) \leftrightarrows\left(\alpha_{10}=t^{\prime}\right) \longleftrightarrow i$$\begin{gathered} \text { so define } \theta(i) \text { by using } \\ \alpha_{10}=t^{i} \\ \alpha_{01}=t^{-i} \end{gathered}$
$R_{m k} \theta(0)=\theta_{\text {pl }}$ tivivial line bdle. Hwk 4 Ideal sheat of a closed point in \mathbb{P}^{1} is $\cong \theta(1)$, for disjoint union of n cle for order n point $\left(t^{n}\right) \leq k[t]$ get $\theta(n)$
Non-examinable Rmk
T\|p1 is $\theta(2)$ since $\theta(-1) \rightarrow \mathbb{P}^{\prime}$ is blow-up
$\frac{\text { Theorem }}{\text { Cuthrel mik }} \text { Sit } \tilde{H}^{0}\left(\mathbb{P}^{\prime}, \theta(i)\right)=\left\{\begin{array}{l} 0 \quad i<0 \\ \{f \in k[t]: \operatorname{deg} f \leqslant i\} \cong k\left[x_{0}, x_{1}\right]_{i} \quad i \geqslant \end{array}\right.$
$\frac{\text { Pf }}{3}$ By 8.6 , since \mathbb{P}^{1} separated \& quasi-compact, enought calcalate $\tilde{H}_{\left\{A_{0}, A_{\}}\right\}}^{*}\left(\mathbb{P}^{\prime}, \theta(i)\right)$

$$
\begin{aligned}
& \text { injective } \\
& \text { Projective }
\end{aligned}
$$

$$
\begin{aligned}
& \text { of abelian cats (see 1.7) } \\
& R^{n} f(M)=H^{n}\left(f\left(I^{\bullet}\right)\right)^{*}(\text { see } 1.8)
\end{aligned}
$$ $R^{n} f(M)=H^{n}(f(I))$ projier. $\left(f I^{0} \rightarrow f I^{1}\right) \cong \operatorname{lm}(f M \rightarrow f$ Warning fleft exact only implies $0 \rightarrow f M \rightarrow f I^{\circ} \rightarrow f\left(\operatorname{Im}\left(I^{\circ} \rightarrow I^{\prime}\right)\right) \rightarrow 0$ exact. Deduce: $R^{\circ} f(M)=f$ $N \rightarrow I \cdot$ inj.res ($\operatorname{Exts}_{s}^{0}(M, N) \cong \operatorname{Hom}_{s}(M, N$ Classical Examples $\quad A=S^{\text {ring }}$-Mods, $\quad f=\operatorname{Hom}(M, \cdot)$ $\left.R^{n} f\right)(M)=H_{n}\left(\operatorname{Hom}\left(P_{p}, N\right)\right)$ $P_{0} \rightarrow M$ proj.res

$g=M \otimes_{s}$ r right exact $\Longrightarrow \operatorname{Tor}_{s}^{n}(M, N)=\left(L_{n} g\right)(N)=H_{n}\left(M \otimes_{s} P\right)\left(\operatorname{Tor}_{s}^{\circ}(M, N) \cong M \otimes_{s}\right.$ $\operatorname{Tor}_{s}^{n}(M, N)=\left(L_{n} g\right)(M)=H_{n}\left(P . \otimes_{s} N\right)$ for $P_{0} \rightarrow M$ Poj.res.)

 Cor $R^{n} f(M)=H^{n}\left(f I^{\bullet}\right)$ independent of choice of inj. res. $M \rightarrow I^{\bullet}$

Pf Apoly fact to $M=N$, get $H^{*}\left(f I^{*}\right) \rightarrow H^{*}\left(f J^{*}\right) \rightarrow H^{*}\left(f I^{*}\right)$ composite is id by uniqueness. \square Lemma f left exact $O \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ SES $\Rightarrow \exists$ canonical \& functorial LES
$0 \rightarrow R^{0} f\left(M_{1}\right) \rightarrow R^{0} f\left(M_{2}\right) \rightarrow R^{0} f\left(M_{3}\right) \rightarrow R^{\prime} f\left(M_{1}\right) \rightarrow R^{\prime} f\left(M_{2}\right) \rightarrow R^{\prime} f\left(M_{3}\right) \rightarrow R^{2} f\left(M_{1}\right) \rightarrow \ldots$
 by this SES
of compexes
follows that $R^{\cdot} f(M)=H^{*}\left(f\left(I^{*}\right)\right)$ for any inj. res. $M \rightarrow I^{*}$ (see end of next section) Hwk $4 A b(X)$ has enough injectives i.e.can build inj. resolutions of any object $F \in A b(X)$.

We now ask how this relates to $H^{n}(X, F)$ for $F \in Q \operatorname{Coh}(X) \subseteq A b(X)$ and X scheme.
Pf $x=U U$: finite affine open cover (use x quasi-compact)

\Leftrightarrow exact on stalks $\underset{(\neq)}{\rightleftharpoons} 0 \rightarrow \Gamma(u, F) \rightarrow \Gamma\left(u, J^{\circ}\right)$ exact \forall affine open
$\underbrace{0 \rightarrow \Gamma(U, F) \rightarrow \Gamma\left(U, J_{0}\right) \rightarrow \Gamma(u, J,) \rightarrow \ldots}$

If Sheaf cohomology $H(X, F)=$ cohombogy of $\Gamma\left(x, I^{0}\right) \rightarrow \Gamma\left(x, I^{\prime}\right) \rightarrow \ldots$ for $F \rightarrow I^{\circ}$ any
Check the conditions of Theorem:
i) $\Gamma(X$,$) left exact \Rightarrow H^{\circ}(X, F) \cong \Gamma(X, F) \leftrightarrow$ general consequence see 9.1, or explicictly:
 ii) by the Theorem below. $\square \quad$ exact, so in of is kor of whichis H
Theorem R Noeth., $F \in Q \operatorname{Coh}(\operatorname{spec} R) \Rightarrow H^{n}(\operatorname{Spec} R, F)=0 \quad \forall n \geqslant 1-\times$ Noeth. scheme the
Non-examinable proof ideas The cleanest proof is to build machinery: $\quad \forall n \geqslant 1$

1) A sheaf F is flasque if all restrictions $F(u) \rightarrow F(V)$ are surjective. $\quad \forall F \in Q C h 1$
2) \forall flasque F on a top. space X, have $H^{n}(X, F)=0 \forall n \geqslant 1$ (HartshorneIII.2.5)
3) \forall injective R-module I, and R Noeth, $\Rightarrow \widetilde{I}$ on Spec R is flasque (Harshocre II.3.4)
Cor Flasque resolutions are acyclic by (2), so can be used to compute $H^{n}(X, F)$ by 9.2
Pf Thm $F \cong \widetilde{M}$ for $M=\Gamma(X, F)$ by 7.6. Pick injective resolution of the R-module $M: 0 \rightarrow M \rightarrow$,
$\Rightarrow 0 \rightarrow \widetilde{M} \rightarrow \widetilde{I} \cdot$ exact, each \widetilde{I}^{n} flasque, so can use this to compate $H^{n}(X, F)$ by $\underline{C_{0}}$
$\Rightarrow H^{n}(x, \widetilde{M})=H^{n}\left(\Gamma\left(x, \widetilde{I^{n}}\right)\right)=H^{n}\left(I^{n}\right) \bar{\Pi}_{n \geqslant 1}^{0}$ since $I^{\text {e exact sequence except in degree o } 0 \text {. a }}$ Rmk injective θ_{x}-mods are flasque (Hartshorne III.2.4) (in des $=0$ get M, and $H^{0}(x, \tilde{r})=\tilde{H}(x)=M$)

