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1. Preliminaries

1.1. COURSE POLICY and BOOK RECOMMENDATIONS

C3.4 Course policy: It is essential that you read your notes after each lecture.

You will notice that for most Part C courses, unlike previous years, each lecture builds on the
previous. If you don’t read the notes then within a lecture or two you may feel lost. For Part C
courses, you should not expect every detail to be covered in lectures: often it is up to you to check
statements as exercises.

The course assumes familiarity with algebra (or that you are willing to read up on it).
I'm afraid it would be unrealistic to expect commutative algebra to be taught as a subset of this
16-hour course. I write “Fact” if you are not required to read/know the proof (unless we prove it),
and it usually refers to: algebra results, or difficult results, or results we don’t have time to prove.
Algebraic geometry is a difficult and extremely broad subject, and I will do my best to make it
digestible. But this will not happen by itself: it requires effort on your part, thinking on your own
about the notes, the examples, the exercises.

Date: This version of the notes was created on February 20, 2019.
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RELEVANT BOOKS

Basic algebraic geometry

Reid, Undergraduate algebraic geometry. Start from Chp.I1.3. (Available online from the author)
Fulton, Algebraic Curves. (Available online from the author)

Shafarevich, Basic Algebraic Geometry.

Harris, Algebraic Geometry, A First Course.

Gathmann, Algebraic geometry. (Online notes)

Background on algebra

Atiyah and MacDonald, Introduction to commutative algebra.

Reid, Commutative algebra.

Beyond this course

Mumford, The Red Book of varieties and schemes.

Harshorne, Algebraic geometry.

Eisenbud and Harris, Schemes.

Griffiths and Harris, Principles of Algebraic Geometry. (This is complex alg.geom.)
Matsumura, Commutative ring theory.

Eisenbud, Commutative Algebra with a view toward Algebraic Geometry.

Vakil, Foundations of algebraic geometry. (Online notes)

RELATED COURSES
Part C: C2.6 Introduction to Schemes, and C3.7 Elliptic Curves
It may help to look back at notes from Part B: Algebraic Curves, Commutative algebra.

1.2. DIFFERENTIAL GEOMETRY versus ALGEBRAIC GEOMETRY

You may have encountered some differential geometry (DG) in other courses (e.g. B3.2 Geometry

of Surfaces). Here are the key differences with algebraic geometry (AG):

(1) In DG you allow all smooth functions.
In AG you only allow polynomials (or rational functions, i.e. fractions poly/poly).

DG is very flexible, e.g. you have bump functions: smooth func-

(2) f T tions which are identically equal to 1 on a neighbourhood of a

point, and vanish outside of a slightly larger neighbourhood.
Moreover two smooth functions which are equal on an open set need not equal everywhere.
AG is very rigid: if a polynomial vanishes on a non-empty open set then it is the zero poly-
nomial. In particular, two polynomials which are equal on a non-empty open set are equal
everywhere. AG is however similar to studying holomorphic functions in complex differen-
tial geometry: non-zero holomorphic functions of one variable have isolated zeros, and more
generally holomorphic functions which agree on a non-empty open set are equal.

(3) DG studies spaces X C R™ or C" cut out by smooth equations.

AG studies X C k™ cut out by polynomial equations over any field k. AG can study number
theory problems by considering fields other than R or C, e.g. Q or finite fields IF),.
v DG cannot satisfactorily deal with singularities.

(4) In AG, singularities arise naturally, e.g. 22 4 y? — 22 = 0 over R has a singularity
A at 0 (see picture). AG has tools to study singularities.

(5) DG studies manifolds: a manifold is a topological space that locally looks like R™, so you
can think of having a copy of a small Euclidean ball around each point. This is an especially
nice topology: Hausdorff, metrizable, etc.

AG studies varieties. They are topological spaces, but their topology (Zariski topology)
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is not so nice. It is highly non-Hausdorff: for any irreducibleﬂ variety, any non-empty open
set is dense, and any two non-empty open sets intersect in a non-empty open dense set! A
variety is locally modeled on k™. The points of k™ are in 1:1 correspondence with maximal
ideals in R = k[x1,...,2,]). The collection of all maximal ideals of R is called Specm(R),
the maximal spectrum. The irreducible closed subsets of k™ are in 1:1 correspondence
with the prime ideals of R. The collection of all prime ideals of R is called Spec(R), the
spectrum. AG can study very general spaces, called schemes: simply replace R by any
commutative ring, and study spaces which are locally modeled on Spec(R). In AG studying
varieties reduces locally to commutative algebra.

2. AFFINE VARIETIES

2.1. VANISHING SETS

k = algebraically closed ﬁeldﬂ e.g. Cbut not Q, R, IFp.

Fact. k is an infinite set.

k" ={a = (a1,...,a,) : a; € k} is a vector space/k of dimension n.
We will work with the following k—algebraﬂ

’R = k[z1,...,2zy] = (polynomial ring/k in n variables). ‘

Definition. X C k" is an affine (algebraic) variety if X = V(I) for some idealﬁ I C R, where
V() ={a € k": f(a) =0 for all f € I}|

Remark. More generally we can define V() for any subset S C R. Notice V(S) = V(I) for I = (S)
the ideal generated by S.

EXAMPLES.
(1) V(0) = k™
(2) V(1) =0 = V(R).
(3) V(z1 — ai1,...,zy — ay) = {the point (a1,...,a,)} C k™.
(4) V(x1) C k% is the second coordinate axis.
(5) V(f) C k™ called hypersurface. Special cases:

n = 2: affine plane curve. E.g. elliptic curves over C: y* — z(z — 1)(z — \) = 0 for
A # 0,1, is a torus with a point removed (and it is a Riemann surface).

n = 2,deg f = 2: conic section. E.g. the circle 22 + 3% —1=0.

n = 2,deg f = 3: cubic curve. E.g. the cuspidal cubic y?> — 23 = 0.
Pictures are, strictly speaking, meaningless since we draw them over k = R,
which is not algebraically closed. Think of the picture as being the real
partﬂof the picture for k = C.

a
deg f = 1: hyperplane: a-x = a1x1+- - -+apx, = 0 hasnormal a # 0 € k™. /

1A topological space X is irreducible if it is not the union of two proper closed sets.

2Recall this means k contains all the roots of any non-constant polynomial in k[z]. Thus the only irreducible
polynomials are those of degree one, and every poly in k[x] factorizes into degree 1 polys. It also means that for any
algebraic field extension k — K then k = K. Recall a field extension is algebraic if any element of K satisfies a poly
over k, for example any finite field extension (meaning dimy K < o) is algebraic).

3A k-algebra is a ring which is also a k-vector space, and the operations +, -, and rescaling satisfy all the obvious
axioms you would expect.

“1deal means: 0 € I, I+1C1,R-ICI.

5You need to be careful with this. For example, the “circle” 22 + y? = 1 over k = C also contains the hyperbola
z? —y? = 1 by replacing y by iy. Also, disconnected pictures like 2y = 1 over R become connected over C (why?).
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Fact. k algebraically closed = ‘V(I )=0<1€el (soiff I =R) ‘ (see Corollary
This fails for R: V(22 + y? + 1) = 0 (real algebraic geometry is hard!)
EXERCISES.
(1) IcJ=V(I ) V(J). (“The more equations you impose, the smaller the solution set”.)

(2) V(D) UV(J) =V(I-J) =V NJ).
(3) V)NV (J) =V +J). (Note: JUJ)=1+J.)
(4) V(I),V(J) are disjoint if and only if I, J are relatively prime (i.e. I 4+ J = (1))

\_/A

2.2. HILBERT’S BASIS THEOREM
Fact. Hilbert’s Basis Theorem. R = k[x1,...,x,] is a Noetherian ring.

Recall the following are equivalent definitions of Noetherian ring (intuitively a “small ring”):
(1) Every ideal is finitely generated (f.g.)

I'={(fi,....fn)=Rfi +---+ Rfn.
(2) ACC (Ascending Chain Condition) on ideals:
I C I, C--- ideals = Iy = Iny+1 = -+ eventually all become equal.

Note. (1) implies that affine varieties are cut out by finitely many polynomial equations. So affine
varieties are intersections of hypersurfaces:

V() =V(f1,....,fn) =V(fi)N---0V(fn).
(2) implies that every ideal is contained in some maximal ideaﬂ m (as otherwise I C Is C I3 C
would contradict (2))E|
Exercise. R Noetherian = R/I Noetherian.
Corollary. Any f.g. k-algebra A is Noetherian.
Proof. Let f: R = k[z1,...,x,] — A, sending the x; to a choice of generators for A. Then R/I = A
for I = ker f (first isomorphism theorem). O

2.3. HILBERT’S WEAK NULLSTELLENSATZ

Fact. Hilbert’s Weak Nullstellensatz. (k algebraically closed is crucial)
The maximal ideals of R are
My = (1 — a1,...,Tp — ayp)
for a € k™.
Warning. Fails over R:
m= (z? +1) C R[z]
is maximal since R[z]/m = C is a field. It is not maximal over C:
(a2 +1) = ((z — )z +1)) C (@ — i),

Remark. The evaluation homomorphism

evy : R — k,z; — a;, more generally ev,(f) = f(a),

has kerev, = m,, so

m, ={f €R: f(a) = 0}.
Proof. For a = 0, k[zy1,...,2,] — k, z; — 0 (so f — the constant term of the polynomial f)
obviously has kernel (z1,...,x,). For a # 0 do the linear change of coordinates z; — x; —a;. 0O

Im # R is an ideal and R/m is a field.

2For any ring (commutative with 1), any proper ideal is always contained inside a maximal ideal. However, to
prove this in general requires transfinite induction (Zorn’s lemma), so in practice it is not clear how you would find
the maximal ideal. Whereas for Noetherian rings, you know that the algorithm which keeps finding larger and larger
ideals, I C I C I3 C -- -, will have to stop in finite time.
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Upshot.E|
{points of k"} <> {maximal ideals of R} = Specm(R), the maximal spectrum
a — (r1—a1,...,Tp —ap) =My,
points of the variety maximal ideals m C R
< X =vV{)ck" > { with 7 Cm } = Speem(R/1).

Notice: if I ¢ m, then some f € I satisfies f(a) # 0, so a ¢ V(I).
Corollary 2.1. V(I)=0<1lel < 1=R.

Proof. If 1 ¢ I then [ is a proper ideal, so it lies inside some maximal ideal m. By the Weak
Nullstellensatz m = m, for some a € A". But I C m, implies V(I) D V(m,) = {a}. O

Remark. Without assuming k algebraically closed, a max ideal m D I defines a field extension
k—R/m=K

where R/m = K sends z; — a;. This defines a point a € V(I) C K", so it is a “K-point” solving our
polynomial equations, but we don’t “see” this point over k unless a € k™ C K. For k algebraically
closed, k = K because k — K is an algebraic extension by the following Fact, so we “see” everything.
Key Fact. K f.g. k-algebra + K field = K f.g.as a k—moduleﬂ = k — K finite = k — K algebraic.

(Because the Key Fact implies the Weak Nullstellensatz via the Remark, the Key Fact is sometimes
also called the Weak Nullstellensatz ).

Example. i € V(22 +1) CCbut ) = V(2?2 +1) C R — C.

2.4. ZARISKI TOPOLOGY

The Zariski topology on k" is defined by declaringﬁ that the closed sets are the V(7).
The open sets are the
U = k"\V()
= K"\ (V(f)n---NV(fn))
= (K"\V(f1))U---UE"\V(fx))
= D(fi)U---UD(fn)

where the D(f;) are called the basic open sets, where
D(f) =Us =k"\V(f) ={a € k" : f(a) # 0}.
Exercise. Affine varieties are compactﬁ any open cover of an affine variety X has a finite subcover.

Definition. Affine space A" = A} is the set A" = k™ with the Zariski topology.

Example. Al = £ has closed sets 0, k, {finite points}, and open sets 0, k, and (the complement of
any finite set of points). It is not Hausdorff since any two non-empty open sets intersect. The open
sets are dense (as the only closed set with infinitely many points is k, using that k is infinite).

Definition. The Zariski topology on an affine variety X C A" is the subspace topology, so the
closed sets are V(I + J) = X NV(J) for any ideal J C R (equivalently, V(S) for ideals I C S C R).
An affine subvariety Y C X is a closed subset of X.

I¥or the last equality, recall:

{ideals J C R with I C J} < {ideals J C R/I}
J — J={j=j+I1€R/I:jeJ}
J={jeR:jeJ} «— J
2j.e. a k-vector space. Clarification: in an algebra you are allowed to multiply generators, in a module you are not.
3In fact it is the smallest topology such that polynomials are continuous and any point is a closed set.
4Histom'cally this property is called quasi-compactness rather than compactness, to remind ourselves that the

topology is not Hausdorff.
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2.5. VANISHING IDEAL
For any set X C A", let

[I(X)={f€R: fla) =0forall a € X}|

EXAMPLES.

(1) I{a) =me ={f € R: f(a) =0}

(2) I(V(2?)) = 1(0) = (z) C k[z], so I(V(I)) # I in general.
Exercises.

(1) X CY = I(X) > I(Y).
(2) I cI(V(I)).

Lemma 2.2. V(I(V(I))) = V(I), in particular V(I(X)) = X for any affine variety X.

Proof. Take V(-) of exercise 2 above, to get V(I(V(I))) C V().
Conversely, by contradiction, if a € V(I) \ V(I(V(I))) then there is an f € I(V(I)) with f(a) # 0
But such an f vanishes on V(I), and a € V(I). O

Corollary. For affine varieties, X1 = Xo < 1(X1) = I(X2).

2.6. TRREDUCIBILITY AND PRIME IDEALS

An affine variety X is reducible if X = X; U Xy for proper closed subsets X; (so X; € X).

Otherwise, call X irreducibleH
Remark. Some books require varieties to be irreducible by definition, and call the general V(I)
affine algebraic sets. We don’t.
EXAMPLES.

(1) V(z1z2) = V(x1) U V(22) is reducible

(2) Exercise. X irreducible < any non-empty open subset is dense.

(3) Exercise. X irreducible < any two non-empty open subsets intersect.

(4) In a Hausdorff topological space, only the empty set and one point sets are irreducible.

Theorem. X = V(I) # 0 is irreducible < 1(X) C R is a prime idealE|
Warning. I C R need not be prime: I = (22) is not prime but I(V(2?)) = (x) is prime.
Proof. If I(X) is not prime, then pick fi, fo satisfying f1 ¢ I(X), fa ¢ I(X), fif2 € I(X). Then

X CV(fif2) =V(f1) UV(f2)

so take X; = X NV(f;) # X (since f; ¢ I(X)).
Conversely, if X is not irreducible, X = X; U Xy, X; # X, so (by Lemma there are f; €
I(X;) \ I(X) but f1fo € I(X), so I(X) is not prime. O

Notice, abbreviating I = [(X), J =1(Y),

{irreducible varieties X C A"} < {prime ideals I C R} = Spec(R)
{irreducible subvarieties Y = V(J) C X =V(I) C A"} <« {prime ideals J D I of R}
< {prime ideals J of R/I} = Spec(R/I).

Remark. Spec(k) = {0} = just a pointﬁ So, in seminars, when someone writes Spec(k) <
Spec(R/I) they are just saying “given a point in an affine variety...”.

130 X = X1 U X, for closed X implies X; = X for some 1.
25 # R is an ideal and R/I is an integral domain.
3Because the only ideals inside a field k are 0, k.
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2.7. DECOMPOSITION INTO IRREDUCIBLE COMPONENTS
Theorem. An affine variety can be decomposed into irreducible components: that is,
X=X1UXoU---UXpn.

where the X; are irreducible affine varieties, and the decomposition is unique up to reordering if we
ensure X; ¢ X for alli # j.

Proof. Proof of Existence. By contradiction, suppose it fails for X.

So X =Y; UY/ for proper subvars.

So it fails for Y7 or Y/, WLOG Y;.

So Y1 = Yo UY] for proper subvars.

So it fails for Y3 or Yy, WLOG Ya.

Continue inductively.

We obtain a sequence X DY DYy D ---.

Sol(X)CcI(Y;) cI(Y) C ---.

So I[(Yn) = I(Yn41) = - - - eventually equal, since R is Noetherian (Hilbert Basis Thm).

So, by Lemma YN =V((Yn))) = V(I(Yn+1)) = Yn41 which is not proper. Contradiction.
Proof of Uniqueness. Suppose X1 U---U Xy =Y U---UYy, with X; & X; and Y; ¢ Y for i # j.
X;=(X;NY)U---U(X;NYy) contradicts X; irreducible unless some X; NY, = X;.

So X; C Y, for some /.

Similarly, Y, C X; for some j.

So X; C Y, C X, contradicting X; ¢ X; unless i = j.

Soi=jand so X; =Y.

Given ¢, the ¢ is unique (due to Y; ¢ Yj for i # j) and vice-versa given ¢ there is a unique such . 0O

Remark. The fact that R is a Noetherian ring implies that affine varieties are Noetherian topo-
logical spaces, i.e. given a descending chain

XO>OXi1DODX9D---

of closed subsets of X, then Xy = Xy41 =+ are eventually all equal.
Proof. Take I(-) and use the ACC on ideals. So [(Xy) = [(Xn41) = -+ are eventually equal. Then
take V(-) and use Lemma O

2.8. IRREDUCIBLE DECOMPOSITIONS and PRIMARY IDEALS
This Section is not very central to the course. See the Appendix, Section
2.9. IL(V(-)) AND V((-))
Motivation. By Lemma if X is a variety then
V(I(X)) = X.

Of course, the assumption was to be expected, since V(-) is always closed, so for this equality to hold
we certainly need X to be closed, i.e. a variety.
Under what assumption on an ideal I can we guarantee

I(V(I)) = I. (2.1)
)

The question really is, what is special about the ideals which arise as I(V(-))? Observe that I(V (I
is always a radical ideal: if it contains a power f™ then it must contain f. Indeed, if f™(a) =
[f(a)]™ =0 € k then f(a) = 0. We show next that for any radical ideal I, ([2.1]) holds.

Definition. The radical \/T of an ideal I C R is defined by
VI={feR:f™el for somem}.
I is called a radical ideal if I = \/T.
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Example. V(z?) = {0} Cc A! and I(V(23)) = (z) = \/(z3). So (z) is radical, but (x3) is not.
Exercise. Check that V(I) = V(\/I).

Exercise. I C R is radical & R/I has no nilpotentﬂ elements, i.e. R/I is a reduced ring.
Example. Any prime ideal is radical.

Motivation. The problem is that V(-) forgets some information. One should really view V(z?) as
being 0 € A! with a multiplicity 3 of vanishing. This idea is at the heart of the theory of schemes.
Loosely, a scheme should be a “variety” together with a choice of a ring of functions. The ring of
functions associated to (z?) is k[z]/x3, which is 3-dimensional, whereas for (z) it is k[z]/z, which
is 1-dimensional. The “additional dimensions” can be thought of as an infinitesimal thickening of

the variety, as it keeps track of additional derivatives. Roughly: f = a + bx + cx? € k[x]/23 has
0, f(0) = b and 0,0, f = 2¢, whereas k[x]/z only “sees” f = a € k[z]/z.

2.10. HILBERT’S NULLSTELLENSATZ
Theorem 2.3 (Hilbert’s Nullstellensatz).

I(V(I)) =VI
=1.

In particular, if I is radical then 1(V(I))
Proof. We will prove this later. O

Corollary. There are order—reversmgﬂ bijections

{varieties } <« {radical ideals}
{irreducible varieties} <> {prime ideals} = Spec(R)
{points} <+ {mazimal ideals} = Specm(R)

X — IX)
V() <« I
Proof. These are bijections because V(I(V(I))) = V(I) by Lemma and I(V(I)) = I for radical
ideals I by Theorem O

The Nullstellensatz (“Zeros theorem”) owes its name to the proof of the existence of common zeros
for any set of polynomial equations (crucially, of course, k is algebraically closed):

Lemma 2.4. For any proper ideal I C R, we have V(I) # (.

Proof. Pick a maximal ideal I € m C R. By Hilbert’s weak Nullstellensatz, m = m, = (z1 —
a1, ..., Ty — ap) for some a € k™. Hence V(I) D V(m,) = {a} D V(R) = 0. O

Proof of the Nullstellensatz.

Easy direction: above we showed I(V(I)) is always radical, we know I C I(V(I)), so VI C I(V(I)).
Remains to show I(V(I)) € V1.

Given g € I(V(1)).

Trick: let I' = (I,yg — 1) C k[x1,...,zp,y] (the idea being: we go to a new ring where g = 0 is
impossible in V(I')).

Observe that V(I') = ) c A"+

By Lemma I' =k[zq,..., 20,9

Solel

So 1= Go(z1,...,2n,y) - (yg— 1)+ > Gi(x1,...,2p,y) - fi for some polynomials G;, and where f;
are the generators of I = (f1,..., fn).

For large £, ¢* = Fo(x1,...,%n,9y) - (yg — 1) + 3. Fi(21,...,7n,9y) - fi for some polynomials Fj
(noticeﬁ the last variable is now gy instead of y).

L eRis nilpotent if r™ = 0 for some m € N.
2Recall X C Y = I(X) D I(Y), I € J = V(I) > V(J).
3Example: if y® 4+ = G(y) then multiply by ¢° to get: ¢y®+ ¢y = (9v)® + ¢*(9y) = F(gy) where F(z) = 2> + ¢°=.
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Since y is a formal variable, we mayﬂ replace gy by 1, so ¢ =S Fy(21,...,2n,1) - f; € I.
SogevI. 0O

2.11. FUNCTIONS

Motivating question: what maps X — Al do we want to allow?
Answer: any polynomial in the coordinate functions z; : a = (a1,...,a,) — a;.

The following are definitions (and notice the isomorphisms are k-algebra isos):
Hom(A", Al) {polynomial maps A" — Al a — f(a), some f € R}
R.

2 I

Hom(X,A') {restrictions to X of such maps}

R/I(X).

Notice that the restricted maps do not change if we add g € I(X) as (f + ¢)(a) = f(a) for a € X.
We may put a bar f over f as a reminder that we passed to the quotient, so f + g = f if g € [(X).

Remark. The above are isomorphisms because f; = fo as maps A" — Al iff f; — f, € I(A") = {0},
similarly f; = fo as maps X — Al iff fi{ — fo € I(X). That abstract polynomials can be identified
with their associated functions relies on k being inﬁnitﬂ (which holds as k is algebraically closed). For
the field k = Z/2 there are four functions k& — k whereas k[z] contains infinitely many polynomials.

2.12. THE COORDINATE RING

Definition. The coordinate ring is the k-algebra generated by the coordinate functions x;,

e

k[X] = R/I(X).
EXAMPLES.
1) kE[A"] = k;[xl, ..., Tpn] = R.
2) X = {(a,d?, a)€k3 aEk}— V(y — 2% 2 — therﬁk —k::L‘y, 2]/ (y — 22,z — 23).
3) V = (cuspidal cubic) = {(a?,a®) : a € Al} V( therﬁ k[V] = klz,y]/ (23 — y?).

Lemma 2.5 (The coordinate ring separates points). Given an affine variety X, and points a,b € X,
if f(a) = f(b) for all f € k[X] then a =b.

Proof. If a # b € X C A", some coordinate a; # b;, so f =Z; € k[X] has f(a) =a; # b; = f(b). O
2.13. MORPHISMS OF AFFINE VARIETIES

F: A" — A™ is a morphism (or polynomial map) if it is defined by polynomials:

F(a) = (fi(a),..., fm(a)) for some fi,..., fm € R.

F : X — Y is a morphism of affine varieties if it is the restriction of a morphism A™ — A™ (here
X CA™ Y C A™), so

F(a) = (fi(a),..., fm(a)) for some fi,..., fm € k[X].

1View the equation for ¢g* as an equation in the variable (gy — 1) over R rather than in gy (this is a change of
variables), then “putting gy = 17 is the same as saying “compare the order zero term of the polynomial over R in the
variable gy — 1”7. Algebraically, the key is: k[z1,...,2n] = Ek[z1,...,2n,y]/(yg — 1), x; — T; is an injective k-alg hom.
2Hint. 1f f : A" — k vanishes, fix a; € k, then f(X,az,...,a,) is a poly in one variable A with infinitely many roots.
3Strict1y speaking, one needs to check that I = (y — z?,z — 2®) is a radical ideal, since k[X] is the quotient of
k[z,y, 2] by vI =1(X). Notice that k[z,y, z]/(y — 2%,z — 2®) 2 k[t] via  +— t, y — 2, 2 +— >, with inverse map given
by t — x. Since k[t] is an integral domain, it has no nilpotents, so I is radical (in fact we also proved I is prime). We
remark that I(X) = (y — 2%, z — 2*) now follows by the Nullstellensatz: V(I) = X so I(X) = I(V(I)) = VI = 1.
4Again, we need to check I(V) = (2° — y?). Note that if (o, 8) € V(z® — y?) we can pick a € k with a®> = a (as k
is alg.closed). Then y* = a® so y = +a®, and we can get +a® by replacing a by —a if necessary. So V(z®> —y?) C V C
V(2 —y?), hence equality. We now show (z* — y?) is prime (hence radical). Since k[z,y, 2] is a UFD (so irreducible <
prime), it is enough to check that z® —y? is irreducible. If it was reducible, then 2® —y? would factorize as a polynomial
in z over the ring k[y]. So there would be a root = p(y) for a polynomial p. This is clearly impossible (check this).
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F: X — Y is an isomorphism if F' is a morphism and there is an inverse morphism (i.e. there is
a morphism G : Y — X such that F o G =1id, Go F =id).

Example. (V(zy —1) € A%) — Al, (2,y) = x is a morphism. Notice the image A! \ {0} is not a
subvariety of Al
Theorem. For affine varieties X C A", Y C A™ there is a 1:1 correspondence

Hom(X,Y) <— Homy_a,(k[Y], k[X]) = {k-algebra homs k[Y] — k[X]}

F=¢p*: X =Y +— ¢o=F":k[Y]— k[X]
+—— @=F*:Hom(Y,A') = Hom(X,A'), g+ F*g=go F

where k[ X] = k[x1,...,2,]/UX), k[Y] = kly1, ..., ym]/L(Y) and
Fi(yi) = filzr,... 20) = @(yi)
p(a) = (p)(a),....olym)(a)) = (fila),..., fm(a)).

Proof. The correspondence maps, in the two directions, are Well—deﬁnedﬂ v

(F)*(a) = (F*(y1)(a), ..., F*(ym)(a)) = (f1(a), ..., fm(a)) = F(a), so (F*)" = F. v

(") (wi) = (yi), so (¢")" = @. v O
Remark. The maps ¢*, F™* are called pull-backs (or pull-back maps).
EXAMPLES.

1) F:A' -V ={(a,a® a®) € kK :a €k}, F(a) = (a,a?,a®) then
KAY = k[t] <= E[V] =klz,y,2]/(y — 22,z — %)

t <+ @
2 oy
B3 o« oz
2) F: A -V ={(a?a®) : a € A'} =(cuspidal cubic), F(a) = (a?,a?) then
KAY = k[t] €= K[V] =kl 9]/ (z® — v?)
22— =z
3« 1.

Exercise. F : X — Y morph = F~}(V(J)) = V(F*J) C X for any closed set V(J) C Y. So
morphisms are continuous in the Zariski topology.

EXERCISES.
DXLy & Z= (GoF) =FoG k2] S kY] D k[X].
2) k[Z] % kY] B k[X] = (o) =v o : X BV H 7.

Corollary. For affine varieties,
X 2Y & k[X] = kY]

Proof. If X LY has inverse G,FoG=1idso (FoG)"=G*oF* =id* = id. Similarly for G o F..
If k[Y] 5 k[X] has inverse 1, ¢ 01) = id so (p o ¥)* = 9* o o* = id* = id. Similarly for Y op. O

EXAMPLES.

1)V ={(a,a?,a®) € A3:a € A'} = Al via (a,a?, a®) « a, indeed k[V] = k[t] = k[A!] via z < .

2) In the cuspidal cubic example above, F' is a bijective morphism but it cannot be an isomorphism
because F™* is not an isomorphism (it does not hit ¢ in the image). The idea is that V has “fewer
polynomial functions” than A! due to the singularity at 0. Convince yourself that k[t], k[V] are not
isomorphic k-algebras, so there cannot be any isomorphism A! — V (stronger than just F failing).

3) Exercise. If I': X — Y is a surjective morphism of affine varieties, and X is irreducible, then Y
is irreducible. Show that it suffices that F' is dominant, i.e. has dense image.

Example. Y = {(¢,t%,#3) : t € k} is irreducible as it is the image of A — Y ¢+ (¢,13,13).

n particular ¢*(X) C Y C A™, because g(¢*(a)) = ¢(g)(a) =0 for all g € [(Y) and a € X, as g = 0 € k[Y].
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3. PROJECTIVE VARIETIES
3.1. PROJECTIVE SPACE

Notation:
kE* =k \ {0} = units, i.e. the invertibles.
For V any vector space/k, define the projectivisation by

P(V) = (V \ {0}) / (k*-rescaling action v — Av, for all A € k*).

Notice this always comes with a quotient map = : V' \ {0} — P(V), v — [v], where [v] = [Av].
By picking a (linear algebra) basis for V, we can suppose V = k""!. We then obtain P" = Py =
P(k"t1), called projective space, defined as follows
Pr = Pkt
= (space of straight lines in k"*! through 0)

Write [ag, a1, ..., an] or [ag : a1 : -+ : ay] for the equivalence class of (ag,as,-..,a,) € k"1 \ {0},
whose corresponding line in k"1 is k- (ao, . .., a,) C k™", Via the rescaling action, we thus identify
[ag : ... ap] =[Xag:...: Aa,] forall A € k*.

As before, we have a quotient map
7 A"\ {0} = P, 7(a) = [a].

The coordinates g, ..., x, of k" = A"*! are called homogeneous coordinates of P", although
notice they are not well-defined functions on P™: x;(a) = a; but x;(Aa) = Aa;.

EXAMPLES.

line Ra
1) For kK = R (not algebraically closed, but a useful example), ﬁ
RP"™ = S™/(identify antipodal points a ~ —a) V
because the straight line in R”*! corresponding to the given point of RP" ’

will intersect the unit sphere of R**! in two antipodal points.

2) For k=C, n=1, g2
CP! = P& = C U {infinity} = §*

the last isomorphism is the stereographic projection, Above, identify [1 : z]

with z € C, and [0 : 1] with co. Note [a : b)] = [1 : 2] if a # 0, taking c
z = b/a, using rescaling by A = a~!. For a = 0, we get [0 : b] = [0 : 1],
rescaling by A = b~! (note: [0 : 0] is not an allowed point).

We can think of P" as arising from “compactifying” A™ by hyperplanes, planes, and points at infinity:
P = {[1:ar1:---:ap)}U{[0:a1:--:ay]}

= Arupr!

= .- (by induction)

= A"UA"'U---UATUA
where A is the point [0:0:---:0:1].
3.2. HOMOGENEOUS IDEALS
Motivating example. Consider f(z,y) = 2> + 43, and [a : b] € P'. It is not clear what f[a : b] =0
means, since [a : b] = [3a : 3b] but f(a,b) = a®> +b*> = 0 and f(3a,3b) = 9a® + 276> = 0 are
different equations. However, for the homogeneous polynomial F(z,y) = z?y + 3>, the equations
F(a,b) = a®b+b® = 0 and F(3a,3b) = 27(a’*b+ b?) = 0 are equivalent, so F[a : b] = 0 is meaningful.
Notation. R = k[xq,...,z,] (k algebraically closed)

Definition. F' € R is a homogeneous polynomial of degree d if all the monomials xéo con gl
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appearing in F' have degree d = ig + - - - + i,,. By convention, 0 € R is homogeneous of every degree.

Notice any polynomial f € R decomposes uniquely into a sum of homogeneous polynomials

f=fot-+fa

where f; is the homogeneous part of degree ¢, and d is the highest degree that arises.

Lemma 3.1. For f € R, if f vanishes at all points of the line k- a C A" (corresponding to the
point [a] € P") then each homogeneous part of f vanishes at [a).

Proof. 0 = f(\a) = fo(a) + fi(@) X + -+ + fa_1(a) X + f4(a) \? is a polynomial/k in A with
inﬁnitelyEl many roots. So it is the zero polynomial, i.e. the coefficients vanish: f;(a) =0, alli. O

Exercise. F' is homogeneous of degree d < F(\r) = \F(z) for all \ € k*.

Definition. I C R is a homogeneous ideal if it is generated by homogeneous polynomials.
Exercise. I C R is homogeneous < for any f € I, all its homogeneous parts f; also lie in [I.
Example. For R = k[z,y], (2%y + %) = k[z,y] - (z%y + »?) is homogeneous.

Example. (z2,3%) = R- 2% + R - y3 is homogeneous.

Non-example. (22 + ?) is not homogeneous: it contains x? 4+ y3 but not its hom.parts 2, 3>,

Exerciseﬂ Deduce that a homogeneous ideal is generated by finitely many homogeneous polys.

3.3. PROJECTIVE VARIETIES and ZARISKI TOPOLOGY
Definition. X C P” is a projective variety if
X =V({I)={a€P": F(a) =0 for all homogeneous F' € I}

for some homogeneous ideal I.

Definition. The Zariski topology on P" has closed sets precisely the projective varieties V(I).
The Zariski topology on a projective variety X C P" is the subspace topology, so the closed subsets
of X are X NV(J) = V(I + J) for any homogeneous ideal J (equivalently, V(S) for homogeneous
ideals I C S C R). A projective subvariety Y C X is a closed subset of X.

EXAMPLES.
1) Projective hyperplanes: V(L) C P" where L = agzg + - - - + a2z, is homogeneous of degree 1
(a linear form). In particular, the i-th coordinate hyperplane is

Hi=V(x;))={laop:...:ai—1:0:a;41:...:ay] 1 a; € k}.

2) Projective hypersurface: V(F') C P" for a non-constant homogeneous polynomial F' € R. A
quadric (cubic, quartic, etc.) is a projective hypersurface defined by a homogeneous polynomial
of degree 2 (respectively 3, 4, etc.). For example, the elliptic curves V(y?z —x(x — 2)(z — cz)) C P?
(where ¢ # 0,1 € k) are cubics in P2,

3) (Projective) linear subspaces: the projectivisation P(V) C P" of any k-vector subspace V C k"*!
is a projective variety. It is cut out by linear homogeneous polynomials. The case dimg V' =1 gives a
point in P". The case dimy V' = 2 defines the (projective) lines in P". Example: V = spany(ep,e1) C
k? yields the line {[tg: t1: 0] € P2 1 tg,t1 €k} ={[1:t:0]:t €k} U{[0:1:0]} =PL

Exercise. Using basic linear algebra in £"*!, show that there is a unique line through any two
distinct points in P”, and that any two distinct lines in P" meet in exactly one point.

3.4. AFFINE CONE

For a projective variety X C P", the affine cone X C A™! is the union of the straight lines in &"*?
corresponding to the points of X. Thus, using the quotient map 7 : A1\ {0} — P", x — [z],

X={0tur Y (X)C A" if X #0, and § = 0 c A",

lhere we use that k is an infinite set, since k is algebraically closed.
2Recall the Hilbert Basis theorem, i.e. R is Noetherian.
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Exercise. If ) # X = V(I) C P", for some homogeneous ideal I C R, then X is the affine variety
associated to the ideal I C R,

X = Vagine(I) C A"
Remark. X = () only arises if I C R does not vanish on any line in A"*!. By homogeneity of I, this
forces V(I) € A™*! to be either () or {0}, which by Nullstellensatz corresponds respectively to I = R
or I = (zg,...,25). We want X =) so I = R. The exercise would fail for the irrelevant ideal

Livr = (20, ..., Tp)-
Notice the maximal homogeneous ideal I;;» does not correspond to a point in P™ ([0] is not allowed).
In Section [3.3] we could have defined
V(I)={a €P": f(a) =0 for all € I, and all representatives o € A" of a},

so here o € 7~ 1(a) is any point on the line k - o defined by a.
Exercise. Check this definition gives the same V(I), by using Lemma (so f(k-a) =0 forces all
homogeneous parts of f to vanish at a € P").

Exercise.ﬂ Show that V(I) = 7(Vagine(I) \ 0).

3.5. VANISHING IDEAL

R = k[xzg, ..., xp].
For any set X C P", define I"(X) to be the homogeneous ideal generated by the homogeneous polys
vanishing on X:

I"(X) = (F € R : F homogeneous, F(X) = 0).
Exercise. If I is homogeneous, then V(I"(V(I))) = V(I) and I C T"(V(I)).
Warning. V(I;) = 0 C P, but I"(§) = R # /Tipr = Iiyp. Similarly, if /T = I, then V(I) =
V(v/T) = 0 and I"(V(I)) = R. These are the only cases where the proj.Nullstellensatz fails (Sec3.6))

Lemma 3.2.

I"(X) = {feR:fla)=0 for every a € A" representing any point of X C P"}
= I(X).
Proof. This follows by Lemma[3.1} f € I"X) & f(X) =0 < f(X) =0« f € I[(X). O

3.6. PROJECTIVE NULLSTELLENSATZ

Theorem (Projective Nullstellensatz).

1"(V(I)) = VI for any homogeneous ideal I with VT # I,

Proof. Vagine(I) # {0} by the affine Nullstellensatz, as VI # Ijy,. So X = V(I) = 7(Vagine(I) \ 0) C
P is non-empty, so its affine cone is X' = Vifine(/). Using Lemma and the affine Nullstellensatz
we obtain: ]Ih(X) =1(X) = I(Vagine(I)) = V. 0

Remark. From Section if X =V(I) =0, then I = either R or .., but I"(X) = R.

Theorem. There are 1:1 correspondences

{proj. vars. X CP"} < {homogeneous radical ideals I # I;,}
{irred. proj. vars. X C P"} < {homogeneous prime ideals I # I}
{points of P"} <« { “maximal” homogeneous ideals I # Ly}
< {the homogeneous ideal R}

LHint. Notice that V(I) = X = (X \ 0) = 7(Vagine(I) \ 0).
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where the maps are: X +— IM(X) and V(I) <~ 1.
The point p = [ag : -+ : a,)] € P" correspondsﬂ to the homogeneous ideal

m, = (a;x; — a;x; : all i, j) = {homogeneous polys vanishing at a}
which amongst homogeneous ideals different from L., is maximal with respect to inclusion.

Remark. The maximal ideals of k[zo, ..., r,] are (x; — a; : all i) in bijection with points a € A"T1.
These ideals are not homogeneous for a # 0. In fact, the only homogeneous maximal ideal is ;.
(the case a = 0). The points p € P™ correspond to lines in A"*1, so they are prime but not maximal
ideals. These are the homogeneous ideals m;, C I;, C k[xo,...,zy] shown above.

3.7. OPEN COVERS
Ui =P"\ H; = {[z] € P" : z; # 0} is called the i-th coordinate chart.

Exercise. ¢;:U; — A"
Ti— xT; Ti— x;
[x]:[%?:...:;iil:l:%il:...:%] % (%7...7%’%7...’%)

is a bijection, indeed a homeomorphism in the Zariski topologiesﬂ

Consequence:

X C P" projective variety = X = [J;;(X NU;) is an open cover of X by affine varieties.
Example. X = V(2? 4 9% — 22) C P2

U,={[x:y:1]: 2,y €k} (the complement of H, = {[x:y:0]: [z :y] € P'}).

XNU, =V(z?+y* - 1) C A? is a “circle”.

What is X outside of X NU,?

XNH, =V(x?+y?) gives [1 :4:0], [1: —i: 0] € P? (the “points at infinity” of X N U,).
Geometric explanation: change variables to 3 = iy then

XNU, =V(2?—75%—1) C A% is a “hyperbola”, with asymptotes § = 4z, so y = +iz are the two
lines corresponding to the two new points [1: ¢ : 0], [1 : —¢ : 0] at infinity.

3.8. PROJECTIVE CLOSURE and HOMOGENISATION
Given an affine variety X C A", we can view X C P" via:
XCA"2UycP"=A"UP" L.
The projective closure X C P" of X is the closurdﬂ of the set X C P™.
Remark. X =2 X' 4 X =~ X/,
Example. V(y — 22), V(y — 23) in A2 are = A!, but their projective closures are not iso (see Hwk).

Given a polynomial f € k[z1,...,x,] of degree d, write f = fo + f1 + -+ + f4 where f; are the
homogeneous parts. Then the homogenisation of f is

f= alfo+ad i+ xofar + fa

EXAMPLES.
1) 22 +y? =1 in A? becomes z? + y? = 2% in P,
2) y? = x(x — 1)(z — ¢) in A? becomes the elliptic curve y?z = z(z — z)(z — cz) in P2.

Exercise. X =V(f) CP" = X NUy=V(f) CUy=A".

1 Notice the generators of m;, are the 2 x 2 subdeterminants of the matrix with rows a and z, so the vanishing of
the functions in m, say that z is proportional to a. Another way to look at this, is to pick an affine patch U; = A"
containing p (so a; # 0). Then homogenize the maximal ideal m, ; = (x; — Z—j s all j # ¢) that you get for p € A™.

2Hints: to show it is a bijection, just define a map ¢; in the other direction such that ; o ¢; and ¢; o ¢; are identity
maps. It remains to show continuity of ¢;,%;. To show continuity, you need to check that preimages of closed sets
are closed. So you need to describe the ideals whose vanishing sets give ¢; '(V(J)) and v; *(V(I)) = ¢:(V(I)). You
will find that in one case, you need to homogenise polynomials with respect to the i-th coordinate, so f € J C k[A"]
becomes f = x?egf f(f?f’ cee %) (but omitting 2—1), and in the other case you plug in z; = 1 and relabel variables.

3i.e. the smallest Zariski closed set of P" containing X.
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Exercise. For any f, g € R, show that E = f g.

Exercise. You can also dehomogenise a homogeneous polynomial F' € R by setting zp = 1, so
f=F(1,z1,...,2,). Check that F = z§f, some £ > 0.

Question: X = V(I) C P" for some ideal I C kl[zo,...,#,]. Can we find an ideal I that works,
from the given ideal I C k[z1,...,zy] which defines X = V(I) C A"?

Theorem 3.3. We ca take I to be the homogenisation of I,

I = the ideal generated by homogenisations of all elements of I
(f: fel.

Remark. In general, it is not sufficient to homogenize only a set of generators of I (see the Hwk).

Proof. X aff.var C A" = Uy = (z9 #0) C P™.

Claim. V(I) = X C P".

Step 1. X C V(I).

Pf. It suffices to check that the homogeneous generators of I vanish on X.

Let G € I be the homogenisation of some g € I.

= G(1,a1,...,an) = g(a1,...,a,) =0 for (ai,...,a,) € X =V(I)

= Gluypnx =G|x =0 (viewing X C Uy, so UyNX = X)

= X C V(G)

= X C V(G) (note V(G) is already closed)

Step 2. \/f O I*(X). (We know secretly these are equal, see the Corollary below)
It suffices to show that homogeneous generators G € 1"(X) are in \ﬁ .

= G|x = 0. (Since X C X N Uy, indeed equality holds by the above exercise)

= f=G(1,x1,...,zy) € [(X).

= f™ ¢ I, some m. (Using the Nullstellensatz vT = (X))

= homogenise: fm = f™ e [.

= Sinc G = b f, it follows that G™ = zfmf™ e I, s0 G € VI.v

Step 3. V(I) C X.

Follows by Step 2: V(I) = V(VT) ¢ VI'(X)) = X. v/ 0
Exercise. How does the above proof simplify, if we start with I =1(X)?

Lemma. The homogenisation I of a radical ideal I is also radical.

Proof. First, the easy case: suppose G € ﬁ is homogeneous.

Thus G™ € I for some m, and we claim G € I.

G"(L,z1,...,2p) = (G(L,x1,...,2pn))" €1

= f=G(1l,x1,...,x,) € I, since I is radical.

= homogenising, fe I.

=G = xf;fe I, some ¢ (just as in Step 2 of the previous proof). v/
Secondly, the general case: g € \/?

= g=Go+ -+ Gy (decomposition into homogeneous summands).

= ¢" = (Go+ -+ Gg-1)™ + (terms involving G4) + GI}' € I, some m.

= G € I, since Iis homogeneous (G is the homogeneous summand of g™ of degree dm).

IThe obvious choice is to take I = I(X) and I = homogenisation of I(X). However, the Theorem allows you also to
start with a non-radical I: just homogenise and you get a (typically non-radical) I that works, so X = V(IN) = V(\/?)
2Example: G = z3(2? — mox1), f =22 — 1, f = 27 — zox1 has lost the 23 that appeared in G.
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= Gyel, by the easy case.

= (g—Gqa)" = (Go+ -+ Gq_1)" = g" — (terms involving Gy4) — G € I.

= by the same argument, G | € I so Gy_1 € I. Continue inductively with ¢ — G4 — G4_1, etc.
:>Go,...,Gd€rIv,sog€fIv.\/ O

Corollary. In Theorem if we take I = I(X) then I = (homogenisation of 1(X)) is radical and
I =1"V(I)) by Hilbert’s Nullstellensatz.

3.9. MORPHISMS OF PROJECTIVE VARIETIES

Motivation. P" is already a “global” object, covered by affine pieces. So it is not reasonable to
define morphisms in terms of Hom(P?, A!). In fact Hom(P", A') ought to only consist of constant
maps: P? = A" UP" ! so restricting to A" we ought to get Hom(A", A') = k[xz1, ..., x,], and these
polynomials (if non-constant) will blow-up at the points at infinity which form P"~! c P".

Definition. For proj vars X C P*, Y C P™, a morphism F : X — Y means: for every p € X
there is an open meighbourhood p € U C X, and homogeneous polynomials fy,..., frn € R of the
same degree[l] with

FiUY, Fla = [foa) -+ f(a)].

Rmk 1. The fact that the degrees of the f; are equal ensures that the map is well-defined: F[Aa] =
FoAa) i -+ fnAa)] = NLfo(@) s -+ : X fm(@)] = [fo(@) : -+ finla)] = Fla).

Rmk 2. When constructing such F', you must ensure the f; do not vanish simultaneously at any a
(and that F' actually lands in Y C P™).

Rmk 3. An isomorphism means a bijective morphism whose inverse is also a morphism.

EXAMPLES.
1) The Veronese embedding F : P* — V(xz — y?) C P2, [s: t] = [s? : st : t?] is a morphism.
We want to build an inverse morphism.

If s # 0 then [s: t] = [s? : st].

If t # 0 then [s : t] = [st : t2].

So define G : V(zz —y?) = Pl by [x:y: 2]~ [z :y]if 2 #0,and [z :y: 2] = [y: 2] if 2 #0.
This is a well-defined map, since on the overlap x # 0, z # 0 we have

2

[z y|l=[zz:yz]=[y" 1 yz] =[y: 2]
It is now easy to check that F'o G =id, G o F' = id.
2) Projection from a point. Given a proj var X C P", a D
hyperplane H = V(L) C P", and a point p ¢ X and ¢ H,
define 7, : X — H = P" ! by x Xcpr
mp(z) = (the point € H where the line through x and p hits H).
H=V(L P"
Example. p=[1:0:---:0], H=V(x0), then () (L) c
Tplzo: - txp] =0yt

Exercise. Show that by a linear change of coordinates on A"*! the general case reduces to the
Example. (Hint. Use a basis p,h1,. .., hy, where p € A" represents p, and h; is a basis for H.)

3) Projective equivalences. An isomorphism X 2= Y of projective varieties X, Y C P" is a
projective equivalence if it is the restriction of a linear isomorphism

P* — P", [z] — [Az]
i.e. induced by a linear isomorphism A"*! — A"l 23 Az where A € GL(n + 1,k). Since [Az] =
[AAz]| we only care about A modulo scalar matrices Aid, so A € PGL(n+ 1,k) =P(GL(n + 1,k)).
FACTEl The group Aut(P") of isomorphisms P — P" is precisely PGL(n + 1, k).

lrecall, by convention, that the zero polynomial has every degree.
2Har‘cshorme, Chapter II, Example 7.1.1. This requires machinery beyond this course. You may have seen the case

of holomorphic isomorphisms P* — P! over k = C: you get the M&bius maps z — ZZZIQ where (¢ %) € PGL(2,C).
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010
Example. Hy = H; via ((1) 8 I%).
Example. Putting a projective linear subspace into standard form: if fi,..., f,, are homogeneous
linear polys which are linearly independent = V(f1,..., fin) Z V(z1,...,2n).

Non-example. P2 O Hy = P! = V(z2z — y?) C P? but they are not projectively equivalent since
their degrees are different (we discuss degrees in Sec{9.1]).

3.10.  GRADED RINGS and HOMOGENEOUS IDEALS

Recall R = k[zg, ..., 2n] = @450 Ra where Ry = homogeneous polys of degree d, and Ry = k, and
by convention 0 € Ry for all d. In particular, the irrelevant ideal is i, = (0, ...,2n) = @y Ra-

Definition. Let A be a ring (commutative). An N-grading means

A:@Ad

d>0
as abelian groupsﬂ under addition, and the grading by d is compatible with multiplication:
Ag- A C Ad+e-

The elements in Ay are called the homogeneous elements of degree d.

Note every f € A is uniquely a finite sum ) f; of homogeneous elements fy € Ay.

An isomorphism of graded rings A — B is an iso of rings which respects the grading (445 — By).
I C A ideal, then define

Iy=1NAy
which is a subgroup of A; under addition.
Definition. I C A is a homogeneous ideal iiﬂ
I= @ 1.
d>0

EXERCISES.

1) I homogeneous < I generated by homogeneous elements.

2) I homogeneous < for every f € I, also all homogeneous parts f; € I.
3) If I homogeneous,

I prime ideal <V homogeneous f,g € A, fg € I implies f € I or g € 1.

4) Sums, products, intersections, radicals of homogeneous ideals are homogeneous.
5) A graded, I homogeneous = A/I graded, by declaring (A/I)q = Aq/14
(So explicitly: [> fa] = > [fa] € A/I just inherits the grading from A).

3.11. HOMOGENEOUS COORDINATE RING

R = k[zo,...,x,) with grading determined by the usual grading of R (so xy, ..., z, have degree 1).
X C P" a projective variety. The homogeneous coordinate ring S(X) is the graded rinﬂ

S(X) = R/T"(X) = R/I(X) = k[X]

Example. S(P") = R = k[zo, ..., )]
Example. X = V(yz —2?) C P? (proj.closure of parabola y = x?) then S(X) = k[x,y, 2]/(yz — 2?).
Remark. f € S(X) defines a function f : X — k, but not X — k (due to rescaling).

Lemma 3.4. S(X) = S(Y) as graded k-algebras < X =Y wvia a projective equivalence.

Lso Ay C A is an additive subgroup and A; N A. = {0} if d #e.
2Recall € means that each f € I can be uniquely written as a finite sum f = fo + --- + fn with f4 € I4, some N.
3here X C A" is the affine cone over X , see Section
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Proof. (<) Let ¢: P" — P™ be a linear iso inducing ¥ = X. So ¢*(z;) = > Ajx; is a linear poly
in the homogeneous coords z; of P, where A is invertible. So ¢* : S(X); — S(Y); is a vector space
iso (the x; span the vector spaces S(X)1, S(Y)1). This induces a uniqueEl algebra iso S(X) — S(Y).

(=) Given an iso ¢ : S(X) = S(Y), it restricts to a linear iso S(X)1 = S(Y)1, z; — > Ajiz;.
Suppose first the simple case that the z; are linearly independent in S(X)p, then the x; are linearly
independent also in S(Y); (indeed S(X); = S(Y)1 = k[zo,...,2n)1). Then A is a well-defined
invertible matrix. Thus ¢ : P* — P", @lag : ... : ap] = > Aoiai : ... : Y Apa;] is a linear iso of P"
with ¢* = 1), in particular *I(X) C I(Y) so ¢(Y) C X, and ¢ : Y — X is the required proj.equiv.

Now the harder case when x; are linearly dependent in S(X);. Notice these linear dependency
relations are precisely I"(X);. Suppose d = dimy, I"(X);. By pre-composing ¢ by a linear equivalence
of P* we may assume I"(X); = (2p, Tn_1,...,ZTp_g41). Then we can view X C P"? since the last
d coordinates vanish on X, and S(X) will not have changed up to isomorphism. As dimy S(X); =
dimg S(Y')1, we can do the same for Y by post-composing 1) by another projective equivalence. Now
we can apply the simple case to X,Y C P"~¢ to obtain an invertible matrix A € GL(n —d + 1,k).
Finally use (‘6‘ 9) for a d x d identity matrix I to obtain the required projective equivalence for the
original X, Y C P™ up to pre/post-composing with projective equivalences. (I
Non-Example. P2 D Hy = X @ P! @V = 1n(P) C P? via [xg : 1 : 0] = [23 : 2oz : 23], but
S(X) = k[zo,x1] and S(Y) = k[yo,y1,2]/(Yoy2 — ¥3) are not isomorphic as graded algebras: they
contain a different’| number of linearly independent generators of degree 1. Thus 1o (P!) is (of course)
not projectively equivalent to the hyperplane Hs.

Warning. X 2 Y proj.vars % X Y,s0 8 (X)) is not an isomorphism-invariant of X
Example. X = P! 2V = 1»(P!) € P? via [x¢ : 21] = [22 : mox1 : 23], but S(X) = k[X] = k[zo, 71]
and S(Y) = k‘[f/] = k[yo, y1,v2]/ (yoy2 — y?) are not isomorphic k-algebras because the first is a UFD
but the second is not (consider the two factorisations yoys = y7). Alternatively, one canEl show that
the affine cones X = A2, Y = V(zz —y?) € A® are not isomorphic using methods from Section
Harder exercise. An (ungraded) k-algebra isomorphism S(X) 2 S(Y) implies X Y, but in fact
it also implies that X =2 Y via a projective equivalence

4. CLASSICAL EMBEDDINGS

4.1. VERONESE EMBEDDING
Example 4.1. The Veronese embedding P* — P? is
v i P s P2 [zg : 1] = [23 ¢ 2021 : 7).
The image vo(P) is called the rational normal curve of degree 2,
va(P') = V(2(2,0)2(0,2) — 2(21,1)) C P?
labelling the homogeneous coordinates on P? by [2(270) P2 2(072)}.

Example 4.2. The image of vg : P' < P4 [z : 1] = [z : 28wy o ... ¢ 2] is called rational

normal curve of degree d.

Motivation. Given a homogeneous polynomial in two variables, you can view its vanishing locus
as the intersection of v4(P!) with a hyperplane. For example, 2321 — 83 = 0 is the intersection of

log, ¢ (Bws + Tad) = " (20) 6" (wa) + Tg" (w5)".

2k[X] has 2, e.g. 20,21, and k[Y] has 3, e.g. yo,y1,y2. So dimy S(X); = 2 and dimy S(Y); = 3.

3Meaning, X =Y does not imply S(X) 2 S(Y), unlike the case of affine varieties: X =Y < k[X] = k[Y].

Proof: X = A2 is non-singular, but Y has a singularity at O since the tangent space at (a,b,c) is defined by
c(z—a)—2b(y —b)+a(z—c) =0, and at (a,b,c) = 0 € A® this equation is identically zero. So ToY = A® % A2 =~ T, X.

SIf the ambient dimensions n,m are not the same, then one gets a linear injection A"*1 «— A™*! but one can
extend that to a linear isomorphism A™"! — A™%! by inserting additional variables.
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v3(P!) C P? with the hyperplane Z(2,1) — 8%(0,3) = 0 using coordinates [z(3) : 2(2,1)  2(1,2) : %(0,3)] On
P3. The Veronese map, defined below, generalizes this to any number of variables.

Definition (Veronese embedding). The Veronese map is

Vd:]P’n<—>]P’(nId)_1, [o:...:xp] = [ooial o]

running over all monomials ! = xé‘)mif <oxin of degree d = ig + -+ + in, where you pick some
ordering of the indices I C N1 whose sum of all entries equals d, e.g. lezicographic ordering.

The image of vy is called a Veronese variety.

Remark 4.3 (Counting polynomials). How many monomials are there in n+1 variables xg, x1, . . ., Ty
of degree d? Draw n + d points, e.g. forn =3,d = 4:

Then choosing d of these points determines uniquely a monomial of degree d, e.g.

*x @ X %X @ &k ©

means x%@%x%xg (count up the stars to get the powers). So the number of monomials is (n;rd).

Remark 4.4 (Veronese surface). The image of
2 5 2 2 2
vy 1 P75 P° [xg: @1z @e] > [xG : xoxy : ToT2 1 TT L1 ¢ TH)
1s called Veronese surface.

Theorem 4.5.
P* = Image(vy) = V(zrzg—zxzr:1+J=K+1L)
n+(i)_1

= ﬂ (quadrics V(zrzy — zxz1)) C p("d
I+J=K+L

where we run over all multi-indices I,J,K,L of type (ig,...,in) € N""1 with ig + --- + i, = d.
Moreover, the ideal (z1z5 — zxzr, : I +J =K + L) is mdicalH
Example. For vy : P! — P2, the equation 2(2,002(0,2) — 2(1,)2(1,1) = 0 is the familiar xz — y? =0.

Proof. That image(v,) satisfies the equations z7zy — 22y, = 0 is obvious since z;z; = 2z’ = 2!+7,

Conversely, we find an explicit inverse morphism for v4. Fix J = (ig,...,i,) € N**! with d — 1 =
io + -+ +in, and denote Jy = (jo,...,jJe + 1,...,Jn) (so we add one in the ¢-th slot of I, and these
indices now add up to d). Define

@y : N(those quadrics) --» P", [...:zr:...] = [z, 120 0 -0t 20,]

which is a well-defined morphism except on the closed set where all z;, = 0.

Example to clarify. For vy(P'), J = (0,1), s : [220) : 2(1,1) * 20,2)) = [2a,1) * 2(0,2)] corresponds
to the map [x? : wy : y?] — [zy : y?] = [z : y] which is defined for y # 0, and notice y = (x,y)”.

The ¢, as we vary J, agree on overlaps. Indeed for another such J’, notice J; + Jj, = Jpr + J; (this
equals J + J’ plus add 1 in the two slots ¢, ¢'), hence 2120, = 212, and thusﬂ wi([z]) = ws([2]).

J

We claim ¢ is an inverse of vy wherever ; is defined. The key observation is: /e = 27 - x,. Notice

wrovg([z]) =[x : ... :a/n] =[xo:...: x,] (vescale by 1/27).

L Non-ezaminable proof. Trick from [3.8} the homogenisation of a radical ideal is radical. So it suffices to check it is a
radical ideal on an affine patch. Example for vs : P! — P?: on the affine patch z1 # 0 we can put z; = 1, s0 z3 = z% and
k[22, 23]/ (23 — 23) = k[22] is an integral domain, so the ideal is radical. General case: on the affine patch z(q,0,...0) = 1,
by the other non-examinable footnote all z; = ! are determined by the z, = zg, for J =(d—1,0,...,0),£=0,...,n,
and the x, are independent. So k[zr : all I|/(z12z5 —zxzr : [+J = K+ L) = k[xo, ..., %»] which is an integral domain.

2In general, [o:...:zp] =[yo:...:yn] € P" & x,y are proportional < all 2 x 2 minors of the matrix (z|y) vanish.
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Now consider vgop s ([27]). Abbreviate z; = 2., then p;([27]) = [z0 : ... : 7n] and vgop([21]) = [21]

and one carEl check this equals [z7]. O

)

Theorem. Y C P" projvar. = P*" DY 2 yy(Y) C P™ is a proj.subvar.

Proof. This is immediate: vg : P* — P™ is a homeomorphism onto a closed set (hence a closed
embedding), so it sends closed sets to closed sets. We give below another, explicit, proof.
Key Trick: V(F) = V(zoF,z1F, ... ,z,F) C P" since zg, ..., x, cannot all vanish simultaneously.
So: Y =V(Fy,..., Fy) for some F; homog. of various degrees.
By Trick: Y =V(Gy,...,Gy) for some G; homog. of same degree = ¢ - d.
So: G; = H; oy, for some H; homog. of same degree c.
So: P DY =V(Gy,...,Gp) ~5 V(Hy, ..., Hy) C P,
indeed: {a € P": Gi(a) = Hi(vq(a)) =0Vi} — {b e P™: H;(b) =0 Vi} via a — vg(a) = D.
So I/d(Y) ZVd(Pn)ﬂV(Hl,...,HM>. OJ

Example 4.6. For vy : P> = P° and Y = V(23 + 23) C P?,
Y = V(zo(g + 21), w1(xf + 27), 22(aj + 27)) = V(G1, G2, Gs)

for example: G1 = xo(x3 + 23) = (23)? + (voz1)23 = Hy 0 vy taking Hy = 2(2270,0) + 2(1,1,0)%(0,2,0) -
So VQ(Y) = V2(]P>2) mV(Hl,HQ,Hg) C 5.

Example. Let X C P"™ be a projective variety. Consider a basic open set
Dp = X\ V(F),

where F' = 3" arz! is a homogeneous polynomial of degree d. Abbreviate N = (n;rd) — 1. Then Dg
can be identified with an affine variety in AV as follows. By the same argument as in the Motivation
above, v4(V(F)) lies in the hyperplane H = V(> a;z;) C PVN. Then, observe that we can identify

va(Dp) = vg(X)\ H c PN\ H = AN

(you can use a linear isomorphism to map H to the standard hyperplane Hy, then recall PN \ Hy =
Up = AV is a homeomorphism).

Explicit example. X =V(z) =[0:1] € P!, F = 22 + y2. Then 1»(V(F)) C V(X + Z) C P? since
vz y))=[X:Y:Z]=[2?:2y:y?] € P2. Also, X = V(zz,yx) (Key Trick above), so

v(Drp)=V(XZ -Y% X, Y)\ V(X + Z) Cc P2

Change coordinates: a = X +Z,b=Y,c= Z. So vo(Dr) = V(a—c,b)\ V(a) C Uy = (a # 0) = A?
(using coords b, ¢ after rescaling so that a = 1) we obtain the affine variety (a point!) b=0,c = 1.

4.2. SEGRE EMBEDDING

Below, we haven’t actually defined what P™ x P™ means as a projective variety (we do not use the
product topology, see Hwk). So it does not make sense to talk about “morphism” yet. In reality, we
are defining the variety P" x P™ as being the image of oy, ,, in [Plarge power - Gee Section

L Non-ezaminable. This is messy to check. We first need to check that z(,...,0,4,0,...,0) cannot all vanish simulta-
neously. Suppose by contradiction that they do. We know some z; is non-zero (since [z7] € projective space). By
reordering the indices (symmetry), WLOG ig > 41 > - -+ > 4, with ¢o + - -+ + 4, = d. Also, WLOG, this is the non-zero
zr with largest occurring maximal index 4o (so zx = 0 if K has any indices k; larger than ip). We claim ip = d,
hence I = (d,0,...,0), so z; = Z(d,0,...) = 0, contradiction. Proof: if i9 # d, then 71 > 1 and zrz; = zxzg’ where
K = (io+ 1,i1 — 1,42,...), K" = (i0 — 1,i1 + 1,42,...). But zx = 0 since ig + 1 > ig, forcing z; = 0, contradictionv’
Now, WLOG by reordering indices and then rescaling, z(a,,..., = 1. It suffices to check v40 ¢, ([21]) = [2'] for a specific
choice of J (since the various ¢-maps agree on overlaps). We pick J = (d—1,0,...). So zo = 2(4,0,...), T1 = Z(d—1,1,0,...)s
T2 = 2(d—1,0,1,0,...), etc. It is now a straightforward exercise to check that, using the quadratic equations “zrz; = zx2L”
one obtains ! = z?{;&'_)z(iodﬂl(d,l)ﬂ-z(d,1>+,,,+in(d,1),d(d,1),ilyiz,,,',im = Z(ig,i1,...) = 2I. As a warm-up, try checking

first that 122 = 2(4,0,...)2(d—2,1,1,0,...) = Z(d—2,1,1,0,...)-
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Definition (Segre embeddinﬂ.

Onm - P" x P — ]Py(knJrl) % P(karl) N P(kn+1 ® km+1) ~ P(n+1)(m+1)71 — prmtntm
(W], [w]) = fvew]

More explicitly, in terms of the standard bases, (Y xiei, Y y;jfj) — D ziy; ei ® fj], thus:

(o sl Yo ym]) = [T0Y0 : T0Y1 < -+~ £ ToYm 1Yo 1YL < TY1 D T |

using the lezicographic ordering. The Segre variety is |, = opm(P" x P™) C PP Htm

Example. o1 : P! x P! — P3 ([z:y],[a:b]) — [za: xb: ya : yb], so the image is defined by the
equation XW —YZ =0 using [X : Y : Z: W] on P3.
You can think of k"' @ kmt! = Mat (4 1)x(m+1) @ matrices (the coefficient of e; ® f; being the
(1,7)-entry), then o, m([z], [y]) is the matrix product of the column vector z and the row vector y,
giving the matrix [2;;] = [z;y;].
Example. In the previous example, for oq 1, the matrix is [ig 52] = [)Z( 3;] € P(Matax2).
Theorem 4.7.

Ynm = V(all 2 x 2 minors of the matriz (zi;)) C P(Mat (1) (m+1))

= V(zijzre — 21jzie : 0<i <k <n,0<j <l <m)

Proof. Exercise. Hint: use that the columns of a matrix are proportional iff all 2 x 2 minors vanish.
An explicit inverse of oy, ,, is:

Teol X T
Onm : Znm — PP xP™

where 7eo) @ Xy — P™ is the projection to any (non-zero) column (the images are the same since the
columns are proportional). Similarly, myow : 2y, m — P is the projection to any (non-zero) row. O

4.3. GRASSMANNIANS AND FLAG VARIETIES

Definition (Grassmannian). The Grassmannian (of d-planes in k™) is

‘Gr(d, n) = {all d-dimensional vector subspaces V C k"}‘

where 1 < d < n. For ezample, P" = Gr(1,n +1).
The Flag variety Flag(dy,...,ds,n) is

Flag(di,...,ds,n) = {all flags of vector subspaces Vy C --- C Vi C k™, dimV; = d;}.

Remark 4.8. We can identify

‘Gr(d, n) = {d x n matrices of rank d}/GLy(d) ‘

by identifying the d-plane V € Gr(d,n) with the matriz whose rows are any choice of basis v; for
V C k™. Two such choices of bases v;,v; are related by a change of basis matrix g € GLg(d):
Ui = Y. gijvj (so above, GLy(d) acts by left-multiplication on d x n matrices). More abstractly:
Aut(V) 2 GLi(d) = {d x d invertible matrices over k}.

1Recall the tensor product of two k-vector spaces V ® W is a vector space of dimension dim V' - dim W with basis
v; ® wj where v;, w; are bases for V,W. So R” @ R™ = R"™. You can extend the symbol ® to all vectors by declaring
that (3" Xivi) @ (O pjw;) = > (Aips)vi @ wy. Notice therefore that 0 ® w =0 = v ® 0, so do not confuse this with the
product V x W which has dimension dimV + dim W, e.g. R™ x R™ = R™"+™,
Exercise. Prove V* @ W = Hom(V, W) for finite dimensional vector spaces V, W, where V* is the dual of V.
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4.4. PLUCKER EMBEDDING
Definition 4.9 (Pliicker embedding). The Pliicker map is defined bgﬂ

Gr(d,n) — P(A%m)=p(i)-1
V= k-(nuA---Avg) wherev; is a basis for V.

Exercise 4.10. Show that explicitly the Plicker map is

Gr(d,n) = {d x n matrices of rank d}/GL4(k) < p(i)-1
[d x n matriz A] — [all d x d minors A;, _;, of Al

(A, ,...iy is the determinant of the matriz whose columns are the i1,...,i4-th columns of A).

Non-examinable Fact. The image of the Pliicker map is V(Pliicker relations) C P(AYk™). We now
describe the relationsﬂ Let 2;,i,..4, be the homogeneous coordinates on P(Adk”), i.e. Ziiy..i, 1s the
coeflicient of the basis vector e;; A---Ae;, € A", where i < --- < ig. The Pliicker relations are:

Rivig..ig " Zj1j2-~~jd = E : E : Zi1i2---ir1—ljliT1+1-~-ir2—lj2i'r2+1---ire—ljéirg+1--~id ) Zirlir2-~-ir¢jé+1jé+2-~jd
1<l<d ri<re<--<ryp

On the right we interchanged the positions of ji, ..., j, with those of 4, ,...,%,,, in that order. Notice

we do not allow ¢ = d (the case 1y = 1, ..., rqg = d). On the right, we typically must reorder the
indices on the z-variables to be strictly increasing: the convention is that z ;. ;.. = —z ;.. when
we swap two indices (this equals zero if two indices are equal). E.g. 230 = —z23 and 299 = 0.

Example 4.11. Gr(2,4): the standard basis for k* is e1, e, e3,e4, s0 a basis for A2k* is e; A ej for
1 <1<y <4, explicitly:

e1Neg, e1 Nes, e1Neyq, eaNes, ea/\Neyq, e3ey.

Their coefficients define coordinates [z12 : 213 : 214 : 223 : 224 : 234] for P(A%k*) =2 P°, for example
6e1 A eq — 3ea A ey has coordinates [0:0:6:0: —3:0]. Then we get

Gr(2,4) = V(212231 — 232214 — 213224) = V(212234 — 213224 + 223214) C P°.
In the notation of the previous footnote, in the homogeneous coordinate ring S(P(A%k*)) we have

(61 A 62) . (63 A 64) = (63 VAN 62) . (61 VAN 64) + (61 AN 63) . (62 AN 64).

1Recall the d-th exterior product AW of a k-vector space W is a k-vector space of dimension (di":lw) generated

by the symbols w;, A -+ Aw;, where iy < --- < ig, where w; is a basis for W. One can extend the wedge-symbol to all

vectors by declaring it to be alternating: w; A w; = —w; A w; (in particular w; A w; = 0), and multi-linear:
O o Niw) A pgwy) = Xepgws Awy =Y (Mg — pady) wi A w;.
%, i<j

Exercise. Given any vectors vi,...,vqg € W, let V.= span(vi,...,vq). Then for any g € Aut(V), show that
(gui) A+ A (gua) = (detg) v A -+ Avg.

If you think carefully, you’ll notice this is the definition of determinant!
So deﬁmtion makes sense: i.e. the choice of basis v; for V does not affect the line k- (v1 A --- Avg) € P(AYk™).
2Equivalently, recall the homogeneous coordinate ring of ]P’(Adk") is the polynomial ring in the variables denoted
by ei; A--- Aes,, with strictly increasing indices, where e; is the standard basis for k™. Then the Pliicker relations are
the quadratic polynomial relations, given by:

(121/\~ . -/\vd)-(wl/\- . -/\wd) = Z (1)1/\' © AV —1 AW AV 41\ - ~/\vd)~(vi1/\- © AV, AW 1 AWy 2N\ - -/\wd) € S(P(Adkn))
i1 < <ip

where we sum over all choices except ¢ = d, and these hold for all v; € k™, w; € k™ (notice that if you expand these

out, using the alternating multi-linear property of A, then they become quadratic polynomial relations in the variables

ei, N---Ae;iy). For a minimal set of relations, you just need the above for all v;, w; picked amongst the standard basis

vectors e; (so explicitly: v1 =ej,,...,vq = e;, with j1 < ... < jq and similarly for the w’s).
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Iy

Exercise 4.12. What are the Plicker relations written explicitly in terms of the dxd minors A;, . ;,
(e.g. check that in the example Gr(2,4) you just need one relation: Aj9Agy— A130A9q+ Ao3A14 =0.)

Similarly, using the Pliicker maps, for flag varieties:

Flag(di,. .., ds,n) — Pl o pla)1,
The Zariski topology on Gr and Flag is defined as the subspace topology via the Pliicker embeddings.

Remark 4.13. All the embeddings above, over R (respectively over C), are in fact smooth (respec-
tively holomorphic) when viewing the spaces as smooth (respectively complex) manifolds.

Lemma 4.14. The Grassmannian Gr(d,n) is an irreducible variety.

Proof. Let W = span(ey, ..., eq) = k@0 C k™. Given V = span(v1,...,vq) € Gr(d,n) complete this
to a basis v1,...,v,, then A € GL,,(k) with columns v; will map W to V. This defines a surjective
polynomial map GL,(k) — Gr(d,n), A — A(W), where we can view GL, (k) as an affine variety
by identifying it with V(z - det —1) € k"t via A — (A, [det A]1) (here z is a new variable that
formally inverts the determinant). By the final example 3 in Sec[2.13] it remains to show GL, (k) is
irreducible. This is easy to check since GLy, (k) is dense in k" and k™ is irreducible. O

Exercise. Show that Flag(dy,...,ds,n) is irreducible by a similar argument.

5. EQUIVALENCE OF CATEGORIES

5.1. REDUCED ALGEBRAS

For any ring A, f # 0 € A is nilpotent if f™ = 0 for some m.
A is a reduced ring if it has no nilpotents.

Lemma. A/I is reduced < I is radical.

Proof. If A/I is reduced: fmel < fm=0eA/l < [f=0c€A/l & fel
If I isradical: fm=0€ A/l & fm=0¢el & fel & f=0e€A/l. O

Upshot:ﬂ
{affine algebraic varieties} — {f.g. reduced k-algebras}
(X CA") — k[X]=R/I(X)
7« A
A f.g. = one can pick generators aq,...,q, (some n)
= determineﬂ a k-algebra hom f: R=k[xy,...,z,] = A, & — o

= I =ker f C R is radical (since A is reduced)

= A= R/I, so choose X = V(I).
Note. A different choice of generators can give a completely different embedding X C A™, some m.
Due to this choice, the correct way to phrase the above “correspondence”, between varieties and
algebras, is as an equivalence of categories, which we now explain.

p general, if U C X is a dense open set of an irreducible affine variety X, then U is irreducible. Indeed, if
U=(CiNnU)U(CanVU) for closed C1,C> C X, then X = U = Cy U Cy, forcing C; = X for some i, so U = C; NU.
Finally, notice that relatively closed subsets V(I) N GL, (k) for GL, (k) C K correspond precisely to relatively closed
sets when viewing GL, (k) C k"’ *1. This is because given any poly f for k"2+1, (det)™ f cuts out the same subset
in GL, (k) as f does, and it cuts out the same subset if we also replace all occurrences of z - det in (det)™ f by 1. So
WLOG the equations f used to define a relatively closed subset of GL, (k) C E™*+! can be chosen not to involve z.

2f.g. = finitely generated.

?’recall7 a k-algebra hom is the identity map on k (since it is k-linear and 1 +— 1), so by linearity and multiplicativity
it suffices to define the hom on generators.
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5.2. WARM-UP: EQUIVALENCE OF CATEGORIES IN LINEAR ALGEBRA

We assume some familiarity with very basic category theory terminology.
Category 1: C

Objects{] k"

Morphisms: Hom(k™, k™) = Mat, x, (k) (matrices).

Category 2: D

Objects: finite dimensional vector spaces over k.

Morphisms: Hom(V, W) = {k-linear maps V" — W}.

Linear algebra courses secretly prove that the functor

F:c - D
k™ — k"
(matrix) + (linear map given by left multiplication by that matrix)

is an equivalence of categories. It is not an isomorphism of categories since there is no inverse
functor D — C. There is an obvious object to associate to V', namely V — 4™V but at the level of
morphisms in order to define a linear isomorphism Hom(V, V') — Matqim v xdim v (k) we would need
to choose a basis for V.

Define G : D — C as follows:

Pick a basis vy, ..., v, for each vector space V (heresy!)

For k™ we stipulate that we choose the standard basis e, ..., e,.

Then G : Hom(V, W) — Mat,xn (k) (where m = dim W, n = dim V) is defined by sending ¢ to the
matrix for ¢ in the chosen bases for V, W.

G o F' = id¢ by construction, but

FoG:V — k" Sk Hom(V, W) — Matmsxn > Matyxn
is not idp, so G is not an inverse for F. But for an equivalence of categories, we just need there to

be a natural isomorphism F o G = idp.
Define F' o G = idp by sendingﬂ

V = (morphism FG(V) = k"™ —id(V) =V given by e; — v;).
In general, to find/define G is a nuisance. So one uses the following FACT:

Lemma 5.1 (Criterion for Equivalences of Categories).
A functor F : C — D is an equivalence of categories if it is full, faithful, and essentially surjective.

Explanation:

Full means Hom(X,Y) — Hom(F X, FY') is surjective;

Faithful means Hom(X,Y) — Hom(F X, F'Y) is injective.

So fully faithful means you have isomorphisms at the level of morphisms.

Essentially surjective means: any Z € Ob(D) is isomorphic to FF.X for some X.

(in the above example, any vector space V' is isomorphic to some k", indeed take n = dim V).

Exercise. Prove the Lemma.

Lsince it is just a symbol, one could also just label the objects by n € N, and Hom(n, m) = Maty, xn (k).

2The fact that it is a natural transformation boils down to the following commutative diagram
FGV)=k" ——id(V) =V
FG(f)=(matrix for f)l id(f)=f€Hom(V,W)

FGW)=k" — s id(W) =W
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5.3. Equivalence: AFFINE VARIETIES AND F.G. REDUCED ik-ALGEBRAS

Theorem. There is an equivalence of categoriesﬂ

{affine algebraic varieties and morphs of aff.vars.} {f.g9. reduced k-algs and homs of k-algs}°P

4

x L kX

X Ev) L (P k[X] < E[Y]).

Proof. T is a well-defined functor. v/

T is faithful: because (F*)* =F. v

T is full: given a k-alg hom ¢ : k[X] < k[Y], take F' = ¢* then F* = (¢*)* = . v

T is essentially surjective: given a f.g. reduced k-alg A, choose generators aq, ..., a, for A. Define
Iy =Xker (k[z1,...,25) = A, 2 — ;). (5.1)

Then A = k[x1,...,xy]/Ia = k[X 4] for X4=V(I4), using [(Xa)=+1a = [4 as A isreduced. v/ [

Remark. The proof of Lemma [5.1} in this particular example, would construct a functor G : A —

X4 =V(I4) and G: (p: A<+ B) — (¢*: X4 = Xp). Then mimic Section [5.2]

Specm notation: if A is a finitely generated reduced k-algebra, then we’ve shown that there is an
affine variety X4 (unique up to isomorphism) whose coordinate ring is isomorphic to A. Write

Specm A

for this affine variety. Sectionwill discuss Specm properly. For now, recall that Specm(A) as a set
consists of the maximal ideals of A, which indeed represent the geometric points of X 4. However,
to realise this as an affine variety (i.e. with a choice of embedding X4 C A” into some A™) we had
to make a choice of generators for A.

5.4. NO EQUIVALENCE FOR PROJECTIVE VARIETIES

By composing (X C P") s (X C A1) i (S(X) = k[X]) we obtain a map
. f.g. reduced N-graded algebras A generated by
{proj vars} — { finitely many elts in degree 1, with Ay = k

“Conversely”, given such an algebra A, pick generators ag,...,a, of degree 1, this determines a
hom ¢ : R — A,z; — «;, then X = V(ker p) C P" satisfies S(X) = R/kerp = A (notice ker ¢ is
a homogeneous ideal). There is no equivalence of categories in this case: not all algebra homomor-
phisms give rise to projective morphisms of the associated projective varieties (not all morphisms
X — Y descend to X — Y, because they may not preserve the rescaling k-action). If we require the
k-algebra homs to be grading-preserving, it becomes too restrictive: then only restrictions of linear
embeddings P" < P™ can arise, so for n = m only projective equivalences would be morphs.

As mentioned in Section S(X) is not an isomorphism-invariant, so there cannot be an
equivalence of categories of projective varieties in terms of the homogeneous coordinate rings S(X).

6. PRODUCTS AND FIBRE PRODUCTS
6.0. ALGEBRA BACKGROUND: TENSOR PRODUCTS

The tensor product of two k-vector spaces V ® W is a vector space of dimension dim V' - dim W
with basis v; ® w; where v;, w; are bases for V, W.
Example. R" @ R™ = R™™,
You can extend the symbol ® to all vectors by declaring that (3° A\jv;) ® (3 pjw;) = > (Aipy)vi @ wj.
Example. 0@ w=0=v®0, (e1 +2e3) ® (Te1 +e3) = Te1 @ e1 + ldez R e1 + €1 @ ea + 2e3 @ es.
Exercise. V* @ W = Hom(V, W) for finite dimensional v.s. V, W, where V* is the dual of V.

For k-algebras A and B, the tensor product A ® B (or A ®; B) is the vector space as above, and

1“op” is the opposite category, so arrows (morphs) point in the opposite direction than the original category.
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multiplication is done componentwise. Thus a general element is a finite sum ) a; ® b; with a; € A,
bi € B, and the product is (3 a; ® b;) - (3_a; ®b;) = > (a;a}) ® (b;b;) summing over all pairs i, j.

The tensor product is determined up to unique k-algebra isomorphism by a universal property.
Namely, A ® B is a k-algebra together with a k-alg hom ¢ : A x B —+ A ® B which is a balanced
bihomomorphism. Bihomomorphism means ¢(-,b) : A - A® B is a k-alg hom for all b € B, and
similarly for ¢(a,-). Balanced means ¢(Aa,b) = ¢(a, Ab) for all A € k, a € A, b € B. The universal
property is that any k-alg hom ¢’ : A x B — C which is a balanced bihomomorphism must factorise
through a unique k-alg hom ¢ : A® B — C (so ¢’ =1 o).

Recall k is an algebraically closed field (this is crucial for the next two results).

Lemma 6.1. Let A be a finitely generated reduced k-algebra. If a € A lies in all mazximal ideals
m C A (equivalently: @ =0 € A/m), then a = 0.

Proof. Let p € X = Specm(A) be a point. Recall fromthat p defines a maximal ideal m = m, C A
and an evaluation isomorphism:

p:A/m = k.
Notice p(a) = a(p), thus a € m is equivalent to the statement a(p) # 0. Finally, if a € k[X] = A is
a non-zero function (so a € I(X)), then a(p) # 0 at some p € X. O

Theorem 6.2. Let A, B be k-algebras. Assume A is finitely generated.

(1) If A, B are reduced, then so is A ® B.
(2) If A, B are integral domains, then so is A ® B.

Proof. (Non-examinable.)
1) Say ¢ = > a; ®b; € A® B is nilpotent. By bilinearity, WLOG b; are linearly independent /k. Any
max ideal m C A yields an iso ¢ as in Lemma Consider the k-algebra hom

A®B — (A/m)®@ B=2k® B =B, c=>0;®b = > ;@b — Y (@) ®b; — > o(a;)b;.
As B is reduced, the nilpotent element ) ¢(a;)b; is zero, thus ¢(a;) = 0 by independence/k, so
a; = 0, thus a; = 0 by Lemma [6.1] so ¢ = 0.
2) Say (3_ai®b;) (3 a;®b}) =0 € A® B, again WLOG b; lin.indep. /k, and b; lin.indep./k. Applying
the hom from (1), (3" ¢(a@;)b;)(>_ ¢(al)b,) =0 € B. As B is an 1.D., one of those two factors is zero.
By linear independence, for each m, either all (a;) = 0, or all p(a}) = 0 (or both). Thus, either
all a; € m or all a; € m (but we don’t know if the same case among those two will apply for all m).
Geometrically this implies X = Specm(A) = V(a; : all i) UV(a) : all j). But X is irreducible as A
is an I.D., so WLOG X =V(a;: alli),soa; =0¢€ A, thus Y a; ®b; =0€ A® B. O

6.1. PRODUCTS OF AFFINE VARIETIES

For affine varieties,

X :V(fl,...,fN) C A", fj = fj(:cl,...,xn) S k[xl,...,xn],
Y =V(g1,....9m) CA™, gi=gi(y1,---,Yym) € k[y1,.. ., ym].
The product X x Y is the affine variety

X ><Y:V(fl,...,fN,gl,...,gM) c Antm
using the coordinate ring k[A" ™™ = k[z1,...,Zn, Y1, -, Ym)-
Abbreviate I = 1(X), J =I(Y), viewed as subsets in k[A"™™] = k[z1,..., 20, Y1, - - Ym]-
Observe that{]

XxY=VIUJ)=V({I+J))cCA™

where (U J) = (I +J) Cklx1,...,Tn,Y1,-- - Ym)-
Here I+J = {f(x)+9(y) : f(x) € I,g(y) € J} as written is not yet an ideal in k[z1, ..., Tn, Y1, - -, Ym]-
It generates the ideal (I +J) = k[z1, ..., Tn, Y1, Um) - (T +J) = kY1, s ym] - T+ Ek[T1,. .., 20] - J.

IFor aff. /proj. vars., X X Y as a set is the usual {(a,b) : a € X,b € Y}. It’s the Zariski topology which is subtle.
High-tech: all elements in Specm k[X]®x k[Y] have the form m, ®m;, but Spec k[X|®y k[Y] also has elements which are
not of the form g1 ® pa: e.g. X =Y = A', the diagonal D = {(a,a) : a € A'} C X x Y corresponds to p = (x1 — y1).
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At the coordinate ring level{]

kX xY] Elxi, ... Tny Y1y Yml]/ L+ J)
klxy,...,zn]/I QK kly1, ..., ym]/J

= k[X] @ k[Y]

'l

by identifying z; = x; ® 1 and y; = 1 ® y;. The isomorphism is explicitly given by

k;[xlv""xnaylw"aym]/<‘[+‘]> - k[l'l,ilin]/I@kk[yl,,ym]/J
Yoaifi = 2R 8,

where a; € k[21,..., 2], Bi € k[y1,- .., ym]. The inverse map is > @; @ B; — > ai ;.
Exercise. Check that the two maps are Well—deﬁnedﬂ

Lemma 6.3. (I+J) =k[y1,...,ym| I +Ek[z1,...,2,]-J is a radical ideal in k[x1, ..., Tn Y1, Ym)-

Proof. By Theorem [6.2}(1), since I, J are radical we deduce that k[z1,...,z,]/I @k k[y1, ..., Ym]/J is
reduced. By the above isomorphism, it follows that k[z1,...,zn,y1, ..., Ym]/{I + J) is reduced. O

Remark. If X, Y are irreducible then so is X x Y, by Theorem [6.2|(2) or by a geometrical argumentﬂ

6.2. PRODUCTS OF PROJECTIVE VARIETIES

For proj.vars. X,Y one can use the above affine construction locally to define the Zariski topology
on X x Y. We now show that one can equivalently carry out a global construction by using the Segre
embedding from Section Recall from that Section the notation: oy, p, : P X P — pr+1)(m+1)—1
the Segre variety X, p, = op (P X P™) C prmtntm - and the projection maps meol, Trow-

Definition (Zariski topology on Products). The Zariski topology on P x P™ is the subspace topology
on X m C prmtntm (e we declare that On,m aNd Teol X Trow are isomorphisms).

The Zariski topology on X x Y is the subspace topology on op;m(X X Y) C 5, C PPMEEM (G e,
we declare that oy m : X XY — 0p (X X Y) is a homeomorphism,).

Theorem. X CP", Y CP™ proj.vars.= X XY is a proj.var. isomorphic to oy, (X xY) CcPrmtntm,

Proof. It remains to show that oy, ,,(X x Y) is a projective variety. This is an exercise.
Hint: Say X =V(Fy,...,Fn), Y =V(G1,...,Gur), then show that

Un,m(X X Y) = me N V(Fk(ZOj, - ,an), Gg(Zig, - 7Zim) :all k‘,f, Z,j) ]
If we intersect with the open sets

Uppn = (zo#0)={[1:z1: - :2p]}
Uopm = (o #0)={[1:y1: - :yml}

then oy, ((X xY)N (U pn X Ugpm)) is described by the matrix [z;y;] with first column (1, z1,...,zy,)
(since zyp = yo = 1) and first row (1,y1,...,Ym). So Definition above imposes precisely the
vanishing of f; = Fi(1,21,...,2,) and g0 = G¢(1,y1,...,ym) (the other relations from %, ,, tell
us that the other cols/rows have no new information: they are rescalings of the first column/row).
Thus the global construction with the Segre embedding agrees with the local affine construction.

1The isomorphism is justified later. Exercise. Prove is using the universal property from Sec

2Example: if f; € I, then fi3 € (I+J) and maps to f,®8 = 0 as f, =0 € k[z1,...,x,]/I. Similarly I8 — 1®83 = 0.

3 Hints. By contradiction, if X x Y = Cy U (s for closed sets C;, using irreducibility of Y show that X = X; U X»
where X; = {z € X : 2 xY C C;}. These X; are closed (the map X — X XY, z — (z,y) is continuous so
{r € X : (z,y) € Z;} is closed for each y, now intersect these over all y € V). Finally use irreducibility of X.
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6.3. CATEGORICAL PRODUCTS

Category Theory: let C be a category.

Examples. Category of Sets: Objects = sets, Morphisms = all maps between sets.
Category of Vector spaces: Obj = vector spaces, Morphs = linear maps.

Category of Topological spaces: Obj = top. spaces, Morphs = continuous maps.
Category of Affine varieties: Obj = aff.vars., Morphs = morphs of affine vars.

A product of X, Y € Ob(C) (if it exists) is an object X x Y € Ob(C) with morphisms 7wy, my to
X,Y s.t. for any Z € Ob(C') with morphs to X,Y we haveEl

Example. For C' = Sets, X x Y = {(z,y) € X xY :z € X,y € Y} is the usual product of sets.
Exercise. Show X x Y is unique up to canonical isomorphism, if it exists.

Algebraically, we expect the “opposite” of the product, so the coproduct of k[ X], k[Y]:

where 7% (2;) = z; ® 1, 75 (y;) = 1 ® y;. Indeed, if the given maps into k[Z] were ¢, 1), then the
unique map is Y a; ® B; — > ()Y (Bi).

This, together with the equivalence of categories from Secl5.3] is another proof of the result from
Sec[6.1] that k[X x Y] = k[X] @4 k[Y].

Example. C = Sets: coproduct X UY is the disjoint union, with inclusions X — XUY Y — XUY.
Exercise. For C' = Vector Spaces, the coproduct is the direct sum of vector spaces.

6.4. FIBRE PRODUCTS AND PUSHOUTS

This Section is non-examinable.

Motivation. In geometry, you study families of geometric objects labeled by a parameter space B.
So f: X — B where f~!(b) is the geometric space in the family associated to the parameter b.
Example. f: (V(zy —t) C A?) — Al, f(x,y,t) = t, is a family of “hyperbolas” xy = t in A?
depending on a parameter ¢t € k, which at ¢t = 0 degenerates into a union of two lines (the two axes).
In set theory, the fibre product of two maps f: X — B, g: Y — B (over the “base” B) is

X xpY ={(z,y) € X xY : f(z) = g(y) € B}.

Example. The fibre f~1(b) is the fibre product of f : X — B and ¢ = inclusion : {b} — B.
Example. The intersection X7 N X5 in X is the fibre product of the inclusions X; — X, Xo — X.
Category Theory: let C be a category.

The fibre product (or pullback or Cartesian square) of f : X — B, g: Y — B (if it exists) is

LConvention: if we write a diagram, we require that it commutes (unless we say otherwise).
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an object X xpY € Ob(C) with morphisms 7wx, 7y to X,Y s.t. for any Z € Ob(C) with morphs to
X,Y (commuting with f,g) we have

Exercise. X XY is unique up to canonical isomorphism, if it exists.

Example. (If you have seen vector bundles.) Given a vector bundle Y — B over a manifold, and a
map f: X — B of manifolds, then X xpY = UzexYy(,) is the pullback vector bundle f*Y — X.

Algebraically, we expect the “opposite”, so the pushoutﬂ

where 7% (z;) = z; ® 1, 7y (y;) = 1 ® y;, and whereﬂ
k[X] @pp kY] = k[X] @R k[Y]/(f*(0) ® 1 —1® g"(b) : b € k[B]).

Example. For C' = Sets, the pushout of the inclusions AN B — A, AN B — B is just the union
AU B (with obvious inclusions from A, B). The pushout of general maps C' — A, C — B, is the
disjoint union A U B/ ~ after identifying a ~ b if a, b are images of some common ¢ € C.

Remark. A = k[X] ®;p) k[Y] may have nilpotents (as in the next Example) in which case it does
not correspond to the coordinate ring of an affine variety. However, we can reduce the algebra:
Ayed = A/nil(A) where the nilradical nil(A) is the subalgebra of nilpotent elements. Then, as we
want an affine variety, define X xgY to be “the” affine variety with coordinate ring A,.q. It satisfies
the pushout diagram for all affine varieties Z (note nil(A) — {0} via A — k[Z] as k[Z] is reduced).
What has happened here is that even though k[X]®yp k[Y] is the correct pushout in the category of
rings (in particular, also in the category of k-algebras), it is not the correct pushout in the category
of f.g. reduced k-algebras (equivalently, the category of affine varieties), so we had to reduce.

Example. Below is the most complicated way of solving the equation z2 = 0 (!)
Observe the next picture. We want to calculate the fibre product over 0 of f : Al — Al a + a?.

Al %1 {0} — {0} klz] @) k[B]/(b) = kla]/(2?) <— k[b]/(b)
l l!]incl incl*
Al p k[z] f* k[b]
at+———a? z? th

n the Topology & Groups course, you have seen a pushout: in the Van Kampen theorem, when you take the free
product with amalgamation of the first homotopy groups.
2we “identify” f*(b) and g*(b), in particular (f*(b)z) ® y = = ® (¢*(b)y), but there are more relations as we take

the ideal generated by those identifications.
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where k[b]/(b) is the coordinate ring of the point b = 0 in A!. The above diagram proves that the fibre
£71(0) is Specm (k[z]/(z)) where we reduced (k[z]/(2?))eqa = k[z]/ (), so it is V(z) = {0} C AL

6.5. GLUING VARIETIES

This Section is non-examinable.
The role of geometry/algebra above (pullback/pushout) can also be reversed, as in the case of
gluing varieties. To glue varieties X,Y over a “common” open subset U — X, U — Y, we pushout:

XxypY~——Y

]

X U

which algebraically is the fibre product k[X] X7 kK[Y], namely the functions which agree on U. As
usual, category theory helps to predict what the answer should be, but there is no guarantee that
the pullback/pushout exists inside the category we are working in. For example, below, we glue two
affine varieties and we end up with a projective variety that is not affine.

Example. P! = Al X AL\{0} Al is the gluing of two copies of A! over U = A'\ {0} via the gluing
maps U — AL b+ band U — Al b+ b1 Algebraically: k[xz] X gp,p-1] K[y, determined by the
two homs (z,0) ~ b, (0,) ~ b~!. This corresponds to pairs of polynomial functions f : Al — k,
g: Al — k satisfying f(b) = g(b™1), i.e. agreeing on the overlap U via the gluing maps.

Exercise. k[x] Xyp,,-17 k[y] = k. Indeed the only global functions on P! are the constant functions.

7. ALGEBRAIC GROUPS AND GROUP ACTIONS
7.1. ALGEBRAIC GROUPS

Definition. G is an algebraic grou]ﬂ if G is an affine variety, and it has a group structure given
by morphisms of affine varieties.

Ezxplicitly: multiplication m : G X G — G and inversion i : G — G are morphs of aff.vars.

A homomorphism G — H of alg.groups is a hom of groups which is also a morph of aff.-vars.

EXAMPLES.

1) finite groups (viewed as a discrete set of points).

2) SL(n, k) = V(det —1) C A™".

3) k* =k \ {0} 2 V(zy — 1) C A? via a <> (a,a™ '), with m = multiplication. Recall the coordinate
ring is k[k*] = k[z, y]/(xy — 1) = K[z, 271].

4) k= A with m = addition.

5) GL(n,k) = (non-singular n x n matrices/k) = V(y - det —1) € A" *1 hence any Zariski closed
subgroup will also be an algebraic group.

Examples of such subgroups: upper triangular matricesEl upper unipotent matrices and diagonal

IMuch of the theory is the algebraic analogue of the theory of Lie groups (groups which are also manifolds).
2M;; = 0 for i > j.
3M upper triangular and all M;; = 1.
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matrices. (Allowing only non-singular matrices)

6) If G, H alg.gps. then the product group G x H is an alg.gp.

Example: the algebraic torusﬂ Gy, = k" x -+ x k¥ is an alg.gp.

7) For G algebraic group, define Gy :(th{l irreducible component containing 1). Exercise: Show
that Gy is an algebraic group. Show that the irreducible components of G are the cosets of Gy.

8) H C G a subgroup of an algebraic group. Exercise: the closure H is an algebraic subgroup.

9) ¢ : G — H a morph of alg.gps. Exercise: ker ¢ C G is an algebraic subgp. Fact: imp C H is an
algebraic subgp.

10) Fact. Every alg.gp. is isomorphic to a closed subgp of some GL(n, k).

7.2. GROUP ACTIONS BY ALGEBRAIC GROUPS ON AFFINE VARIETIES

Definition. X aff.var., G alg.gp., then an action of G on X is a morphism GxX — X, (g,x) — g-x
of aff.vars. such that 1 -z =z and g1 - (92 - ) = (g192) - ©.

Example. G = k* acts on X = A? by ¢ - (a,b) = (t"'a,tb). The orbits are:

01 ={(0,0)}.
02 =k*-(1,0) = {(a,0) : a € k*}.
O3 = k*-(0,1) = {(0,b) : b € k*}.

O(s) =k*-(1,s) =V(zy —s) = {(t!,ts) : t € k*} where s € k*.

The partition by orbits is A% = O1 U Oz U O3 U UgepxO(5).

Remark. In this Example, a function f : X — k which is G-invariant will be constant on each
orbit. If f is continuous, then f takes the same value on O1, 9, O3 because O; C Oq, O1 C Os.
By Lemma the topological quotient A?/G (the space of orbits) cannot be an affine variety. Our
goal is to define a better notion of quotient, which identifies the orbits O1, O, O3 so that this “good
quotient” is an affine variety.

7.3. CATEGORICAL QUOTIENT and REDUCTIVE GROUPS

Definition. The categorical quotient Y (if it exists) is an affine variety Y with a morphism
F: X — Y such that F is constant on orbits, and F is “universal”, meaning: for any other such
data Y',F' : X —Y' we have

x-Ltoy

|
N \;3 unique morph

Y/

Example. If you take Y/ = point, then Y — Y’ maps everything to that point.

Exercise. Show that Y, F': X — Y are unique up to canonical isomorphism.

Remark. One does not require that F' : X — Y is surjective (categorically: an epimorphism). It
is not difficult to showEl that for affine varieties F' must be a dominant morphism (i.e. has dense
image). At the end of the section we construct a non-surjective example.

The G-action on X also determines a G-action on the coordinate ring k[X]: g € G acts by
K[X] = k[X], > f9 where f9(a) = f(g~'a).

lthe “m” refers to the fact that we use multiplication.

2Non-examinable: there is only one irreducible component which contains 1. Indeed, suppose we had two such
components X,Y. We need two facts: (1) the image of any irreducible variety under a continuous map is irreducible,
and (2) if X,Y are irreducible then X x Y is irreducible. Thus the image under multiplication m(X x Y) is irreducible
and contains both X,Y (since X = m(X X {1})) hence X =Y = m(X x Y) by irreducibility.

3Given a categorical quotient Y C AN, let Y’ be the closure of F(X) C A™, then Y’ also satisfies the universal
property. By exercise sheet 2, being a dominant map is equivalent to having injective pull-back on coordinate rings, so
k[Y'] — k[X] is injective. Hence k[Y] — k[X] is injective, since by the above universal property it is the composition of
E[Y] — k[Y'] — k[X] where the first map is an isomorphism by the previous exercise. So F is dominant (and Y = Y”).
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This is a linear action, in the sense that G acts linearly on the coordinate ringﬂ (fi + f2)%(a) =
filg7ta) + falg7ta) = f{(a) + fi(a) and (Af)9(a) = Af(g ' a) = Af9(a) for X\ €k, a € X C A"
Example. In the above Exampleﬂ k* acts on k[A?] = k[z, ] byﬁt cx=trandt-y=tly.
The G-invariant subalgebra of k[X] consists of the invariant functions

k(X9 ={f € k[X]: f9 = f forall g € G} C k[X].
Example. In the above Example, k[z,y]% = k[zy] = k[w] = k[A'] via zy <1 w.

Lemma 7.1. If a morph F : X — Y is constant on orbits then F* : k[Y] — k[X]% lands in the
tmvariant subalg.

Proof. (F*f)9(z) = (fo F)¥(x) = (f o F)(¢g~'2) = f(F(x)) = (F*f)(x). O
AssumeE| for the rest of this Section |1.__3_| that the characteristic chark = 0.

Definition. G is a (linearly) reductive group if every representatioﬂ of G is completely reducibleﬁ
i.e. isomorphic to a direct sum of irreducibles[]

Examples of reductive groups. (Which we treat as facts)

1) Finite groups.

2) k*.

3) Gy =k x -+ X K",

4) SL(n, k).

5) GL(n, k).

Non-example.

G = k (with addition) is not reductive: consider the actionﬁ k>aw— (§¢) € Aut(k?). This rep has
the subrep k - ((1)) but we cannot find a complementary subrep (exercise).

Theorem (Nagata). Let G be a reductive alg.gp. acting on an aff.var. X. Then k[X]% is a f.g.
reduced k-alg, i.e. k[X]G is isomorphic to the coordinate ring of an aff.var.

Remark. k[X]“ is obviously reduced as k[X] is reduced. It is hard to show it is finitely generated.

Specm notation: if A = k[X]% is finitely generated, then by Section there is an affine variety
Specm A (unique up to isomorphism) whose coordinate ring is isomorphic to A.

Theorem. Let G be a reductive alg.gp. acting on an aff.var. X. Then the inclusion
j:k[X]E = k[X]
determines a categorical quotient given by
§*: X = X//G = Specm k[X]°.

1S k[X] is a (typically infinite dimensional) representation of G.

2Notice that the action has “dualized” on the coordinate ring level.

3Explicitly: = : A% = k, (a,b) = a, and (t - z)(a,b) = z(t~" - (a,b)) = z(ta,t~'b) = ta = (tz)(a, b).

4The definitions of reductive and linearly reductive are different when char k # 0. Linearly reductive (the definition
above) implies reductive, but the converse can fail.

SA representation is a (finite dimensional) vector space V together with a homomorphism p : G — Aut(V'), where
Aut(V) are the linear isos V' — V (by picking a basis for V, you get V = k™ and Aut(V) = GL(n, k), so p allows
us to “represent” the action of G on V via a subgroup of the invertible n x n matrices). We usually just say “the
representation V7, and we write gv or g - v instead of p(g)(v).

6Equivalently: (linearly) reductive means every G-stable vector subspace W C V has some G-stable vector space
complement W', i.e. V =W @ W' and the action of G preserves the summands.

"Trreducible means not reducible. A rep V is reducible if there is a subrepresentation 0 # W C V. A subrepre-
sentation W C V is a G-stable vector subspace, meaning G - W C W (meaning gw € W for all g € G, w € W).

8(Non—examinauble) More generally, “unipotent elements are bad”. The general definition of reductive excludes
precisely these. An element r of a ring is unipotent if » — 1 is nilpotent. For example, any upper triangular matrix
with 1 in each diagonal entry. More generally, a matrix is unipotent if and only if all of its eigenvalues are 1, since after
conjugation it can be put into Jordan normal form, yielding such an upper triangular matrix.
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Explicitly: pick generators fi,..., fx for k[X]%, then the image of
X — AN, T = (fl(x)v 7fN(m))
is an affine variety which is “the” categorical quotient of X by G.

Remark. Notice that j* : X — X//G is surjective by construction, since j*(X) = V(kery) =
X//G c AN where ¢ : k[z1,...,2n] — K[X]Y, o(x:) = fi.

Proof.

Step 1. j* is constant on orbits.

Proof. If j*(x) # j*(gx), by Lemmathere is some f € k[X//G] = k[X]¢ with f(j*z) # f(5*(gz)).
= (N @) = G 1)() = 1G°2) £ FG(g2) = (7 F)(g2) = 3(F) (92).

= Contradicts that j(f) € k[X]¢ is G-invariant.

Step 2. j* is universal.

x 2 xya k[X] <2 k[X//G] = k[X]C
| A
o ‘I/EI unique morph? () : 3 unique morph?
Ve kY]
By Lemma (F")* lands in k[X]¢ C k[X], and the diagram on the right commutes if the vertical
map on the right is (F')* : k[Y’] — E[X]®, and this is the unique map that works. O

EXAMPLES.
1) In the above Example (k*-action on A?) j : k[A'] = k[zy] = k[z, y]® — k[z,y] = k[A?], j(zy) = zy
determines the categorical quotient

j* A% — Al j(a,b) = ab.
Notice, on orbits, j* maps O(s) ++ s, whereas O3, O, 01 all map to 0 € Al
FactEl Let X be an affine variety with a linearly reductive group action by G. Given any two disjoint
G-invariant closed subsets Cp, C; of X there is a function f € k[X]¢ with f(Cp) = 0 and f(Cy) = 1.
Exercise. Two orbits map to the same point in the categorical quotient < their closures intersect.
Corollary of the exercise. For finite groups G, the categorical quotient X//G = X/G can be
identified with the orbit space (since points are closed).
2) G = Z/2 acting on A by (—1) - (a,b) = (—a, —b).
= G acts on k[A%] = k[x,y] by (=1) 2= —=, (-1) -y = —y.
= k[z,y]¢ = k22, vy, y?] = k21, 22, 23] /(2123 — 22) = k[Y] where Y = V(2123 — 22) C A3, So the
categorical quotient is A2 — Y, (a,b) — (a2, ab, b?).
3) G alg.gp., H C G any closed normal subgp.
Fact.El G/H is an algebraic group with coordinate ringﬁ kG, so G//H = G/H.
4) The non-reductive group k, with addition, identified with G = {({ 1)}, acts on X = SL(2,k) by
left multiplication of matrices. We claim that C2 is a categorical quotient X //G, with F: X — C2,
F(A) = (first column of A). Notice F is not surjective as F(X) = C?\{0}. Notice that k¥[X]“ C k[X]
is the k-algebra k[x11,x21] C k[z;;] generated by the entries of the first column. Then the proof of
the previous theorem applies to this case, since k[X }G is finitely generated.

1Algebmic Urysohn’s Lemma: if Cy, Cy are disjoint closed sets in any aff.var. X, then there is a function f € k[X]
with f(Co) = 0, f(C1) = 1. Proof: say C; = V(I;), then § = CoNC1 = V(1o + 1) so Io + I = k[X], so for some
fi € I; we have fo + fi = 1. Now consider f = fo. J In our setup, we also want f to be G-invariant. One does this
by applying the Reynolds operator R : k[X] — k[X]®, which we haven’t constructed in these notes. For finite groups
G, it is easy to construct: (Rf)(z) = f@ > gec fg).

21t is not so easy to show that Specm k[G]" = G//H are homeomorphic.

3H acts on k[G] by f* = foh™!, so k[G] C k[G]
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8. DIMENSION THEORY
8.1. GEOMETRIC DIMENSION

Let X be a variety (affine or projective). A chain of length m means a strict chain of inclusions
D#XoC X1 CXo Q- C Xy (8.1)

where each X; C X is an irreducible subvariety.
One can start with Xo = {p} a point of X, and if X is irreducible then one can end with X,, = X.

Definition. The local dimension dim, X of X at a point p € X is the mazimum over all lengths
of chains starting with Xo = {p}. The dimension of X is the mazimum of the lengths of all chains,

dim X = max (3 chain Xo C X1 S XoC - C X)) = max dim, X.
m pe

Say X has pure dimension if the dim, X are equal for all p € X.
The codimension of an irreducible subvariety Y C X zeﬂ

codimY = max (I chainY C X1 CXoC - C X1 € Xi).
m

EXAMPLES.

1. A ={0} =V(a1,...,2,) CA' =V(29,...,2,) C--- C A" 1 =V(z,) C A" so dim A" > n.

2. X = V(zy,zz) = (yz — plane) U (x — axis). Then dim, X = 2 at all points p in the plane, and
dim, X =1 at other points.

3. X = (point p) U (line) C A? (disjoint union). Then Y = {p} C X has codim = 0. Notice that
dimX —dimY =1-0=1 # codimY, whereas dim, X —dim,Y =0—-0=0 = codimY.
Exercise. If X = X U---U Xy is an irreducible decomposition, then dim X = maxdim X;. If X
has pure dimension, then dim X = dim X for all j.

Exercise. An affine variety with dim X = 0 is a finite collection of points.

FACT. X = V(I) C A" is a finite set of points < k[X] is a finite dimensional k-vector space.
Indeed, the number of points is d = dimy, k[X], and k[X] = k¢ as k-algebras (exerciseﬂ).

So do not confuse dim k[X] and dimy, k[X].

Lemma 8.1. If X CY then dimX < dimY.
If X, Y are irreducible and X CY then dim X < dimY.
(So for irreducibles X C Y, if dim X =dimY then X =Y.)

Proof. Any chain for X is a chain for Y. If X # Y are irreds then can extend further: X,,11 =Y. O
FACT. dimP" = dim A™ = n.

8.2. DIMENSION IN ALGEBRA

Let A be a ring (commutative with unit). A chain of length m means a strict chain of inclusions
02912 2 Pm-1 2 Pm (8.2)

where each p; C A is a prime ideal.
One can start with a max ideal pg = m C A. If A is an integral domain one can end with ,, = {0}.

FACT. For A Noetherian, the descending chain condition holds for prime ideals, i.e. (8.2)) eventually
stops (however, this need not hold for general ideals).

WWhen X is irreducible, one can take X,, = X. One can define codim Y also for reducible Y as the minimum of all
codim Y’ for irreducible subvarieties Y’ C Y. Example: the disjoint union Y = (point) L (line) C A? has codim = 1.

2Consider the primary decomposition of I(X), and show that the minimal primes I; are pairwise coprime, then
use the Chinese remainder theorem: for any ring A, if I; are coprime ideals (meaning I; + I; = (1), which implies
I =T111; =nI;) then A/I 2] A/I; via the obvious map.



C3.4 ALGEBRAIC GEOMETRY, PROF. ALEXANDER F. RITTER 35

Definition.
The height ht(p) of a prime ideal is the mazximal length of a chain with py = p,

ht(p) = max (3 chain 9 2 912 -+ 2 Pm-1 2 Pm)-
m
The Krull dimension is
dim A = max ht(m)
over max ideals m, i.e. the maximal length of chains.

For an ideal I C A the height is ht(I) = minht(p) over all prime ideals o containing I.
EXAMPLES.

1. A field has dimension zero.

2. A PID has dimension 1 (unless it’s a field), e.g. dimZ = 1.

3. Minimal prime idealsﬂ are precisely those of height zero.

4. (z1,...,20) D (T1,. .., Tp—1) D -+ D (x1) D {0} shows dim k[z1,...,x,] > n.

EXERCISES.

1.E| If you know about localisation (Sec10)), show that the codimension codim(p) = dim A, satisfies

codim(p) = dim A, = ht(p).

2.E| If dim A = m and (8.2]) holds, then dim A/p; = m — j.

3. Deduce that dim A > dim(A4/p) + codim(yp), with equality if p = p; as in (8.2)) and dim A = m.
We will assume the following two facts from algebra, which geometrically say that each equation

we impose can cut down the dimension by at most one. Keep in mind (see Homework 2, ex.1) that
it is not always possible to find exactly ht(gp) generators for p.

Theorem 8.2 (Krull’s principal ideal theorem, Hauptidealsatz).
For any Noetherian ring A, if f € A is neither a zero divisor nor a unit, then

ht((f)) = 1.
Exercise. By lifting a chain from A/(f) to A, show that
ht((f)) =1 = dimA/(f) <dim A — 1.

Example. We check Krull’s theorem in an easy case: for f € A irreducibleﬁ and A a UFD (e.g.
klxi,...,zy]). In this case, po = (0) € (f) is a chain, since (f) is primeﬂ So ht((f)) > 1. We now
show 0 C o C (f) is impossible. Suppose 0 # g € p (want: f € pso p=(f)). Asp C (f), g= f"h
for some h & (f). As h ¢ (f) also h ¢ . As @ is prime, f™h € p forces f™ € p and so forces f € p.

Theorem (Krull’s height theorem). For any Noetherian ring A, and (fi,..., fm) # A,

ht((fi,-.., fm)) < m.

So the height ht(p) is at most the number of generators of p. Conversely, if ¢ C A is a prime ideal
of height m, then @ is a minimal prime ideal over an ideal generated by m elements

Corollary. dimk[z1,...,z,] =n.
Proof. We know the maximal ideals are (z1 — a1,...,2Z, — a,), so they have height at most n by
Krull’s theorem, so dim k[z1,...,2,] < n. The above example showed dim k[z1,...,2,] > n. O

Iminimal prime ideal means it does not contain any strictly smaller prime ideal.

2Hint: recall that prime ideals in the localization A, are in 1:1 correspondence with prime ideals of A inside p.

3Hint: recall that prime ideals of A/T are in 1:1 correspondence with prime ideals of A containing I.

4Recall an element f € A of aring is irreducible if it is not zero or a unit, and it is not the product of two non-unit
elements. Recall a unit f is an invertible element, i.e. fg =1 for some g € A.

5Recall, in any integral domain, prime implies irreducible, and in a Unique Factorization Domain the converse holds,
so primes and irreducibles coincide. Recall f € A is prime if f is not zero and not a unit, and f|gh implies f|g or f|h
(equivalently: A/(f) is an integral domain, i.e. (f) C A is a non-zero prime ideal).

6Meaning g corresponds to a minimal prime ideal of A/I where I is an ideal generated by m elements.
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Remark. More generally, for A Noetherian, dim A[z] = dim A + 1. This also implies the Corollary.
The following two facts from algebra ensure that for k-algebras, dimension theory is not nasty:
Theorem. Let A be a f.g. k:—algebmﬂ Then
dim A = (mazimal number of elements of A that are algebraically independent/k).
If ' D o are prime ideals in A, any two satumtecﬂ chains from @' to p have the same length.
Theorem 8.3. Let A be a f.g. k-algebra and an integral domamﬂ Therﬂ
dim A = trdeg;, Frac(A).

If dim A = m, then all maximal ideals of A have height m, in fact every saturated chain from a
mazximal ideal to (0) has length m. Therefore

ht(p) + dim(A/p) = dim A.
Thus the length of a saturated chain from ¢ to p is ht(p') —ht(p) =dim A/p — dim A/¢’.
A simple application of this Theorem is (compare the Example after Theorem :
Corollary 8.4. For irreducible f € R = k[z1,...,xy,] there is a maximal length chain
P02 2022 pn-1=(f) 2 pn = (0).
Notice how dim R/(f) =n —1 and ht((f)) =1 add up to dim R = n.

Example. We prove the Corollary using transcendence degrees. As f cannot be constant, it involves
at least one variable, say z,. Then Z7,...,Z,—1 in R/(f) are algebraically independent over k
(whereas T, satisfies a polynomial relation over k[zy,...,zp—1], so k(z1,...,2n—1) — Frac(R/(f))
is an algebraic extension). So dim R/(f) > n — 1, and by Krull dim R/(f) < n — 1. Hence equality.

8.3. GEOMETRIC DIMENSION = ALGEBRAIC DIMENSION
Theorem. If X C A" is an affine variety then

|dim X = dim k[X] |

For a projective variety X C P", dim X equals the maximal length of chains (8.2)) of homogeneous
prime ideals which do not contain the irrelevant ideal (xg, ..., xy,), in particular dim X = dim X — 1.

Proof. Using Hilbert’s Nullstellensatz, there is a bijection between chains in (8.1)) and chains in
8-2): p; = I(X;) and X; = V(p;). The result for a projective variety follows by the projective
Nullstellensatz (so, really, by the affine case applied to the affine cone X ). O

Exercise. For a maximal chain as above, ht(p;) = codim V(p;) =n — dim V(p;).

Theorem. For any irreducible affine variety X C A",
dmX =n—1< X =V(f) for an irreducible f € R = klz1,...,zy].

The analogous holds for X C P™ an irreducible projective variety and f homogeneous in klxg, . .., zy].

Ior example, when A is reduced, the coordinate ring of an affine variety.
2j.e. a chain that cannot be made longer by inserting more prime ideals.

3Thus.7 the coordinate ring of an irreducible affine variety.

4For an integral domain, one can construct the fraction field Frac(A) (mimicking the construction of Frac(Z) =
Q). Then k — Frac(A) is a field extension. For any field extension k — K there exists a subset B C K, called
transcendence basis, whose elements are algebraically independent over k (i.e. they do not satisfy a polynomial
relation over k) and such that k(B) < K is an algebraic extension. Here k(B) denotes the smallest subfield of K
containing kU B. The transcendence degree trdeg, K is the cardinality of B (FACT: it is independent of the choice
of transcendence basis B).
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Proof. (=): dimX =n—1=1(X) # (0) = 3f # 0 € [(X). Since I(X) is prime, it must contain an
irreducible factor of the factorization of f. So WLOG f is irreducible, hence prime (R is a UFD).
Then X C V(f) € A", so by Lemma 8.1 dim X < dimV(f) < dimA"™ = n thus forcing X = V()
since dim X =n — 1. (<«): Follows by Corollary O

Definition. For an irreducible affine variety X, the function field is
| E(X) = Frac(k[X))|
Thus, by Theorem for any irreducible affine variety X,
‘dimX = trdegy, k(X) ‘

Remark. Elements of k(X) are ratios of polynomials, so they define functions X — k which are
defined on an open subset of X (the locus where the denominator does not Vanish)H

Example. k(A") = k(z1,...,x,) has transcendence basis z1,...,z, so dim A" = n.
Theorem. For XY irreducible affine varieties, dim(X x V) =dim X 4+ dimY.

Proof. Exerciseﬂ compare the trdeg;, for k[X] = klz1,...,2,])/I(X), k[Y] = kly1, ..., ym)/L(Y) and
EX xY]=k[z1,. . T, Y1, -, ym] /[ (U(X) + 1(Y)) = k[X] @ k[Y]. O

Remark. Geometrically, ht(]) is the codimension of the subvariety V(I) C Spec(A). For an irred
affine subvar Y C X, dim X > dimY + codimx (Y) (which follows from k[Y] = k[X]/I(Y)).

Remark. A proj.var. X is called a complete intersection if [( X) is generated by exactly codim X =
ht[(X) elements. Recall the twisted cubic X C P3 has I(X) = (22 — wy,y? — 2z, 2w — 2y) C
klx,y, z,w|, and it turns out that I(X) cannotﬁ be generated by 2 = ht [(X) = codim X elements.

8.4. NOETHER NORMALIZATION LEMMA

Theorem 8.5 (Algebraic version). Let A be a f.g. k-algebra. Then there are injective k-alg homs
k<—>k[y1,...,yd]<—>A (8.3)

where y; are algebraically independent/k, and A is a finite module over klyi, ..., yd|.
Moreover, if A is an integral domain, then

d = trdegy, Frac(A).

A morph of aff vars f: X — Y is finite if f* : k[X] < k[Y] is an integral extension (i.e. each
element of k[X] satisfies a monic polynomial with coefficients in f*k[Y]).

Fact. If f: X — Y is a finite morph of irred.aff.vars. then
1) f is quasi-finite, meaning: each fibre f~!(p) is a finite collection of points;

IThink meromorphic functions.

2 Non-examinable Hints: You want to show that the union of two transcendence bases (f,), (g;) for k[X], k[Y] give
a transcendence basis for k[X x Y], where f; € k[z1,...,2x], g; € k[y1,-..,Ym]. Spanning is easy (hence dim X x Y <
dim X + dimY’) but showing algebraic independence is harder. Suppose there was a dependency, then you would
get Gif™t 4 -+ Gof' € (I(X) +1(Y)) C k[x1,...,v1,...] where the G’s are polynomials in the g;, and the fT are
monomials ffl -+ fia in the given fi, ..., fo. Now evaluate the y-variables at any p € Y, to deduce G1(p), ..., Ge(p) =0
by algebraic independence of the f; in k[X]. Deduce that Gi,...,G, € I(Y), and from this conclude the result.
Another approach, is to use Noether’s Normalization Lemma (Sec to get finite surjective morphisms X — A%,
Y — A’ and obtain a finite surjective morphism ¢ : X x Y — A% The latter, implies that k[X x Y] is integral over
O (K[A*T)) = " (k[f1,. .., fa, g1,--.,90]). The Going Up (and Lying Over) Theorem says that if a ring B is integral
over a subring A, then any chain of prime ideals in A can be lifted to a chain of prime ideals in B (such that intersecting
with A gives the original chain). Thus dimk[X x Y] > a + b, as required. That inequality can also be obtained more
generally from the fact that if ¢ : X — Y is a surjective morphism of affine varieties, then dim X > dimY'.
That fact is proved using results from Sec[I2.2] as follows. First replace Y by an irreducible component in ¥ of maximal
dimension. Then replace X by an irreducible component in ¢ ~!(Y") whose image is dense in Y (check it exists by using
surjectivity and irreducibility of V). Thus, ¢ is now a dominant morphism between irreducible affine varieties. This
induces an extension on the function fields ¢* : k(Y') < k(X) which by basic field theory implies trdeg,Y < trdeg, X.

3X = V() for I = (yw — 2%, 22w — 2zyz + ), but this ideal is not radical.
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2) f is a closed map (f(closed set) is closed);

3) f is surjective < f* is injective.

Example. f: Al — Al f(a) = a®: see the picture in Sec So f* : k[b] — k[z], £*(b) = 2%. Notice
x is integral over k[b]: the monic poly p(x) = x? — b over k[b] satisfies p(z) = 2% — f*(b) = 0 € k[z].
Remark. (Non-evaminable) Quasi-finite does not imply finite. Let f: V(zy — 1) — Al f(x,y) ==
be the vertical projection from the hyperbola, it has finite fibres. Then f* : k[z] — k[z,y]/(zy — 1)
is the inclusion, but y is not integral over k[x| as xy — 1 is not monic. The algebra is not happy
about the “non-compactness” phenomenon that preimages are diverging near 0. Notice f is not a
closed map. It turns out that an affine morphism f : X — Y is finite if and only if it is universally
closed (meaning: for each morphism Z — Y the fibre product X xy Z — Y is a closed map).

Theorem (Geometric version). Let X C A" be an irreducible affine variety of dimension m. Then
there is a finite surjective morphism f: X — A™.

Sketch proof. Take A = k[X] in Theorem and take Specm of (8.3]) to obtain: X — A? — point.
The rest follows from the above Fact[] O

So any irreducible affine variety is a branched covering of affine space, meaning a morphism
of affine varieties of the same dimension with dim(“generic” fibers f~!(p)) = 0 and which resembles
the covering spaces we know from topology over the complement of a closed subset of “bad” points
p called the branch locus. The ramification locus is the preimage f~!(branch 1ocus)E|

One way to build f : X — A? is by linear projection, taking v1,...,yq to be generic linear
polynomials in x1,...,Ty,.

Theorem (Algebraic Version 2). When A is a f.g. k-algebra and an integral domain, one can in
addition ensure that for the extensions of fields

k— K =E(y1,...,yq) — Frac(A)
the first is a purely transcendental extension, the second is a pm‘mitivﬂ algebraic extension meaning
Frac A = Frac K[z] = K(z)
where z € A is algebraic over K. So only one polynomial relation is needed:

G(y1y---,Yq,2) =0.

Theorem (Geometric Version 2). For X an irreducible aff var, k[yi,...,yq, 2] — A = k[X] induces
a morphism X — A% which is a birational equivalenaﬁ

X --» V(G) c A%,

The conclusion is rather striking: every irreducible affine variety is birational to a hypersurface.

lExercise. Show directly that the fibres are finite by using that each z; € k[X] satisfies a monic poly over
E[y1,...,va). To show the fibre f~'(p) is non-empty, consider f*(y1 — p1,...,¥4 — pa) C k[X]. (You may need
Nakayama’s lemma: for any rings A C B, if B is a finite A-module then aB # B for any maximal ideal a C A).

2Compare B3.2 Geometry of Surfaces: non-constant holomorphic maps between Riemann surfaces are locally of the
form z — 2" which has ramification locus {0} if n > 1. So near most points it is a local biholomorphism.

3In fact, one proves that one can choose y1,...,yq so that k(y1,...,yq) < Frac(A) is a finite separable extension.
Then the primitive element theorem from Galois theory applies.

4We will see these later in the course. A rational map X --» Y is a map defined on an open subset of X defined
using rational functions in k(X) rather than polynomial functions in k[X]. It is birational if there is a rational map
Y --» X such that the two composites are the identity where they are defined. Think of a birational map as being “an
isomorphism between open dense subsets”.
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9. DEGREE THEORY
9.1. DEGREE

Recall (Sec D a linear subvariety of P" is a projectivisation L = P(a vector subspace LcC At
X C P" proj.var. = the degree is

deg(X) # intersection points of X with a complementary linear subvariety in general position

= generic# LN X for linear subvarieties L C P with dim L + dim X = n.

We now explain the meaning of “general position” and “generic”.

The Grassmannian which parametrizes all L c A" above is G = Gr(n+1—dimX,n+1).
Fact. There is a non-empty open subse:c U C G such that the number of intersection points #L N X
for L € U is finite and independent of L, and we call that number deg(X).

Co;ollary 9.1. IfU’' C G is any non-empty open subset such that # LN X 1is finite and independent
of L € U', then this number equals deg(X).

Proof. G is irreducible by Lemma so by Sec we know U NU’ is non-empty (and dense). [

Thus the “bad” L (yielding a different finite or infinite number) must lie inside some proper closed
subset V' C G, which is thought of as “small” since G\ V' is open and dense. The “good” LeG \V are
called “in general position”, and that finite number deg(X) is often called the “generic” number or
the “expected” number of intersection points. When X is irreducible, deg(X) is in fact the maximal
possible finite number of intersection points of L N X for all L (compare Example 3 below).

If L' is a generic linear subspace of dimension smaller than the complementary dimension n—dim X,
then L’ N X = (). The idea is as follows. Consider a generic linear subspace L of complementary
dimension, then LN X is a finite set of points. One then checks that a generic proper linear subspace
L' ¢ L will not contain any of those points, so L' N X = (.

Examples.

1) X = H hyperplane = deg X = 1, for example V(z¢) N V(zg, - ,zn) ={[0:1:0:---:0]}.

2) X =P" C P, L =any point = degP" = 1.

3) The reducible variety X = HyU{[1:0:1]} ={[0:y:1]:y € k}U{[0:1:0],[1:0:1]} C P?
generically intersects a line in one point, but L = P(spany(ep,e2)) ={[z:0:1] :z € k}U{[1:0:0]}
intersects X twice. On the affine patch z = 1, X = (y-axis U a point on the z-axis), and L = z-axis.
4) X =V(zz —y?) C P2

L =V(ax + by + cz) LN (plane L C A®) € Gr(2,3) LN (normal to the plane) = [a : b: c] € P2.
We now calculate L. N X. We want to go to an affine patch  # 0, but must not forget intersection
points outside of that. If z = 0, then y = 0, and if ¢ # 0 then also z = 0, but [0] is not allowed
in P?2. Thus assume ¢ # 0. Then z # 0, WLOG z = 1. Solving: y = = if b # 0 and
2=y = (%)2 gives two solutions z if the discriminant of the quadratic equation is non-zero
(check the discriminant is b?(b?> — 4ac)). Thus deg X = 2, and the set of “bad” L =[a : b : c] € P?
forms a subset of V(c) U V(b) UV(b?(b? — 4ac)), hence a subset of V(be(b? — 4ac)).

Remark. P! = V(zz — 4?) (Veronese map), yet degP! = 1, degV(zz — y?) = 2. Thus the degree
depends (unsurprisingly) on the embedding into projective space.

Definition. X C A" = Uy C P" aff.var. = deg X = deg (X C P").

Theorem. F € R = k|xg, ..., z,] homogeneous of degree d with no repeated factors = deg V(F') = d.
Proof. L =any line, X = V(F).

= XNL=V(F|)CL==P.
After a linear change of coordinates, WLOG L = V(z2,...,z,).
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= F|; =degree d homog.polyﬂ in xo,z; (if deg F'|;, < d then L is not generic enough).
= #(zeros of poly) < d, and genericallyﬂ it has d zeros. O

Fact. (Weak Bézout’s Theorem)ﬁ
Let X,Y C P" be proj.vars. of pure dimension Withﬁ dim X NY =dim X +dimY — n, then

deg X NY <deg X -deg?.
2:3=6 —— cubic

intersections quadric

9.2. HILBERT POLYNOMIAL

X cp? proj.var. We now relate the degree to Sections and
S(X) = k[X] = @m>05(X)m, where S(X),, is the vector space k[zo, ..., Tn|m/I(X)m. Define

hx :N =N, hx(m)=dimg S(X), = (") — dim, I(X)

EXAMPLES. '
1) hpn(m) = (M'7) = (T;ZT;L,) = L(m+n)-- (m+1) = Lm" + lower order.
2) X =V(F) C P? for F irred.homog. of deg d. Then I(X),, = {aF : dega = m — d}. Thus
}LX(TTL) _ (m:7_2) . (mn:i-(qj—Q) _ (TrL+2)2(m+1) . (7rL—d—i—2)2(nL—d+1)
= L(m?+3m+2— (m2—2md+3m) — (d—2)(d - 1)) = dm — =2 4 g
. _ _ (d=1)(d-2)
Fact. (Degree-genus formula for algebraic curves). g = genus(X) = “—5—>.

Thus hx(m)=dm — g+ 1.

FACT.
X C P" proj.var.
= there exists px € k[z] and there exists mg such that for al]ﬁ m > mo,

hx(m) = px(m).
px is called the Hilbert polynomial of X C P". Moreover, the leading term of px is

deg X gimx

(dim X)!

Remark. px depends on the embedding X C P™.

Remark. Other coefficients of px are also “discrete invariants” of X. So we only “care” to compare
varieties with equal Hilbert polynomial.

Remark. X,Y C P" if X =Y are linearly equivalemﬁ then px = py.

Iput t = x1/To to get a (non-homogeneous) poly in one variable, and you find all roots (explicitly, if ¢ = a is a root
then the original homog.poly had a root for [z : 1] = [1 : a], and it remains to check whether [0 : 1] was a root).

2There is a general notion of discriminant (essentially the resultant polynomial or the square of the Vander-
monde polynomial), and genericity is ensured if the discriminant is non-zero.

3Remark. For n projective hypersurfaces X1, ..., X, C P" of degrees dy, . ..,dn then #(X1N---NX,) = did2 - - - dn
generically (it is also d1dz - - - dy, if it is not infinite, provided that one counts intersections with multiplicities). The key
trick is: Y C P" proj.var., dim X = 4, deg X = d1, H C P" hypersurf of deg H = d2 not containing irred components
of X, then X N H has dim = § — 1 and deg = dida.

4This dimension condition is what you would get for vector subspaces X,Y C k" with X +Y = k".

5Think: “for large m, hx really is a polynomial”.

6i.e. X 2V is induced by a (linear) isomorphism P" & P".
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9.3. FLAT FAMILIES

A flat family of varieties isEl a proj.var. X C P" together with a surjective morphism
n: X —>B

where B is an irred.proj.var. (or quasi-proj.var.) and the fibers X; = 7~1(b) have the same Hilb.poly.
Example. ¢ : P! — P! [z] — [fo(z) : fi(z)] where fo, fi are homogeneous of the same degree.
Assume fo, fi are linearly independent/k (so afy — bfi # 0 for all (a,b) € k?\ {(0,0)}). Then
¢ a : b = V(bfo — afi) C P! is a hypersurf of degree d, hence (by Homework 3, ex.2) they have
the same Hilbert polynomial for all a,b (in fact the Hilb.poly is the constant d).

Non-example. The blow-up of A? at the origin is
ByA? = {any line through 0 in A? together with any choice of point on the line}
together with the map 7 : ByA%? — A? which projects to the chosen point on the line. Explicitly:
P! x A2 D V(zw — yz) = BoA? — A%, ([z: 9], (z,w)) — (2, w).

If (z,w) # 0, 7 Yz,w) = ([z : w], (z,w)) =one pointEl (so BoA? is the same as A? except over the
point 0). Whereas OVCIEl 0: 771(0,0) = {([z : y],(0,0))} = P'. Notice the dimension of the fibers
jumps at 0. Compactifying the aboveﬁ we obtain the blow-up 7 : Bp]P’2 —P2ofP2atp=1[0:0:1],
which is not a flat family (the degree of the Hilbert poly of the fibers jumps at p).

10. LOCALISATION THEORY
10.1. LOCALISATION IN ALGEBRA

Let A be a ring (commutative with 1).

Definition 10.1. S C A is a multiplicative set zﬂ
1eS and S-S CS.

EXAMPLES.

1). S = A\ {0} for any integral domain A.

2). S = A\ p for any prime ideal p C A.

3). S={1,f,f?...} forany f € A.

The definition of localisation of A at S mimics the construction of the fraction field Frac(A) for an
integral domain A, so mimicking Frac(Z) = Q. Recall Frac(A) consists of fractions %, which formally

are thought of as pairs (r,s) € A x (A\ {0}), subject to identifying fractions % ~ 75"—: if rs' =1r's.
Definition 10.2. The localisation of A at S is
STA=(AxS8)) ~

where we abbreviate the pairs (r,s) by %, and the equivalence relation is:
r T/ / /
—~ — = t(rs —r's) =0 for somet e S. (10.1)
s s
We should explain why ¢ appears in (10.1]). Algebraically ¢ ensures that ~ is an equivalence relation.
Exercise. Check that ~ is a transitive relation (notice you need to use a clever t).
In many examples, ¢ is not necessary: if A is an integral domain and 0 ¢ S, then (10.1)) forces

rs’ —r's =0 (since there are no zero divisors t # 0 in S).

Geometric Motivation. The t plays a crucial role in ensuring that localisation identifies the

IThis definition is equivalent to the usual definition of flat family (see Hartshorne IIL.9).

2Given a non-zero point in A2, there is a unique line through the point and 0.

3Think of 7 1(0) =2 P! as parametrizing the tangential directions along which lines in A? approach the origin.
A B,P? — P? is an isomorphism on the complement of ' (p).

58.5 C S means st € S for all s,t € S. Some books require that 0 ¢ S, but we do not.
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functions that ought to be thought of as equal. Consider X = V(zy) = (2-axis) U (y-axis) C A% and
A = k[X] = k[z,y]/(zry). What are the “local functions” near the point p = (1,0)?7 We want to
formally invert all those functions f € A which do not vanish at p:

S {feA: f(p) #0}
= A\I(p)
= {feA:f¢lz—1u}

For example, € S since it does not vanish at p = (1,0). Consider the global functions 0 and y:
these are different in A. However, once we localise near p, by restricting 0 and y to a neighbourhood
of p such as (z-axis) \ 0 = X \ V(z), then the local functions 0 and y become equal. So we want
y=4= % =0in S7'A. Indeed, t-(y-1—0-1) =0 € A using t = z € S. Without ¢ in (10.1))
this would have failed. Moreover, we want the local functions of X near p to agree with the local
functions of the irreducible component V(y) =(z-axis) near p, so we expect (and we prove later) that
S~1A is isomorphic to the k-algebra k[x] after inverting all h € k[z] \ I(p):

lalig) = klall} < h(p) # 0] C Frac(klz]) = k(z).

Exercise.El S7lA=0<0¢€S.
Exercise. Show that

C:OGS_1A<:>(trzOforsometGS)(:)reUAnn(t).
s

tesS

In particular, for an integral domain A, © =0 < r = 0 (assuming 0 ¢ 5).
EXAMPLES.
1). Ay = S71A is the localisation of A at S = {1, f, f%,...}. So

Ap={sm:r€Am=0}/~

where for example 77 = f;—ﬁl, and more generally 57 = }’—; & fN(rfr —o' fm) = 0 for some N > 0.

e if f is nilpotent, so f¥ =0 € S for some N, so A = {0}. Indeed: Ay =0 < f is nilpotent.
e if A is an integral domain,

Ay = A[3] C Frac(A).

1

!

2). A=klz,y]/(zy), S={1,2,2% ...} then y = ¥ is zero since y is annihilated by = € S. Thus
ST'A = k], = K[z, 2] C Frac(k[z]) = k(z).

Exercise. In general, Ay = A[z]/(zf — 1) (we have seen this trick before).

S~'A is a ring in a natural way:

,,,_l
S,

W |3
+

with zero 0 = % and identity 1 = %, and it comes with a canonical ring homomorphism

T:A— STA, cw—)%
which has kernel

kerm ={a € A:ta =0 for some t € S} = U Ann(t).
tesS

If A is an integral domain then 7: A — S~!A4 is injective (assuming 0 ¢ S).

Exercise. Check the above statements (in particular, that the operations are well-defined).

LHint. Consider 1.
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EXAMPLES.
1). S = A\ g, then the localisation of A at the prime ideal p isEl

Ap:{gerA,sg_fp}/N.
2). For an integral domain A, let S = A\ {0}, then the localisation at p = (0) is:
STTA = A(g) = Frac(A).

Definition 10.3. A is a local ring if it has a unique mazximal ideal m C A.
The field A/m is called residue field.

Exerciseﬂ A is local < there exists an ideal m C A such that all elements in A \ m are units.
Lemma 10.4. A, is a local ring with mazimal ideal pA, = {% : 7 € p,s ¢ p}/ ~.
Proof. Notice g - A, is an ideal. Suppose % ¢ pA,. Then r ¢ p. So * is a unit since 7 € A, O
Key Exercise. For A an integral domain,
A= (] 4Auw= () Ay C Frac(A).
max mC A prime pC A

Exercise.El Let ¢ : A — B be a ring hom, and p C B a prime ideal. Abbreviate ¢*p = ¢~ 1(p).
Show there is a natural local ring ho

Ay — By, (10.2)
Example. Localising Z at a prime (p): Z,) = {3 : p1 b} has max ideal m, = pZ,) = {{ : pla, p 1 b}.
Exercise. The residue field is Z,)/m, = Z/(p), ¢ — ab™".

(SIS

As an exercise in algebra, try proving the following:
FACT. There is a 1:1 correspondence
{prime ideals I C A with NS =0} < {prime ideals J C S—1A}
I — J:I~S_1A:{§2i€I,S€S}
— J

I=nl(J)={ieA:teJ}
In particular, for a prime ideal p C A,

{prime ideals I C p C A} < {prime ideals J C A}
I=n"1(J) & J=IA,.

Exercise. If A is Noetherian, then S~'A is Noetherian.
Exercise. S71(A/I) = (S71A)/(I1S7!A), in particular

(A/D)y = Ag/TA,,

Example. Consider again A = k[z,y]/(zy) = k[X], so X = X; U Xy where X; = V(y) = (a-
axis) and Xy = V(z) = (y-axis). Consider p = (1,0) € X; \ X» and m, = I(p). Recall any
f € (y) C k[X2] = k[y] becomes zero in Ay, because 2f =0 € A, where x € S = k[X]\ m,. So let
I'=yAC A, then [Ay, =0 C Ay,. Thus, since A/ = k[z] = k[X]:

k[ Xm, = Am, = Am, /TAm, = (A)Dm, = k[X1]m, = k[z][7 : h(p) # 0] C k(z)

as promised. In general, if you localize at a point p which only belongs to one irreducible component,
then the local ring at p agrees with the local ring of the irreducible component at p.

Exercise. S~™'\/I =+/S—11, in particular localising radical ideals gives radical ideals.

Don’t get confused with Ay. For Ay we invert f. For A, we invert everything ezcept what’s in p!
2Hints. To show m is maximal: m C I C A implies I contains a unit, so I = A. Conversely, if u € A\ m were not a
unit, then there is a maximal ideal containing the ideal (u), and this cannot equal m.

3Hint. If S C A is multiplicative such that ©(S) C B consists of units, there’s an obvious hom S™'4 — B, ~ — ig; .

4a hom of local rings R1 — R sending the max ideal m; to (a subset of) the max ideal ma.
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10.2. LOCALISATION FOR AFFINE VARIETIES: regular functions and stalks

Motivation. We now want to consider the k-algebra of functions that are naturally defined near
a point p, and we expect that any function which doesn’t vanish at p should be invertible near p.

For any topological space X, a germ of a function near a point p € X means a function
f : U — k defined on a neighbourhood U C X of p, where we identify two such functions U — k,
U’ — k if they agree on a smaller neighbourhood of p. So a germ is an equivalence class [(U, f)].

Let X be an affine variety, and p € X. A function f : U — k defined on a neighbourhood of p is
called regular at p if on some open p € W C U, the following functions W — k are equal,

f:% some g, h € k[X] and h(w) # 0 for all w € W.

We write Ox (U) for the k-algebra of functions f : U — k regular at all points in an open U C X.
The stalk Ox ), is the k-algebra of germs of regular functions at p, so equivalence classes of pairs
(U, f) with p € U C X open and f : U — k a regular function, where we identify (U, f) ~ (V, g) if
flw = g|lw on an open p € W C UNV. Exercise. Check this is a k-algebra in the obvious sense.

EXAMPLES. ‘
1) For any f € k[X], f: X — k is regular at each point (consider U = X and f = {) We will show
in Theorem that functions regular at each point of X always arise in this way. So

Ox(X)gk[X]
2)For X =A' meN, f:U =D, = A"\ {0} — k, f(z) = - is regular at any p € U, so f € O(U).

xm

3) More generally, for any f € k[X], recall Dy = X \ V(f). Corollary will show that
Ox(Dy) = k[X];.

4) Let X = V(zy) C A? (the union of the two axes). Let U = X \ V(y) = (z-axis) \ {0}. Then
fU—=k, flx,y) =2e€0O),but (U, f) ~ (U,0)as y =0:U =k, so [(U, f)] = 0.

Lemma 10.5. At p € X, the stalk of the structure sheaf Ox is:
Oxp = k[X]n,

where my, = 1(p) = {f € k[X] : f(p) = 0} is the mazimal ideal corresponding to p.

Proof. The isomorphism is defined by
g

where f|y = § for g, h € k[X], h(p) # 0. The map is well-defined: h(p) #0 = h ¢ m), = { € k[X]n,.
Moreover, if (U, f) ~ (U', f'), so £ = %: on a basic open p € Dy C UNU’, where s € k[X], then
gh’ — ¢’h =0 on Dj. Since s(p) # 0, we have s ¢ m,. Thus s- (gh’ — g’h) = 0 everywhere on X, so
s-(gh' —g'h) = 0 in k[X]. Thus £ = & in k[X], .

We build the inverse map: for h ¢ my, let U = Dy, then send ¢ — (U, ). Moreover, if { = % in
E[X]m,, then s - (gh' — g'h) = 0 for some s € k[X]\ m,. Then s(p) # 0 so p € Dy, and gh’' — g'’h =0
on D,. Thus § = % as functions Ds — k, as required.

By construction, the two maps are inverse to each other, so we have an isomorphism. O

)
g

Example. For an irreducible variety X, we get an integral domain A, so Lemma becomes:
Oxp = k[X]m, = k[X][} : h(p) # 0] C Frac(k[X]) = k(X)
and the Key Exercise, from Section impliesﬂ

k[X] = () Oxp C Ox,p C k(X).
peX

1Recall the first equality implies the theorem “regular at all points implies polynomial” for an irred.aff.var. (Theorem
. That k is algebraically closed comes into play: all max ideals arise as m, = I(p) for p € X.
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The FACT, from Section translates into geometry as the 1:1 correspondence:

{irreducible subvarieties Y C X passing through p} < {prime ideals in Ox p}
Y = V(J) ~ J- OXJ, = {f S OXJ, : f(Y) = 0}.

where J = I(Y'). In particular, the point ¥ = {p} corresponds to the maximal ideal m,Ox , C Oxp.
By Lemma [10.4, m,Ox, C Ox,p is the unique maximal ideal. The quotient recovers our field k:

K(p) = Ox.p/mpOx p = k, % — }ng' (10.3)

Warning. Not all function spaces arise as a localisation of k[X]. For example f = £ = £ € k(X)

y w

where X = V(zw — yz) C A? defines a regular function f € Ox(D, U D,). But it turns out
that one cannot write f = { on all of D, U Dy, for g,h € k[X] (this is caused by the fact that
k[ X] = k[z,y, z,w]/(zw — yz) is not a UFD). So Ox (D, U D,,) is not a localisation of k[X], unlike
Ox(Dy) = k[X]y, Ox(Dy) = k[X]w, Ox(DyNDy) = Ox(Dyw) = k[X]yw which are all localisations.

10.3. HOMOGENEOUS LOCALISATION: projective varieties

Let A = @504, be an N-graded ring. Let S C A be a multiplicative set consisting only
of homogeneous elements. Then S™'A = @®y,cz(S7'A);, has a Z-grading: if r € A,;s € S are
homogeneous elements then m = deg £ = deg(r) — deg(s) € Z.

Exercise. Show that (S71A)y € S7!A4 is a subring.

Example. For A = k[x,...,z,], (ST1A) is important: they are the rational functions %
for F, G homogeneous polys of equal degree, so % € kis Wcll—dcﬁne for p € P with G(p) # 0.

Definition 10.6. The homogeneous localisation is the subring (S~1A)g of ST A. Abbreviate by
A(p) = (Ay)o the h.localisation at {1, f, f2,...} for a homogeneous element f € A; and A,y = (Ag)o
for the h.localisation at all homogeneous elements in A\ o for a homogeneous prime ideal p C A.

Let X C A" = Uy C P" be an affine variety. We now compare the affine localisation k[X]n, with
the homogeneous localisation S (Y)(mp) at a point p € X, where X C P" is the projective closure,
m, = {f € k[X]: f(p) =0}, and m), = {F € S(X) : F(p) = 0}.

Lemma 10.7. |k[X]n, = S(X)

mp)

Proof. The mutually inverse morphisms are given by homogenising and dehomogenising. Explicitly,
where d = max(deg(f), deg(g)),

d n
flz1, ... x) x()f(%)"w%) F(xg,z1,...,25) F(l,z1,...,2y) 0
g(x1,... xp) x%g(%,...,ﬁ—g) G(zo,x1,...,xn)  G(l,x1,...,2,)

Exercise. [See Hwk sheet 1, ex.5.] Show that the projectivisation X C P? of X = V(y — 23) C A?
is not iso to P! by computing the local ring Ox, at p=1[0:1:0] (compare with local rings of P).
Show V(y — 2?) = V(y — 2?) as affine varieties in A%, but their projectivisations in P? are not iso.

11. QUASI-PROJECTIVE VARIETIES
11.1. QUASI-PROJECTIVE VARIETY

Aim: Define a large class of varieties which contains both affine vars, projective vars, and open sets
e.g. k* Ck, such that any open subset of a variety in this class is also in this class.

Le. unchanged under the k*-rescaling action which defines P".
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Definition. A quasi-projective variety X C P" is any open subset of a projective variety, so
X =U;nV()

where Uy =P\ V(J), so X is an intersectiorﬂ of an open and a closed subset of P™*. Notice X is
also the difference of two closed sets: X =V(I)\ V(I + J). A quasi-projective subvariety X' of
X is a subset of X which is also a quasi-projective variety, so X' =Up NV(I') for I CI', J C J.

EXAMPLES.

1) Affine X C A™: then X = A"NX (exerciseEb.

2) Projective X C P™: then X =P" N X.

3) A2\ {0} = (Up N (U1 UT,)) NP? (viewind] A% = Uy € P?).

4) Any open subset of a q.p.var. is also a q.p.var., since Uy N (U;NV(I)) = Uy NU;)NV(I).

Definition. A morphism of q.p.vars. X — Y is defined just as for proj.vars., so locally

p = [Fo(p) - Fin(p)]

for homogeneous polys Fp, ..., Fp, of the same degree (where X C P", Y C P™).
Remark. For X,Y affine, this agrees with the definition of morph of aff.vars.:

[To 1+t @y [Fo(z): - Fp(x)]

[1 cYr e yn] — [1 : fl(U) s fm(y)} = [Ig : Tgfl(U) Lot ngm(yﬂ
where y; = z; /70 (29 # 0), d = max deg fi, and Fy(z) = 28, F;(z) = 23fi(y) (notice deg F; = d).

Corollary. X C A", Y C A™ q.p.vars. If there are mutually inverse polynomial maps X —Y and
Y - X, then X 2Y as g.p.vars.

Warning. The converse is false: A% D V(zy — 1) =2 Al \ 0 q.p.vars, but not via a polynomial map:

(Iﬁy) it
P2o[z:y:1=[x:2t:1]—[z:1] P!
I I
[#2:1: ] [z 1]

[%:y” rxy]| <———— [z : Y]

P2oV(zy—22) 2w y:z]—]

8
=,

Definition. A g¢.p.var. X is affine if it is isomorphic (as q.p.vars) to an aff.var. Y =V(I) C A".
We will often write k[X] when we mean kY| = k[z1,...,z,]/I(Y).

Example. k* C k is affine.

11.2. QUASI-PROJECTIVE VARIETIES ARE LOCALLY AFFINE
Lemma 11.1. X aff.var., f € k[X]. Then Dy = X \ V(f) is an affine q.p.var. witlﬂ
k[D/] = k[X];.

Lsuch sets are called locally closed subsets.

2Recall X C P is the projective closure of X C A" = Uy C P", and recall Theorem

3{[1: % : %]} = {[wo : @1 : @3] : 2o # 0} and we exclude the case 21 = x5 = 0 by taking U; U Us = P?\ V(21 z2).
4For X not irreducible, we may worry about the definition of localisation: f% = % € klX]; o f{fP9—f*h) =0

for some £ > 0. But evaluating at p € D (thus f(p) # 0) implies f(p)®g(p) — f(p)*h(p) = 0 € k, so fg(;p))a = fh((pp))b. So

also the functions 7 = f—hb : Dy — k agree.
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Remark. k[Ds] = {5 : Dy — k where g € k[X],m > 0} = k[X][%] = k[X]s. For X irreducible,
] as the subalgebra {4 : g € k[X],m > 0} C k(X) = Frack[X]. But in general,

we define k:[X][%] = k[ X][xnt+1]/(frnse1 — 1), so we introduced a formal inverse “x, 1 = %”. The

one can view k[X] [%

identification with the localisation k[X]f is: xp41 % (and g € k[X] to 4) with inverse f% = gTe .

Proof. Define T = (I(X), zpi1f — 1) C klz1,. .., Zn, Tni1]

= V(I) ¢ A™"! is affine with a new coordinate function x,,,1 which is reciprocal to f,
RV = KX wa1)/ (fonn — 1) = KX,

Subclaim. ¢ : Dy — V(I) is an iso of q.p.vars, via

a=(ay,...,an)— (at,...,an, f(la))
with inverse (by,...,b,) < (b1,...,bp,bpt1).
Pf of Subclaim. View Dy C A" = Uy C P" via (a1,...,an) <> [1:a1: -+ :ay] and V(I) C A"l =
Uo C Pl via (a1,...,an41) < [1: a1 : -+ : any1]. Then ¢ is the restriction of F' : P? — P+l
. . . n “cp” . . . . 1
[1%%]%[12(132*()@]
[ H

[ao a1 : -+ 2 an] —=[aof(a) s a1 f(a) : -+~ an—1f(a) : ages It
where we homogenised: f(a) = flag, ... an) = agegff(g—é,~-- ,en), and in the second vertical
identification we rescaled by agf(a). The local inverse is [ag : -+ - : ap] <l[ag : -+ : any1] € Up (the
composites give the identity, using that f(a) # 0 on Dy, so we may rescale by L), g

f(a)
Theorem. FEvery q.p.var. has a finite open cover by affine q.p.subvars. In particular, affine open

subsets form a basis for the topology.

Proof. P* > X = U;NV({) = V(Fy,...,Fn) \ V(G1,...,Gn) (where we pick generators for
J,I). WLOGH it suffices to check the claim on the open Uy N X. Then Uy N X is V(f1,..., fn) \
V(g1,---9m) = UiV (f1,..., fn) \ V(gj) = U;Dy, where D, is the basic open subset (g; # 0) C
V(fi,..., f~), and where f1 = Fi|zy=1 € k[z1,...,2s] so fi(a) = Fi(1,a) etc. Now apply Lemma
L1l O

11.3. REGULAR FUNCTIONS
Motivation. A\ {0} 2 V(zy — 1) C A% We want to allow the function - = y™.
Definition. X aff.var., U C X open.

Ox(U) = {regular functions f:U — k}
= {f:U —=k: f is regular at each p € U}

Recall, f regular at p means: on some open p € W C U, the following functions W — k are equal,

f= % some g,h € k[X] and h(w) # 0 for all w € W.

Example 1. U =D, = A*\V(z) CA?, f: Dy = k, f(z,y) =% € Ox(D,).
2. For any g, h € k[X], with h # 0, we have £ € Ox(Dp,).
REMARKS.
1) Some books just say h(p) # 0, and this is enoughﬂ since we can always replace W by W N Dy,.
2) We are not saying that f = § holds on all of U, only locally.

lhecause P™ has an open cover by Us;.

2Although I find the meaning of the equality f = { unclear, on the larger W.
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We are not saying that g, h are unique (e.g. in Q, % = g).

3) Notice above we required g, h to be global functions on X. We are not losing out on anything,
since if we instead required ¢’,h’ € k[Dg] for a basic open subset p € Dg C X, then ¢ = g/p%,
h' = h/BY, for some g, h € k[X], so ¢'/W = g/(hB3*~°) or (¢B°~%)/h (depending on whether a > b or
a < b) shows we can write ¢'/h’ as a quotient of globally defined functions.

4) Later we will prove that if U 2Y C A" is affine, then Ox (U) is isomorphic to the classical k[Y].
By making W smaller, we can always assume W is a basic open set Dg for some polynomial function
B:X =k (and B(p) #0). As Dy is affine, Ox(Dg) = k[Dg] = k[Y]3, therefore f = 3~ as functions

Dg — k, for some «, 8 € k[X], N € N. By replacing 8 by 8%, we can assume f = % (so N =1).

5) Some books always abbreviate k[U] = Ox (U), but we will try to avoid this to prevent confusion.
Definition. X ¢.p.var., U C X open.

Ox(U)=A{F:U — k: F is regular at each p € U}.
F regular at p means: on some affine open p € W C U, F|w is reqular at p as previously defined.

REMARKS.

1) Recall the affine open covering U; = (z; # 0) C P™. Suppose p € X NU;. Note that X NU;
is an open set in U; =2 A™. Then near p, F' is equal to a ratio of two polynomials in the variables

TQy .- Tim1, Titl, - - -, Tn Whose denominator does not vanish at p. Following Remark 4 above, we
can also pick an affine open Dg C U; = A" so that ' = % as a function Dg — k or equivalently as
an element of the localisation k[Dg| = k[U;|g = k[zo, ..., Ti—1, Tit1,- .., Zn)g. If you want to view

F as a function P" — k defined nearﬂ p, you need to homogenise by replacing each z; by x;/x;.
Clearing denominators will give a ratio of homogeneous polynomials of the same degree. So locally
near p € X, F is represented by an element of the homogeneous localisation S (X )mp (see Sec .
2) Gluing regular functions. Given open sets Up,Us in a q.p.var. X, and regular functions
f1 € Ox(Uy) and fa € Ox(Usz), observe that the necessary and sufficient condition to be able to find
a glued regular function f € Ox(U1UU2) (meaning, it restricts to f; on U;) is that fi|y,nu, = foluinu,-
Indeed, define f = f; on U;, then f : Uy U Us — k is well-defined, and regularity follows because
regularity is a local condition and we already know it is satisfied by f1, fo on Uy, Us.

Exercise. (Non-examinable) Using Remark 2 and Sec show Ox is a sheaf (of k-algs) on X.

3) Let ¢ : X =Y be isomorphic q.p.vars, and U C X an open set, so V = ¢(U) C Y is an open set.
Then we have an iso ¢* : Oy (V) = Ox(U), F + F o ¢. (Hint: first read Sec[11.4).

Warning. For f € Ox(U), it may not be possible to find a fraction f = ¢ that works on all of U.
Example. For the affine variety X = V(zw — yz) C A%, f = T =5 € k(X) = Frack[X] defines
a rational function f € Ox(D, U D,) on the q.p.var. U = Dy, U D,, since % € Ox(D,) and

Z € Ox(Dy), but one cannotﬁ find a global expression f = { defined on all of U.
Theorem 11.2. X affine variety = Ox(X) = k[X].

Proof. Claim 1. k[X] C Ox(X). Proof. f € k[X]= f = { on X, so it is regular everywhere. v/
Claim 2. Ox(X) C k[X]. Proof. Vp € X, 3 open p € U, C X:

Ox(X)> f= }gl—’; as maps U, — k,

IThe function is not defined on all of P" as the denominator may vanish (recall global morphs P* — k are constant).

2this is essentially caused by the fact that k[X] is not a UFD.

3The proof is easier when X is irreducible: instead of using the ideal J and the cover D; N D;, one argues that
gihj = hig; on D; N D; forces X = D; N D; C V(gihj — hig;) since D; N Dj is an open dense set for irreducible X, and
thus g;h; = hig; holds on all of X.
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where gp, h, € k[X], and h), # 0 at all points of U,. Since basic open sets are a basis for the Zariski
topology, we may assume U, = Dy, for some £, € k[X] (possibly making U, smaller). We now needﬂ

Trick. gp = Z”[ on Dy,. Replacing gy, hy by gplp, hplp, we may assume g, = hy, =0 on V(£,). As
h OatpomtsofU—Dg,wededuceDh =Dy . So f= g—ponU—Dh,andg =0 on V(h,
P p D D D p p P

Now consider the ideal J = (h, : p € X) C k[X].

Then V(J) = 0 since hy(p) # 0. By Hilbert’s Nullstellensatz, J = k[X]| = (1) so 1 =Y a;hyp, € k[X]
for some finite collection of p; € X, and «; € k[X]. Abbreviate h; = hy,, gi = gp,, Di = Up, = Dy,, .
Note that 1 = > a;h; impliesﬂ that the D; are an open cover of X. On the overlap D; N D;, we know
i—; =f= %, so hijg; = hjg; on D;ND;. By the above Trick, h;g; = h;g; also holds on V(h;) = X\ D;
since g; = h; = 0 there, and also on V(h;) = X \ Dj since g; = hj = 0 there. Thus h;g; = h;g; holds
everywhere on X as X = (D; N D;) UV(h;) UV(h;). Thus, on X, we deduce

f=;’f:1~7Z:Zaim-7x:2%hf:2 ]g, Zo‘zgzek -

J (2 3

Corollary 11.3. Dy C X for an aff.var. X C A", then
Ox(Dyp) = {him : Dy, — k, where m >0, g € k[X]} = k[X][+] = k[X].

Proof. Follows from Lemma [I1.1] and Theorem [11.2] One can also prove it directly, by mimicking
the previous proof: f = g—z on Dh N Up, then V(({hy)) C V(h), so by Nullstellensatz h™ € (h,), and

arguing as above one deduces b = > a;h;, then ™ f = > «;g; and finally f = % € k[Dy]. O

Example Let X = A%\ {0}. Then Ox(X) = k[z,y] (which implies that X is not afﬁneEb. Indeed,
A*\{0} = D,UD,, so f € k[X] defines regular functions f1 = f|p, € k[D,], fa = f|p, € k[D,] which
agree on the overlap: fi|p,np, = f|lp.np, = f2lp,nD, € k[Dz N D,] (conversely such compatible
regular f1, fo determine a unique glued f € k[D, U D ]) Compare k[D.], k[D,] inside Frac k[A?] =
k(z,y), so k[X] = k[Dz] Nk[Dy]| C k(x,y), andﬂk | NE[Dy]| = [z, y], Nklx,yly, = K[z, y].

Exercise. Op1(P!) = k, i.e. the constant functions.

11.4. REGULAR MAPS ARE MORPHISMS OF Q.P.VARIETIES

Definition. X,Y g¢.p.vars., F : X — Y is a regular map if Vp € X, 3 open affines p € U C X,
F(p) e V.CY (in particular U = Zy C A™ and V = Zy C A™ are affine) such that

Fly

FU)cV and Zy=2U —V = Zy C A™ is defined by m regular functiomﬂ

Lemma. F is a reqular map < F is a morph of q.p.vars.
Proof. Exercise]] O

We cannot use Remark 4 above, otherwise we have a circular argument. Also, we need the trick, because otherwise
later in the proof g;h; = g;h; will only hold on D; N Dy, so f\D = g]j =>, aihi% = >, a;g; will only hold on N;D;.

20 = V((hs)) = NiV(hs) so X = X\ N;V(hi) = U; X \ V(h;) = U; D;. Equivalently, if z € X \ UD; then h;(z) = 0 for
all 7, contradicting the equation Y a;h; = 1.

3N0tice, this says: if you are regular on A?\ {0} then you must be regular also at 0. The analogous statement holds
for holomorphic functions of 2 (or more) variables (Hartogs’ extension theorem), unlike the 1-dimensional case A'\ {0}
where poles and essential singularities can arise.

4 1f X were affine, it would be isomorphic to A%, as it has the same coordinate ring. At the coordinate ring level,
we obtain some isomorphism ¢ : k[A%] = 042 (A?) = Ox(X). The preimage of the prime ideal I = (z,y) C Ox(X)
yields a prime ideal J = ¢~ (I) C k[A%]. But V(I) =0 C X, so V(J) = ¢*(V(I)) = 0 C A%, so J = k[z, ] by the affine
Nullstellensatz. But ¢ is an isomorphism, so I = ¢(J) = k[z,y], contradiction.

Of/at = g/y" &y f =atg € klz,y] & 2 |f,y g, so [/a* € K[z, y).

6In other words, Zy — Zy is defined by polynomials using the A™ A™ coordinates.

"Hint. for an aﬁﬁine open U C X, there is an aff.var. Z such that U = Z C A"™. Check that Ox (U) = 0z (2) = k[Z],
using Theorem [11.2| for the last iso. Therefore a map defined by regular functions is locally a polynomial map.
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11.5. THE STALK OF GERMS OF REGULAR FUNCTIONS

Definition. The ring of germs of regular functions at p (or the stalk of Ox at p) is
Ox p = {pairs (f,U) : any open p € U C X, any function f: U — k reqular at p}/ ~

where (f,U) ~ (f',U") < flw = f'lw some openpe W CcUNU".

For a qpv X C P" and p € X, pick an affine open p € W C X, then we can view the stalk in
several equivalent ways: Ox p = S(X) () = k[W]n, = Ow,p by Lemma
For F: X — Y a morph of q.p.vars. we get a ring hom on stalks,

F; : OY,F(p) — OX,p7 F;(U,g) = (F_l(U)7F*g)
where F* : Oy (U) — Ox(F~Y(U)), F*g=go F.

Lemma. “Knowing F, for all p € X determines F”.
More precisely: if F,G: X =Y satisfies Fy = G, Vp € X then F'=G.

Proof. Exercise (compare Homework 3, ex.4). O

Remark. All the above are steps towards the proof that Ox is a sheaf on X, called structure
sheaf, and (X, Oy) is a locally ringed space, indeed a scheme (since it is locally affine), see Sec[I5]

12. THE FUNCTION FIELD AND RATIONAL MAPS
12.1. FUNCTION FIELD

For an irred.aff.var. X, k[X] is an integral domain, so we carﬂ define the function field
k(X) = Frack(X] = {f = § : g,h € k[X]} / (} = £ & gh = Gh)
Example. { € k(X) = { € Ox(D},) is a regular function on the open Dy = X \ V(h) C X.
Example. Let X = V(zw — y2z) C A%, Then f = v = 1 € k(X). Notice f € Ox(Dy U Dy).
Lemma 12.1. U, U’ # () affine opens in an irred aff var X = ¥ basic open () # D), CUNU’,
k(U) = k(Dp) = k(U).

P(roo)f. U7 =V(I) c A", s k[Dy] = k[Z]s, so k(Dy,) = Frac(k[Z],) = Frac(k[Z]) = k(Z) =
kE(U). O

Remark. There is an obvious restriction map ¢ : k(U) — k(Dp), g — % using the canonical map

7 : k[U] = k[Z] < k[Z]}, = k[Dy]. The above proves ¢ is bijective. These restrictions are compatible:
the composite k(U) — k(Dp) — k(D) equals k(U) — k(Dp) — k(Dppy) (note: Dpjpr = Dy N Dyy).

Exercise. For irreducible affine X, we can compare various rings inside the function ﬁeldﬁ

kU] =O0x(U) = m Ox(Dp) = m Oxp C Oxp=FkXm, C Frac(k[X])=FkX)
Dy, CcU peU

Definition 12.2. For X an irred ¢.p.v. and ) #U C X an affine open, define k(X) = k(U).
Exercise. Show that this field is independent (up to iso) on the choice of U. (Hint. above Lemma.)

I'Remark. For X reducible (k[X] not an integral domain) the analogue of Frac k[X] is the total ring of fractions:
localize k[X] at S = {all f € k[X] which are not zero divisors}. For k[X] (or any Noetherian reduced ring), S~ k[X] =
[1Frac(k[X]/g:) where p; are the minimal prime ideals (geometrically, the irred components X; of X). This is not a
field: it is a product of fields k(X;). An element in S™'k[X] is one rational function on each X; compatibly on X; N X;.

2To clarify: h : X — k is a polynomial map, defining D, = (h # 0) C X. Since D; C U, we also have
Dy, = (h|lu # 0) C U for the restricted function h|ly : U — k. Also h defines a polynomial function A’ on Z via
Z =2 U C X — k (above we abusively called b’ again h) defining Dy, = (k' # 0) C Z. Now Dy, Dy are isomorphic, so
their coordinate rings are also iso. Explicitly: k[Dy] = k[X]n = Ox (D) = Ou(Dy), ) = Oz(Dpr) = E[Z].

3Sec defines localisation, and Lemmashows Ox p = k[X]m, C k(X) consists of fractions 5 with g € k[X]\m,.
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12.2. RATIONAL MAPS AND RATIONAL FUNCTIONS

Motivation. Let X,Y be irred aff vars. Recall k-alg homs k[X] — k[Y] are in 1:1 correspondence
with polynomial maps X «+ Y. Do k-alg homs k(X) — k(Y') correspond to maps geometrically?
Example. k(t) — k(t), t — 1 corresponds to A’ + Al given by a — L, defined on the open A\ {0}.

Definition 12.3. For X an irred ¢.p.v., a rational map f: X --+ Y is a reqular map defined on a
non-empty open subset of X, and we identify rational maps which agree on a non-empty open subset.

Remark. So a rational map is an equivalence class [(U, F')] where ) 2 U C X is open, F : U — Y is
a morph of q.p.v.’s. We identify (U, F) ~ (U', F') if F|yny = F'|unu. By definition of regular map,
we can always assume that F' : U — V' C Y is a polynomial map between affine opens U C X,V C Y.
Remark. Since X is irred, U C X is dense, so f is “defined almost everywhere”. X irreducible
ensures that intersections of finitely many non-empty open subsets are non-empty, open and dense.

EXAMPLES.

). PP - PP 2o iy = [z0: - 1] is defined on U =P\ {[0:---:0:1]}.

2). f: X --» A" determines regular fi,..., f,: U — Al in Ox(U) on some open () # U C X.
3). fi € Ox(U;) for opens 0 # U; C X yield f = (f1,...,fn): X --» A", defined on U = NUj;.
4). An example of (2)/(3): ¢ € k(X) determines X --» A, a %7 defined on U = Dy, C X.
Definition 12.4. A rational functiorﬂ is a rational map f: X --» AL

Lemma 12.5. For X an irred q.p.v.,
k(X) = {rational functions f : X --» A'}, £ [(Dy, £)].

Remark. Analogous to: for X aff var, k[X] 2 {polynomial functions f: X — A}, g — (X 5 A1).

Proof. WLOG (by restricting to a non-empty open affine in X) we may assume X is an irreducible
affine variety. By definition, a rational function is determined by a representative on any non-empty
open subset, so we can pick an (arbitrarily small) basic open subset D, C X Witlrﬁ f=1(Dn, $)] for
some £ € k(D). By Lemma this corresponds to a unique element in k(Dj) = k(X), and the
element constructed is independent of the choice of Dy by the Remark under Lemma [12.1 O

Warning. Rational maps may not compose: A --» Al ¢ — 0 and A --» A, ¢ — %
F=1UFN]:X-->Y,9g=[V,G)] : Y --» Z have a well-defined composite go f : X --» Z if
F(U)NV # (: then go f is defined on the open F~1(F(U) N V). To ensure composites with f are
always defined, independently of g, we want F(U) to hit every open in Y, i.e. F(U) CY is dense.

Definition. f = [(U,F)]: X --» Y is dominant if the image F(U) CY is dense.

Exercise. The definition is independent of the choice of representative (U, F').
Exercise. Let f : X --» Y be dominant, and ¢ : Y --» X a rational map satisfying go f = idx (an
equality of rational maps, i.e. go f =idx on some non-empty open set). Show g is dominant.

lCultural Remark. Chow’s theorem: every compact complex manifold X C P" (holomorphically embedded) is
a smooth proj var; every meromorphic function is a rational function; holo maps between such mfds are regular maps.
Example (Courses B3.2/B3.3): for X a compact connected Riemann surface, k(X) = {meromorphic functions
X --» A{ = C} = {holomorphic maps X — P'}\ {constant function co}. The following categories are equivalent:
(1) non-singular irred projective algebraic curves (i.e. dim = 1) over C with morphs the non-constant regular maps,
(2) compact connected Riemann surfaces with morphs the non-constant holomorphic maps,
(3) the opposite of the category of algebraic function fields in one variable/C (meaning: a f.g. field extension
C — K with trdeg: K = 1, so a finite field extension C(t) < K) with morphs the field homs fixing C.
So any two meromorphic functions are algebraically dependent/k, and compact connected Riemann surfaces are iso iff
their function fields are iso (this may fail for singular curves, and compactness is crucial to ensure X is algebraic). The
“non-constant” condition ensures the maps are dominant.

21 f = ;% we can always replace h by hY to assume N = 1.
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Definition. A birational equivalence f : X --» Y is a dominant rational map between irreducible
q.p.v.’s which has a rational inverse, i.e. there exists a rational map g :' Y --+ X with fog = idy
and go f =idx (equalities of rational maps). We say X ~Y are birational.

EXAMPLES.
1). A" ~ P™ are birational via the inclusion A" = Uy C P", which has rational inverse P" — A",
[wo : v+t an] = (3L, , 22) defined on U.

2). For an irred q.p.v. X C P", X ~ X via the inclusion X — X.

3). For an irred q.p.v. X C P, XNU; ~ X via the inclusion, assuming X NU; # 0 (i.e. X ¢ V(z3)).

4). The Cremona transformation P? --» P2 [z : y : 2] — [yz : 2z : xy|, defined on the

open where at least two coords are non-zero. Dividing by zyz, this rational map is equivalent to

[:y:z2]— [ % : 1], defined on the open where all coords are non-zero. This map is its own

inverse, so birational.

Lemma 12.6. For XY irred aff vars, f : X --» Y determines a k-alg hom f* : k[Y] — k(X) via
(y:Y = AY) = (ffy=yof: X -—-» Ab).

Moreover‘ f* injective < f domz'nant‘ in which case we get a k-alg hom f* : k(Y) — k(X), § — JJZ:%

Proof. f =[(U, F)] defines f*y = [(U, F*y)] = [(U,y o F')]. The lack of injectivity of the linear map
F* depends on its kernel. For y # 0,

Fry=0&y(F(u) =0YueU < F(u) eV(y) Yue U < F(U) CcV(y) CY.
F(U) not dense < F(U) C (some proper closed subset say V(J) # X) C V(y), any y # 0 € J.
For the final claim: f*h # 0 if h # 0 (since f* inj). O

12.3. Equivalence: IRREDUCIBLE Q.P.VARS. AND F.G. FIELD EXTENSIONS

Theorem 12.7. There is an equivalence of categorieéﬂ

{irred q.p.v. X, with rational dominant maps} — {f.g. field extensions k — K, with k-alg homs}°P
X = kX)
(f=¢": X -=Y) = (¢=f":k(X) < k(Y))
In particular, the following properties hold:
(1) [ =f and ™ = ¢;
2) X LoV % Z = (go ) = frog™: k(X) < k(Y) < k(2);
(3) K(X) 2 K(Y) < K(Z) = (pod) =vr o : X Ty s 2.
(4) X ~Y birational irreducible q.p.v.’s < k(X) = k(Y) iso k-algs.
Remark. Recall the equiv {affine vars, aff morphs} — {f.g. reduced k-algs, k-alg homs}, X — k[X].

This was not an iso of cats: to build X from the k-alg A, one chooses generators g1,...,9, € A to
get p : klxy,...,xn] > A, i gi, 50 P klx1,. .., 2]/ ker o =2 A. Then X =V(ker p) C A™.
Proof.

Claim 1. f induces ¢ = f*.
Pf. WLOG X, Y are affine (since f is represented by an affine map F': U — V on open affines and
k(U) = k(X), k(V) = k(Y) by definition). By Lemma f:X --»Y determines

g . [g
), Y — I
Claim 2. For field extensions k < A, k < B, any k-alg hom A — B is a field extension (i.e. inj).
Pf. Let J =ker(A — B). As J is an ideal in a field A, it is either 0 (done) or A (false: 1+ 1). v

k(YY) — k(X

1A field extension k < K is finitely generated if there are elements ag,...,a, such that the homomorphism
k(z1,...,zn) = Frack[z1,...,zn] = K, ; — «; is surjective. Notice we allow fractions, unlike finitely generated
k-algebras where you only allow polynomials in the generators.
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Claim 3. For X,Y irred affine, a k-alg hom ¢ : k(Y) — k(X) determines a birational f: X --» Y.
Pf. By Claim 2, ¢ is injective (in particular an injection kY] — k(Y) — k(X)). Let y1,...,yn be
generators of k[Y] (if Y C A" then k[Y] is generated by the coordinate functions y;). Then
e(y;) = 7= € k(X).
j

Let U = NDy,, then p(y;) € Ox(U). Since k[Y] is generated by the y;, also ¢(k[Y]) C Ox(U).
WLOG U is affine (replace U by a smaller basic open). Therﬂ Ox(U) = Oy(U) = k[U]. The
inclusion ¢ : k[Y| < Ek[U] corresponds to a morph ¢* : U — Y of aff vars (see above Remark), and
©* is dominant since ¢ is injective (Lemma , S0 it represents a dominant ¢* : X --» Y.
Remark. Explicitly, for u € U C X,

ws (p(yn)(w), - plyn) (w) = (B84, 208y e v C A"

Claim 4. For X,Y q.p.v.’s, a k-alg hom ¢ : k(YY) — k(X) determines a birational f: X --» Y.

Pf. k(X) = k(U), k(Y) = k(V) for affine opens U, V. By Claim 3, k(V) = k(Y) — k(X) = k(U)
defines U --» V', which represents X --» Y. v

Claim 5. For any f.g. k — K, there is an irred q.p.v. X with K = k(X).

Pf. Pick generators ki,...,k, of K, let R = k[z1,...,xy], define ¢ : R — K, z; — kj. Let
J =Xker g, then R/J < K, so J is a prime ideal as K is an integral domain. Let X = V(J) C A" be
the irreducible affine variety corresponding to R/J. Then k(X) = K since k(X) = FracR/J — K
contains the generators k; in the image. v/

|
N

Exercise. Prove properties (1)-(4) (these follow from analogous known claims for affine morphs).

Claim 6. The functor in the claim is an equivalence of categories.
Pf. It’s fully faithful by f** = f, o™ = ¢ (Property (1)).
It’s essentially surjective by Claim 5. v/ U

Corollary 12.8. Any irreducible affine variety is birational to a hypersurface in some affine space.

Proof. WLOG X is affine (restrict to an affine open). By Noether normalisation (Section , for
an irred.aff.var. X,

k— k(yla"',yd) — k(X) = k(yla""ydaz) = FraCk[ylv"'aydaZ]/(G)

where y1,...,yq are algebraically independent/k, d = dim X = trdeg,k[X], and z € k[X] satisfies
an irreducible poly G(y1,...,yd,2) = 0. Since V(G) C A" has k[V(G)] = k[y1, . .., ya, 2]/(G), the
above iso k(X) = k(V(G)) implies via Theorem that X --» V(G) are birational. O

Definition 12.9. A ¢.p.v. X is rational if it is birational to A™ for some n.
Remark. By the Thm, X rational < k(X)=k(x1,...,zy,) is a purely transcendental extension of k.

13. TANGENT SPACES

13.1. TANGENT SPACE OF AN AFFINE VARIETY

For a more detailed discussion of the tangent space, we refer to the Appendix Section [17
F € klz1,...,xq).

p=(p1,...,pn) € A™.
The linear polynomial d,F' € k[z1,...,xz,] is defined by

dpF = dF|s—y - (x —p) = Y 50(p) - (2 — p))

Example. p = 0, F(x) = F(0) + apzo + - - - + anxy + quadratic + higher. The linear part of this
Taylor expansion is doF = ) a;x;.

IRecall the Theorem: X an affine variety = Ox (X) = k[X].
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Definition. The tangent space to an aff.var. X C A", with (X) = (F,...,Fn), is

TpX = V(dpFl, ce ,dpFN) = NkerdF; C A"

REMARKS.

1) T, X is an intersection of hyperplanes V(d,F;), so it is a linear subvariety.

2) T, X is the plane which “best” approximates X near p. Notice p € T, X.

3) By translating, —p+ 1, X, we obtain the vector space which “best” approximates X near p (with
0 “corresponding” to p). This is also often called the tangent space.

Silly example. X = A", [(A") = {0} so T,A" = A™.

Example. The cusp X = V(y? — 23) = {(t3,¢®) : t € k} is determined by bE
F=y?—a23 Atp= (3,13, T A

dFF = —32%dz+2ydy = (_552)
dyF = =3tz —12) +23(y — 7). N
For t # 0, T,V = kerd,F is the (1-dimensional) straight line perpendicular
to (—=3t1,2t3). But at t =0, d,F' = 0 so T, X = V(0) = k? is 2-dimensional.
Exercise. Recall a line through p has the form ¢(t) = p + tv for some v € k™. A line is called

tangent to X at p if F;(4(t)) has a repeatedﬂ root at ¢ = 0. Show that

T, X = U(lines tangent to X at p).
Definition. p € X is a smooth point ifﬂ
dimy, T, X = dim,, X.
p € X is a singular poinﬂ if dimy, T, X > dim, X. Abbreviate Sing(X) = {all singular points} C X.

Theorem. Let X be an irreducible aff.var. of dimension d with I(X) = (Fy,...,Fn).
= Sing(X) C X is a closed subvariety given by the vanishing in X of all (n — d) x (n — d) minors

of the Jacobian matrix
Jac = (8F1> .
837]-

Proof. T, X is the zero set of

OF L. om
1 91 lp 9zn |p z1—p1
QOPZ < : ) — :
Tn OFN ... 9Fn In—Pn
oxq p Oxn P

Hence p € Sing X < dim ¢, 1(0) > d < dimker Jac, > d < all (n—d) x (n— d) minors vanishﬂ O

2

Example. For the cusp: F = y? — 23, Jac = (=322 2y),n=2,d = 1. So 1 x 1 minors all vanish

precisely when (z,y) = (0,0).

1We know t =0 is a root, since the F; vanish at p € X.

2Recall: dim, X =(the dimension of the irreducible component of X containing p), Section

3(Non—examinable) Fact: dim 7, X > dim, X always holds. Intuitively: if the d, F; are linearly independent then the
F; are also “independent near p”, so each equation F; = 0 cuts down by one the dimension of X at p. Over complex
numbers, this is a consequence of the implicit function theorem. More generally, one way to prove this is via the
Noether Normalization Lemma (Geometric Version 2) from Sec and applying the following fact to the projection
from the tangent “bundle” TX = {(p,v) € X x A" : v € T, X} — X, (p,v) — p. Fact. Given any regular surjective
map f: X — Y of irreducible q.p.vars, then dim F' > dim X — dim Y for any component F of f~'(y), and any y € Y.
Moreover, dim f!(y) = dim X — dim Y holds on a non-empty open (hence dense) subset of y € Y.

40therwise we would find n — d linearly independent columns (the columns involved in that minor), and hence the
rank would be at least dim = n — d, so the kernel would be at most dim = d.
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13.2. INTRINSIC DEFINITION OF THE TANGENT SPACE OF A VARIETY

Theorem. X aff.var., p € X, and recall m, = {g € Ox,p: f(p) =0} C Ox,p. Then, canonically,

T,X = (mp/m??)*

(the vector space mp/mg, before dualization, is called the cotangent space).

Proof. WLOG (after a linear iso of coords) assume p =0 € A"™.
Notation. To avoid confusion, we first list below the maximal ideals that will arise in the proof:

E[A"] D m = {f:A" = k: f(0)=0}=(z1,...,2p)
EX] > m = {f: X—=k:f(0)=0}=m-k[X]=m+[X)
Oxo D my = {L:fgek[X],9(0)#0,f(0)=0}=m-Oxp.
Step 1. We prove it for X = A™.
doF =5 %‘0 - x; is a linear functional A" = TyA™ — k, so doF' € (ToA™)*. Thus

d() : k[ml, . ,xn] — (T@An)*, F— d()F
and dp is linearH Restricting to the maximal ideal m = (x1,...,z,) of those F' with F'(0) =0,
dolm : m — (THA™)*.

dp|em is linear and surjectiveﬂ

Subclaim. ker do|, = m?, hence do|nm : m/m? — (THA™)* is an iso.

Proof. doF' =0 & 3—5(0) = 0Vi < (F only has monomials of degrees > 2) & F € m?. v
Step 2. We prove it for general X.

The inclusion j : Tp X < THA™ is injective, so the dual mapﬁ is surjective,

§* rm/m? = (THA")* — (T X)*

= j*ody:m— (TpX)* surjective.
Subclaim.ﬁ ker j* o dy = m? + [(X) = m? C k[X], hence m/(m? + (X)) = (TpX)*.
Proof. F € ker(j* o d()) S jrdoF = dOF’TOX =0& doF € ]I(TQX)
& doF € <d0F1, - ,doFN> where ]I(X) = <F1, - ,FN>.
= doF = Zai doFi where a; € k[xl, e xn]
= do(F — Zaze) = — Z(doai) . Fz(O) =0 (since 0=pe V(Fl, .. .,FN)).
< F— ZaiFi € kerdolm = m?.
s Fel(X)+m? v
Finallyf]

(ToX)* = m/(m? + 1(X)) = m/m’
where the last iso is one of the “isomorphism theorems” ﬁ Now localise:
Claim. ¢ : m/m? = my/m2, f — { (the theorem then follows).
Proof. Subclaim 1. ¢ is surjective.
Proof. For 5 € my, let ¢ = g(0) # 0.
:w(%)—%z%—gz{-(%—é)emg (since{emo and (%—é)emo).
= go(%) = 5 modulo m3. v/
Subclaim 2. ¢ is injective.

Ldo(AF 4 puG) = N doF + pdoG.
zdoxi = x; are a basis for (ToA™)".
3explicitly, j* is just the restriction map: j*F = Foj = F|r,x : ToX EN ToA™ k.
47 denotes the image of m in the quotient k[X] = R/I(X).
Susing that I(X) C m, since f|x =0 = f|, = 0.
we quotient numerator and denominator by a common submodule, I(X). Explicitly: m — H/HQ is surjective and
the kernel is easily seen to be m? 4 I(X).
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h;
hi, b, € k[X]\m. Take common denominators (and redefine g;) to get { = % for some h € k[ X]\m.
Then s- (fh — > gig!) = 0 € k[X] for some s € k[X]\m. Thus sfh € m*> = m? +[(X). Since f €m,
alsq] (sh — s(0)a(0))f € 2. Thus s(0)a(0)f € W2, forcingf] f € W2 So £ = 0 € W/m? as
required. [l

Proof. Need to show kery = 0. Suppose { € mi. Thu { = ZZ—; R gi,g, € m and

Remark. That also proved T,X = (Z,/Z2)* where T, = (x1 — p1,...,%n — pn) C k[X].

Corollary. T, X onlgﬁ depends on an open neighbourhood of p € X.

Proof. By the Theorem, it only depends on the local ring Ox, (and its unique maximal ideal m;,). [
Definition. For X a q.p.var. we define the tangent space at p € X by T,X = (mp/mg)*.

Remark. In practice, you pick an affine neighbourhood of p € X, then calculate the affine tangent
space using the Jacobian.

13.3. DERIVATIVE MAP

Lemma. For F': X =Y a morph of q.p.vars., on stalks F'* : Oy p,) — Oxp is a locaﬂ ring hom
mF(p) — My, gl—)F*g:goF.

Proof. g(F(p)) = 0 implies (F*g)(p) = 0. O
F: X — Y morph of q.p.vars. We want to construct the derivative map
DpF : TpX — Tp,)Y.

By the Lemma, F*(mp(,)) C m,, so F*(m%,(p)) C m2, and thu:ﬂ

F*: mp(p)/m%(p) —m,/m2.
Its dual defines the derivative map:

DpF = (F*)*: (my/mp)* — (mpg) /mEp,)*
Exercise. Show that locally, on affine opens around p, F'(p), you can identify D,F with the Jacobian
matrix of F. More precisely: locally F': A™ — A™, p =0 and F(p) =0, and Jac F' = (gf’) acts by
J

left multiplication A™ = THA™ — A™ = TyA™.

Example. F : Al — V(y —2?) C A%, F(t) = (¢,?), F(0) = (0,0).

For A': mg =t - k[t]s) C K[t]() (we invert anything which is not a multiple of ¢).
For A% mp() = (2,y) - (k[z, 9]/ (y — 2%)) @) C klz,yl/(y = 2°))(z)-

F* : ax + by + higher € mF(O)/m%(O) > at + bt2 = at € mp/m3.

= DoF = (F*)* : t* — z*, where t*(at) = a and z*(ax + by) = a.

= DoF = ((1)) in the basis z*, y* on the target (and basis ¢* on the source).

This agrees with the Jacobian matrix of partial derivatives:

DoF = (55 = (3)|—o = (3)-

1By definition m2 is generated by products of any two elements from mg, so it involves a sum and not just one ZZ/"

2since sh — s(0)h(0) and f both vanish at 0.
3since s, h do not vanish at 0.
430 it is independent of the choice of F; with I(X) = (F1,..., Fx), and it is independent of the choice of embedding

X C A" ie. it is an isomorphism invariant.
5

meaning: max ideal — max ideal.
6This F* is called the pullback map on cotangent spaces.
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14. BLOW-UPS
14.1. BLOW-UPS

The blow-up of A™ at the origin is the set of lines in A" with a given choice of point:
BoA™ = {(z,0) : A" x P x € 0} = V(ziy; — 2y;) C A" x P!

using coords (1,...,2,) on A", [y1 : --- : yp] on P?"~L. That = € £ means (x1,...,2,) and (y1,- -+ ,Yn)
are proportional, equivalently the matrix with those rows has rank 1 so 2 x 2 minors vanish.
Exercise. Via the linear iso x — = — p, describe the blow-up B,A" at p.
The morphism

7 BoA" — A", 7(z,[y]) = x,
is birational with inverseEl A" — BoA", z +— (z,[z]) defined on x # 0. The fibre 7—!(z) is a point
with the exception of the exceptional diviso

Ey=n0) = {0} x P 1.

Thus 7 : ByA™ \ Ey — A"\ 0 is an iso, and 7 collapses Ej to the point 0.

In fact By = P"~! =2 P(TpA™) is the projectivisation of the tangent spaceﬂ the closure of the preimage
{(vt,[vt]) : t # 0} of the punctured line ¢ — tv, ¢ # 0, contains the new point (0, [v]) (using that
[vt] = [v] € P"~! by rescaling).

Definition. For X C A" an aff.var. with 0 € X, the proper transform (or blow-up of X at 0) is

ByX = closure(7 (X \{0})) C ByA™.
Again 7 : BgX — X is birational, and
E =7"10)NByX

is the exceptional divisor. BpX only keeps track of directions £ C Ey at which X approaches 0,
unlike the total transform

7Y X) = BoX U Ej.
Example. X = V(zy) = (z-axis) U (y-axis) C A2, Then
7 HXN\0) = {((z,y),[a:D]) € A2 x P! : 2b— ya = 0,2y = 0, (z,y) # (0,0)}.

Solving: ((x,0),[1:0]) for = # 0, ((0,y),[0 : 1]) for y # 0.
Then By X is the closure: (Al x 0,[1:0])U(0x Al [0: 1]), a disjoint union of lines! The exceptional
divisor F consists of two points: ((0,0),[1:0]), ((0,0),[0: 1]), the 2 directions of the lines in X.

14.2. RESOLUTION OF SINGULARITIES

Blow-ups are important because they provide a way to desingularise a variety X, i.e. finding a
smooth variety X’ which is birational to the original variety X. Of course, X’ is not unique.

Example. The cuspidal curve X = V(y? — 23) C A? is singular at 0. Use coords ((z,y),[a : b]) on
BoA?, b — ya = 0. Notice D, = X N (a # 0) can be viewed as a subset of A? using coords (z,b),
since WLOG a = 1, then y = zb (for a = 0, we rescale b = 1, but then both z = 0 and y = 0).
Substitute into our equation: 0 = y? — 23 = 22b? —23. The proper transform is obtained by dropping
the 2?2 factor: b*> — x = 0 (check this). Thus BoX = {(b%,b%),[1 : b]) : b € k} is a smooth curve,
isomorphic to the parabola z = b% in A%, and it is birational to X.

La non-zero z determines the line uniquely: £ = [z1 : - - : ).

2Divisor here just means codimension 1 subvariety, although more generally divisor refers to formal Z-linear com-
binations of such (these are called Weil divisors).
3more accurately, of the normal space to {0} = To0 C ToA"™: we keep track of how z converges normally into 0.
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Hironaka’s Theorem (Hard!). Assume chark = 0. For any p.v./q.p.v. X, there is a smooth
p.v./q.p.v. X' and a morph 7 : X' — X which is birational, such that

7 X' \ Wﬁl(Sing(X)) — Xsmooth = X \ SlIlg(X)

is an iso. If X is affine, then X' = By(X) can be constructed as the blow-up of X along a (possibly
non-radical) ideal I C k[X] (see Section , with

V(I) = Sing(X).
14.3. BLOW-UPS ALONG SUBVARIETIES AND ALONG IDEALS

Definition. For affine X, and I = (f1,..., fn) C k[X], define B;(X) to be the graph of f: X --»
PN f(x) = [fi(z) : - : fy(z)], meaning:
B1X = closure({(z, f(z)) :x € X \V(I)}) € X x P71,
The morph
m: Bi(X) = X, n(z,[v]) =

is birational with inverse z +— (z, f(x)) (defined on X \ V(I )) The exceptional divisor is

E=n"YV()).
Definition. The blow-up along a subvariety Y is

By X = Byy)X.
Exercise. For Y = {0} (so I =1(0) = (x1,...,2y)), show By X is the proper transform ByX.
Remark. B;X is independent of the choice of generators f;, but it dependﬂ on I and not just V(7).

Definition. For q.p.v. X C P", and I C S(X) homog., pick homog. gens fi,..., fy of the same
degreeﬂ Thus f: X --» PV~! determines B;X C X x PV~ as before, and define

BrX = BIX N (X x PN,

15. SCHEMES

Section[19] is an introduction to modern algebraic geometry. It is conceptually central to the subject.
However, for the purposes of exams, almost all of section z's non-examinable. The only topics you
need to know are: (1) the definition of Spec,Specm in |15.1; (2) the Zariski topology on spectra in

(8) morphisms between spectra in [15.5,
15.1. Spec OF A RING and THE “VALUE” OF FUNCTIONS ON Spec

A = any ring (commutative with 1).
The affine schemeE| for A is the spectrum Spec A, where

‘SpecA = {prime ideals p C A} D {max ideals m C A} = Specm A

Here A plays the role of the coordinate ring
A = O(Spec A) = “ring of global regular functions”

where O is called the structure sheaf (more on this later).
Remark. Notice O(Spec k[x]/z?) = k[z]/x? remembers that 0 is a double root of 22, whereas the
affine coordinate ring k[V(z?)] = k[z]/z does not.

Question: In what sense are elements of A “functions” on Spec A?

f €A = “function” SpecA — 77
p = [f(p) € K(p) = Frac(A/p)

le.g. B2, >A is singular but B, ,)A? is smooth, although V(2°,y) = V(z, ).
2Recall the trick: V(f) =V(zof,21f,...,2nf). So we can get f; of equal degree.
3These will be the local models for general schemes.
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where we need to explairﬂ what f(g) is, inside the fraction field of the integral domain A/gp:
A — Alp — K(p)
!

f= F = flp) =7 € Klp)

Remark. It is not actually a function: the target K(p) is a field which depends on the given ¢!

Example. A = Z.

Spec A = {(0)} U{(p) : p prime}.

K(0) = Frac(Z/0) = Q, K(p) = Frac(Z/p) = Z/p.
Consider f = 4.

f((0)) =4 €Q.

f((3))=(4mod 3)=1€7Z/3.

f((2)) =0€Z/2, since 4 € (2).

Exercise. ‘f(p) =0& fe p‘

When p = m is a maximal ideal, A/m is already a field, so K(m) = A/m, thus:
f(m) = (f modulo m) € A/m.

Example. A = k[z] corresponds to the affine variety Specm A = A!. Consider a polynomial f(z) €
A, and the ideal m = (x — 2). Then f(m) = (f mod = — 2) € k[z]/(z — 2) corresponds to the value
f(2) € k via the identification K(m) = k[z|/(x — 2) = k, z +— 2.

Remark. For an affine variety X C A", so taking A = k[X], the maximal ideals m, = (z1 —
ai,...,Ty — ap) correspond to the points a € X C A", and the “function” f at m, just means
reducing f modulo m,. But k[X]/m, = k via the evaluation map g(z) — g(a), so we get an actual
function on the maximal ideals:

f:Speem A — k, m, — f(m,) = f(a)

in other words, this is the polynomial function V(I) — k defined by the polynomial f € k[z1,...,x,]/1,
so the value f(a) is obtained by plugging in the values z; = a; in f.

Example. A = k[X] = R/I for an affine variety X C A", where R = k[z1,...,zy,)].

For f € A, we obtain f : X = Specm A — k as remarked above, and this is the polynomial function
obtained via k[X] = Hom(X, k). Example: z; € A defines the i-th coordinate function 7; : X — k.
For p C A a prime ideal, we obtain a subvariety Y = V(p) C X, and you should think of f(p) as the
restriction to Y of the polynomial function f : X — k, so f(p) : Y — k. Indeed, let A = k[Y] = A/p
and f = (f mod p) € A. Then the restriction f|y : Y — k equals the function f : Specm A — k
which corresponds to the “function” f(p) arguing as before

Remark. The values f € K(p) “determine” the image of f in any field F under any homomorphism
¢ : A —F. Indeed (assuming ¢ is not the zero map), p = ker ¢ is a prime ideal since A/p — F is an
integral domain, so ¢ factorises as A — A/p — K(p) — F since K(p) is the smallest field containing
A/p, so o(f) is determined by f € K(gp) and the field extension K(gp) — F.

15.2. THE ZARISKI TOPOLOGY ON Spec

Motivation. We want the following to be a basic closed set in Spec A, for each f € A:
V(f) ={p € SpecA: f(p) =0} ={p € SpecA: p > f}.

Thus, we define the Zariski topology on Spec A and Specm A by declaring as closed sets:

V(I)={p € SpecA:p DI} C SpecA
V(I) ={m € Specm A: m D I} C Specm A

Lhere we write f to mean f modulo g, so the coset f + p € A/p.
2identifying K () = k via evaluation, for any max ideal i C 4, i.e. a max ideal m C A which contains p.
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for any ideal I C A. Notice all f € I will vanish in A/p for p € V(I), equivalently f(p) =0 € K(p).
More generally, for a subset S C A, we write V(.5) to mean V((5)).
Again we have basic open sets
Dy ={p: flp) # 0} ={p: f ¢ p} CSpecA
Df={m: f(m)#0} ={m: f ¢ m} C Specm A
for each f € A, which define a basis for the topology.
Exercise. Spec A\ V(p) = {prime ideals not containing p} = Usc,Dy.

The elements of Specm A are called the closed pointsﬂ of Spec A. A point of a topological space is
called generic if it is denseEI So a generic point p € Spec A is a point satisfying V(p) = Spec A.
Examples.
1. For A = R = k[xy,...,zy,], then Specm A = k" via
1:1
Mg =(T1 —ay,...,Tp —ap) «— a
1:1
V(I)={mg:my, DI} CSpecm A +— {a € k™:{a} = Vaassical(Ma) C Velassical (1)}
= VclaLssicaLl(I) C A",
So Specm R = A™ are homeomorphic, and O(A™) = R.
Spec R contains all irreducible subvarieties Y = V(p) C A™:
Spec A LN Specm A U {prime ideals p C R which are not maximal}
&L Aru {irred subvars Y C A" which are not points}
LN {all irred subvars Y C A"}

This is unlike the Euclidean topology (for & = R or C) where the only non-empty irreducible sets
are single points, so we don’t notice interesting “points” apart from A”.

2. For X C A" affvar., let I =1(X), so k[X]| = R/I where R = k[z1,...,zy].

X = Specm (R/I) are homeomorphic, and O(X) = k[X]| = R/I

a=V(m,) ={f € k[X]: f(a) =0} where m, =m, + I C R/I = k[X].
3. For A=17,

SpecZ = {the closed points {p} for p prime} U {the generic point (0)}
Note: (p) is maximal, V(p) = {(p)}, and (0) is generic since V((0)) = SpecZ as (0) C (p) for all p.
4. For A = k[z],

Speck[z] = {(x —a) :a € k} U{(0)} <> A™ U (generic point).

Note: 0 is generic as V((0)) = Speck[z] as (0) C (x — a).
5. For A = k[z]/2?,

Specm A = Spec A = {(z)} = one point
O(Spec A) = A = k[x]/z?
As f=a+bx:SpecA =k, () »a=(f mod (z) e K((z)) = A/x = k).

So we have a two-dimensional space of functions (two parameters: a,b € k), even though when we
consider the values of the functions we only see one parameter worth of functions. So the ring of
functions O(Spec A) also remembers tangential information the tangent vector 8% , namely the

operator acting on functions as follows,

‘;r:U

% J::Of:b'

1«
2

closed” because V(m) = {m}.
i.e. its closure is everything.

3 More generally: a closed point m € Spec A corresponds to a k-alg hom A — k (with kernel m), which corresponds to
amap {point} = Speck — Spec A, and the same holds if we replace k = k[x]/z. Whereas a map Spec k[z]/2® — Spec A
corresponds to a k-alg hom A — k[x]/2® which defines a closed point together with a “tangent vector”.
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Why is this a reasonable definition? The “ringed space” Spec A is not the same as Spec k[z]/z: it
remembers that it arose as a deformation of Spec B = {two points o, 8 € A} as o, 3 — 0 where

B = kal/(x — a)(z — B) = k& k

where «, 8 € k are non-zero distinct deformation parameters, and the second isomorphisnﬂ is eval-
uation at «,  respectively. So f = a + bz — (a + ba) & (a + bf), so we can independently pick the
two values of f at the two points {«, 5} = Specm B, giving a two-dimensional family of functions.

The derivative 0, f|z—0 = b = lim %}2(3) as we let a, 8 converge to 0.

Exercise. An affine variety X C A" is irreducible if and only if Speck[X]| has a generic point.
Exercise. Knowing the value of f € A at a generic point determines the value of f at all points.
Example. f € Z, then f((0)) = { € K((0)) = Q determines f((p)) € K((p)) = Z/p (reduce mod p).

15.3. MORPHISMS BETWEEN Specs

Apart from the motivation coming from deformation theory, another convincing reason for prefer-
ring Spec A over Specm A, is that we get a category of affine schemes because we have morphisms:

Definition. The morphismsﬂ
Hom(Spec A, Spec B) = {¢" : Spec A — Spec B induced by ring homs ¢ : B — A}
where ©*(p) = 0~ Y(p) C A, for any prime ideal p C B.

Exercise. The preimage of a prime ideal under a ring hom is always prime.

Warning. This exercise fails for maximal ideals. Example. For the inclusion ¢ : Z — Q, ¢ 1(0) =
(0) C Z is not maximal even though (0) C Q is maximal. Similarly, for the inclusion ¢ : k[z] —
k(x) = Frack[z], ¢~1(0) = (0) is not maximal since (0) C ().

Remark. We did not notice this issue when dealing with affine varieties, which was the study of
Specm of f.g. reduced k-algs, because in that case morphisms exist between the Specm.
ExerciseEl More generally: for any f.g. k-algebras A, B, and ¢ : A — B a k-alg hom, prove that
Specm A + Specm B : * is well-defined, namely ¢*(m) = ¢~1(m) is always maximal.

15.4. LOCALISATION: RESTRICTING TO OPEN SETS

Remark. We already encountered localisation in Section so we will be brief.

Question: What are the functions on a basic open set?

Recall Dy = {p: f(p) # 0} C Spec A, so we should allow the function % on Dy. Thus we “define”

O(Dy) = Ay = localisation of A at f

which will ensure that Spec Ay = D;. When A is an integral domain,
Ap={sw €FracA:a € A,meN}.

Example. A'\ 0 = D, C Al, and we view Al \ 0 = V(zy — 1) C A? as an affine variety via
t < (t,t1). By definition, k[A!\ 0] = k[z,y]/(zy — 1) = k[x, 27| = k[z], is the localisation at .

Question: What are the functions on a general open set U C Spec A?

IThis is the Chinese Remainder Theorem. Explicitly: 1 = z:g + o5, so k[z]/(z — a)(z — B) = k[z]/(z — o) &

klz)/(z — B) via g = =2 g ® 2=2 g. Finally, k[z]/(z —7) = k via f = f(7).

2Categ0rically: Spec is a functor Rings — Top°? from the category of rings (commutative) to the opposite of the
category of topological spaces and continuous maps.

3Hints. k ¢ A/~ '(m) C B/m = some field. When k is algebraically closed, we know B/m 2 k, so we are done. For
general k, we already know ™' (m) is prime so A/~ !(m) is a domain. Finally use: (1) f.g. k-alg + field = algebraic/k
= finite field extension/k; and use (2) domain + algebraic/k = field extension of k.
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We know U = UDy is a union of basic open sets. LooselyEl the “functions” in O(U), called sections
sy, are defined as the family of functions sy € O(Dy) = Ay which agree on the overlaps

Remark. Not all open sets are basic open sets. For X = V(zw —yz) C A%, the union D,UD,, C X
is not basic and O(DyUD,,) does not arise as a localisation of k[X]. Indeed f = 7 = £ € O(DyUDy)
cannot be written as a fraction which is simultaneously defined on both Dy, D,,.

Question: What are the germs of functions?

Recall the germ of a function near a point a € X of a topological space, means a function U — k
defined on a neighbourhood U C X of a, and we identify two such functions U — k, U’ — k if they
agree on a smaller neighbourhood of a (so the germ is an equivalence class of functions). Write O,,
for the germs of functions at p € Spec A, this is called the stalk of O at p. It turns out thatEl

O, = A, = localisation of A at A\ p

i.e. we localise at all f ¢ p, by allowing 1 to be a function whenever f does not vanish at p. We

explained this in greater detail in Sec 0l When A is an integral domainEl

Ap={F €FracA:b¢ p(ie b(p) #0)} = H Aj C Frac A.
fép

Example. Let A = k[z,y]/(zy). The affine variety X = Specm(A) = V(zy) C A? consists of the
z-axis and y-axis. The z-axis is the vanishing locus of the prime ideal p = (y). The function f = x
does not vanish at g, since 7 # 0 € (k[z,y]/(zy))/p = k[z], so 2 € A, is a germ of a function
on Spec(A) defined near p. This should not be confused with germs of functions defined near the
closure V(p), i.e. germs of functions defined near the z-axis. Indeed, the germs of functions 0 and
y are different on any neighbourhoodﬁ of V(p). However, in the localisation A, the functions 0 and
y are identified, because zy = 0 forces 0 = L - zy = y. Also, % is not a well-defined function on all
of V(gp), as it is not defined at = 0, it is only defined on the open subset V(p) N Ds of V(p). So
functions in A, are defined near the generic point p of V(p) but need not extend to a function on
all of V(p).

The ring O, = A, is a local ring, meaning it has precisely one maximal ideal, namely
m, =A,-p C A

So Specm A, = one point, namely m,, which you should think of as “representing " because
Specm A, — Spec A maps the point to p.
Exercise. Show that, indeed, at the algebra level A, <— A maps m, <.

The value of f € A at p lives in the residue ﬁel(ﬂ of that local ring

flp) € Op/my = Ag/my = K(p).
Exercise. Prove that A,/m, = Frac A/p = K(p).
Example. Consider A = Z. Either p = (p) for prime p, or p = (0):

I Formally: O(U) = I.&HO(D‘f) is the inverse limit for Dy C U, taken over the restriction maps O(Dy/) < O(Dy)
for D} C Dy C U (these maps are the localisation maps A'f < Ay). This means precisely that for each basic open set
inside U we have a function, and these functions are compatible with each other under restrictions to overlaps.

2 Formally: O, = lim O(U) is the direct limit for open subsets U containing ¢, taken over the restriction maps
OU) = OU’) for U D U" 2 p. So we have sections sy € O(U) and we identify sections sy ~ sy whenever
sulw = sv|w for some open pe W CUNV.

3This requires care: § = § < ad = bc (the definition of Frac), so there may be many expressions for the same
element. In A, we want some expression to have a denominator which does not vanish at p. Example: p = (2) C A =Z,
then 2 € Ay C FracZ = Q since 3 ¢ (2), whereas 4 fails the condition 6 ¢ (2) even though it equals 2.

4such neighbourhoods contain all but finitely many points of the y-axis, so 0 # y as functions.

Sthe field obtained by quotienting a local ring by its unique maximal ideal.
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Op =Ty = {2 € Qi p [}, my=p-Zpy = {2 € Q: pla,p b}, and] K(p) = Opfm, = F, = Z/p.
Oy = Z(O) = FracZ = Q, my = (O) CQ, and K(O) = Oo/mo = Q.

15.5. SHEAVES

Given a topological space X, a sheaf S of rings on X means an associationﬂ
(open subset U C X) — (ring S(U)).

Elements of S(U) are called sections over U. We require that for all open U D V there is a
restriction, namely a ring homomorphism

SU)—S8(V), s+ sly

satisfying two obvious requirements: S(U) — S(U) is the identity map, and “restricting twice is the
same as restricting once”ﬁ We also require two local-to-global conditions:

(1). “Two sections equal if they equal locally” [

(2). “You can build global sections by defining local sections which agree on overlaps”ﬂ

Without the local-to-global conditions, it would be called a presheaf.
Given a sheaf (or presheaf) S on X, the stalk S, at p € X is the ring of germs of sections at pﬁ

EXAMPLES.
1. X = SpecA, and S(U) = O(U) as in Section For example, O(Dy) = Ay, and Dy D Dy,
determines the restriction which “localises further”,
A/ — Afg, % — (;ﬁzﬁ
2. Sheaf of continuous functions: S(U) = C(U, k) =(continuous functions U — k).
3. Sheaf of sections of a Inalﬂ n:E — B: take S(U) = sectionﬁs :U -7 YU) CE.
4. Skyscraper sheaf at p € X for the ring A: S(U)=Aifp e U, and S(U) =0if p ¢ U. Exercise:
show the stalks are S, = A and §; = 0 for q # p.

Non-example. The presheaf of constant functions (or constant presheaf): S(U) = A for open
U # 0, and S(0) = 0, is not a sheaf for A =7/2 and X = {p, q} with the discrete topology. Indeed,
take s|;1(p) = 0, s|(g3(g) = 1: these local sections do not globalise to a global constant function
s: X — A contradicting (2).

15.6. SHEAFIFICATION
One can always sheafify a presheaf P to obtain a sheaf S by artificially imposing local-to-global:

SWU)={s=(sp) € H Pp : Vp € Uthere is an open p € V C U and sy € P(V) with sy |, = s,}.
peU

Notice how we impose that locally all germs arise from restricting a local section. We now explain
this in more detail.

For any sheaf S on a topological space X, there is an obvious restriction S(U) — S, f +— fz to
stalks, for each x € U. Being a sheaf ensures the local-to-global property:

If f =g, at all z € U, then f =g € S(U)

Lia T ab™! mod p.

2Categ0rically: a presheaf is a functor Open$’ — Rings where the objects of Open y are the open sets and the only
morphisms allowed are inclusion maps; and a morphism of presheaves is a natural transformation of such functors.
For sheaves we impose the above local-to-global conditions for sections, but no extra condition on morphs.

3For U DV D W, S(U) = S(V) — S(W) agrees with S(U) — S(W).

iFor f,g € S(U), U = UU;, flu, = glu, foralli = f =g.

P U = UUi, si € S(Us), silu; = sjlu, € S(UiNU;) = there is some s € S(U) with s|y, = s; (and s is unique by (1)).

6A germ at p is an equivalence class of sections. It is determined by some section sy € S(U), for an open p € U.
We identify two sections sy ~ sy if sy|w = sy|w, for anopen pe W CUNV.

Tfor example, a vector bundle E over a manifold B.

8here “section” means it is compatible with the projection 7, so m(s(u)) = u. So at each u in the base, the section
s picks an element in the fibre s ! (u) over wu.
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because f; = g, means that f, g equal on a small neighbourhood of z. So f is completely determined
by the data (fz)zev. Not all data (f,).er arises in this way, the data has to be compatible: locally,
on some open V around any given point, the f, arise from restricting some F' € S(V). So S(U)
consists of compatible families (f;),cy and the restriction map for open V' C U extracts subfamilies:

S(U> — S(V)a (ftc):r:EU = (f:lt)a:EV-

So the sheafification of a pre-sheaf P is
S(U) = {compatible families of germs {s,},cy where s, € P, }.

This is a very useful trick, we will use it in Sections and [15.12

Exercise. Show that the sheafification of the pre-sheaf of constant k-valued functions on a topolog-
ical space X is the sheaf of locally constant functions (i.e. constant on each connected component).
Example. For X an affine variety, let P(U) = {functions f : U — k: f = { some g, h € k[X], with
h(u) # 0 for all p € U}. This is a presheaf, whose sheafification defines O(U), see Sec|10.2]

15.7. MORPHISMS OF SHEAVES

A morphism v : S — Sy of sheaves over X means an association
(open subset U C X) — (ring hom ¢y : §1(U) — S2(U))

which is compatible with restriction mapsE|

Exercise. Show that this induces a ring hom on stalks: ¥, : S1, — S2.

Exercise. ¢ : S = Sy is an isomorphism < it is an isomorphism on stalks (all 1, are isos).
Exercise. If ¢ : X — Y is a continuous map of topological spaces, and S is a sheaf on X, then v
induces a sheaf on Y called direct image sheaf v,S, defined by

(LS)(U) =S~ (V).

15.8. RINGED SPACES

A ringed space (X, S) is a topological space X together with a sheaf of rings, S.
Example. The affine scheme (Spec A, Q) is a ringed space.

A morphism of ringed spaces (X;,S51) — (X2,S2) means a continuous map f : X; — Xo
together with a morphism of sheaves over Xo,

f* : f*Sl < 82

so explicitly f*(U) maps S (f~1(U)) < Sa(U) for U C X5, and on stalks I 1 (S1)p < (S82) 5y
Example. p: A — B aring hom = f = ¢* : Spec A < Spec B and

1/]:]0*:014*)]0*03

so Yy 0a(U) = Op((¢*)~1(U)). Notice tspeca : A — B is just ¢, on basic open sets 1 is the
relevant localisation of ¢, and on stalks we get the localised ma;ﬂ Yorp + Apry — By, for p € Spec B.

A locally ringed space means we additionally require the stalks S, to be local rings, so they have
a unique maximal ideal m, C S,. A morphism of locally ringed spaces is additionally required to
preserve maximal ideals, i.e. f*:m, <= mgq, (but this need not be bijective).

Exampleﬁ Show that Spec A + Spec B is a morph of locally ringed spaces.

rorvcuc X, a commutative diagram relates 1y, ¥y with the restriction maps res¥, so: resy oy = by oresy.

2Explicitly: L ;f(<;,)) where a' € A\ ¢ (p) (so p(a’) € B\ p).

3You need to check that ¢*p - Ay+,, maps into g - By, via foo.
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15.9. SCHEMES

An affine scheme is a locally ringed space isomorphic to (Spec 4, Q) for some ring A.
A scheme (X, S) is a locally ringed space which is locally an affine scheme

We now describe the affine scheme X = Spec(A) as a locally ringed space (X, Ox) (Lemma [10.4]
will prove that the stalks Ox g, of the structure sheaf are local rings). By definition,

{ring homs ¢ : A — B} AL {morphisms ¢* : Spec(A) + Spec(B)}
where ¢*p = ¢ 1(p). One can check that a ring hom A — B induces a local ring hom on stalks
04, o+ o — Op,, (Equation ((10.2)).
We sketched one definition of the structure sheaf O = Ox on X = Spec(A) in Section We
now explain an equivalent definition using sheafification (Sec|15.6)). For U C X an open subset, O(U)

consists of compatible families of elements {f, € Og}oev. Recall Oy =2 A, is the localisation of A
at the prime ideal g, so we formally invert all elements in A \ p. So equivalently, these are functions

f:U— |_|Ap, o fo
el
Compatible means: for any q € U, there is a basic open set ¢ € Dy C U (so g ¢ q) and some

F e A; = O(Dy) such that the f, are the restrictions of ' (meaning, A, — A, F — f, for all
o € Dy). The restriction homs for open V' C U, are simply defined by taking subfamilies:

OU) = O(V), (fo)peu — (fo)pev-
The “value” f(p) € K(p) of f (Sec[15.1)) is the image of f,, via the natural map Oy, — O, /m, = K(p).
Exercise. After reading Section check that the above is consistent with the explicit definition
of Ox,Oxp for a quasi-projective variety X, carried out in Sections and

15.10. LOCALISATION REVISITED: affine varieties

For X an affine variety and o C k[X] a prime ideal, the stalk Oy , means “germs of functions on
Spec k[X| defined near ¢”, which we now explain. It suffices to consider basic neighbourhoods Dy,
for f € k[X] with f # 0 € k[X]/p. Then Ox , consists of pairs (D, F)) with f # 0 € k[X]/p, U
open, F' : U — k regular, and identifying (D¢, F') ~ (Dy,G) < F|p, = G|p, on an open D}, with
Dy Cc Dy Dy and h # 0 € k[X]/p. Algebraically this is the direct limit

Oxp = lim Ox(Dy) = lim k[X];

pED; fée
over all basic open neighbourhoods Dy of p. It is easy to verify algebraically that

hgk:[X]f = k[ X]p,

fEe
indeed we are formally inverting all elements that do not belong to . This is the analogue of Lemma
which showed Ox m, = k[X]n,, namely the case when g is a maximal ideal (corresponding to
a geometric point in X). Recall that analogously to , we get a field extension of k:

K(p) = Frac(4/p).
We think of the unique prime ideal (0) of this field as corresponding to the point p € Spec(A) = X:
the ring hom ¢ : A - A/p — K(gp) corresponds to the point-inclusion ¢* : Spec(K(p)) < Spec(A),
(0) = . In Section we used K(p) to define the “value” of “functions” f € A, by saying that

flp) =€ Alp = K(p).
Exercise. f(p) #0c K(p) & f¢ p < p <€ Dy.
Example. A =7, p € Z prime, K(p) = Z/p =F,. For f € A, f(p) = (f mod p) € F),.

Example. Consider X = (z-axis) U (y-axis), k[X]| = k[z,y]/(zy) and p = (y), so V(p) = (z-axis).
Then k[X], = k(x), indeed we invert everything outside of (y), we already saw that inverting x

1X = UU;, U; = Spec A; some rings A;, S|u, = O, (the structure sheaf for A,).
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gives k[X], = k[z,z7!], but now we also invert any polynomial in = so we get k(z) = Frac(k[z]).
One should not interpret “germs near p” as meaning “germs near V(p)”, since the functions y and
0 are not equal on any neighbourhood of V(p) = (z-axis). In particular, 11, is not well-defined on all
of V(p). The correct interpretation of k[X], is: rational functions defined on a non-empty (dense)
open subset of V().

Exercise. For X an irreducible affine variety, i.e. A = k[X] an integral domain, show that

= () ODy)= () kIX]s C Frac(k[X]) = k(X),
DyCU DyCU

using that the Dy are a basis for the topology, and that a function is regular iff it is locally regular.

When X is not irreducible, then we cannot define the fraction field of A = k[X]| in which to take the
above intersection (k[X]; and k[X], don’t live in a larger common ring where we can intersect). So
instead, algebraically, one has to take the inverse limit:

Ox(U)= lim Ox(Dy)= lim k[X];
DycU DjcU

taken over all restriction maps k[X]; — k[X], where D, C Dy C U. Explicitly, these are families of
functions Fy € k[X]; which are compatible in the sense that F¢|p, = Fy (where Fy|p, is the image
of Fy via the natural map k[X]; — k[X],). This definition makes sense also for any q.p.v. X.

Finally, the FACT from Section [10.1] implies a 1:1 correspondence

{irreducible subvarieties Y C X containing V(p)} LN {prime ideals of k[X],}.

15.11. WORKED EXAMPLE: THE SCHEME Spec Z|x]
Some basic algebra implies that

SpecZlz] = {(0)
U {
U {

} U A{(p):p€Z prime } U
(f) : f € Z]z] non-constant irreducible} U
(p, f) : p € Z prime, f € Z[x] irreducible mod p}

Consider the projection 7 : Spec Z[z] — SpecZ induced by the inclusion Z — Z|x].
Exercise. Explicitly 7(p) = (all constant polynomials in ).

Below is an imaginative geometric picturdﬂ of 7.

The base SpecZ has prime ideals (p) and (0). Since (0) is a generic point it is drawn by a squiggly
symbol to remind ourselves that (0) is dense in SpecZ. The fibre over (p) is 7~1((p)) = V((p)), i.e.
prime ideals in Z[x] which contain p, and 771((0)) consists of all other prime ideals, i.e. those which
do not contain a non-zero constant polynomial. The fibre 771((p)) contains the generic point (p),
and we draw it by a squiggly symbol because it is dense in V((p)). The point (0) € SpecZ[z] is
generic, because every ideal in Z[z]| contains 0, so we use a large squiggly symbol.

When looking for generators of an ideal in 771(p) (apart from p), we may reduce the polynomial
coefficients mod p. Example: for (5,2+j) € 771(5) we only need to consider the cases j = 0,1,...,4.

Lan adaptation of a famous picture by David Mumford, The Red Book of Varieties and Schemes.
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Exercise. 771(p) = V((p)) = SpecF,[z] are homeomorphic, where F, = Z/p.

By definition, (22 + 1) is dense (hence a generic point) in V((2? + 1)), so we draw it by a squiggly
symbol lying on the “curve” V((z2+1)). This “curve” contains the points (2, x+1), (5, z+2), (5, v+3),
etc., that is: we claim (2% + 1) is contained in those ideals.

Example. Z[z]/(5,x 4+ 2) = F5[x]/(x + 2) by first quotienting by (5). This iso is given by “reduce
mod 5”. Now 2 + 1 is divisible by (z + 2) mod 5, because —2 is a root of 22 + 1 mod 5. So
2?2 +1=0¢€Fs[z]/(z+2) 2 Z[x]/(5,2 +2), so (#2 + 1) C (5,2 + 2). The roots of 22 + 1 mod 5 are
precisely 2,3, which explains the points (5,2 + 2), (5,2 + 3) on the “curve” V((z? + 1)).

Remark. Notice the points on V((z? + 1)) encode the square roots of —1 over F,. A classical result
in number theory says that solutions exist < p =1 mod 4 or p = 2.

We want to prove the above description of Spec Z[x], using the fibre product machineryH
In Section [6.4] working with affine varieties over an algebraically closed field k, we explained that
the fibre of X — Y over a € Y is Specm of

k[X] @y K

where k = k[Y]/m, = Frack[Y]/m, = K(a), where m, is the maximal ideal corresponding to a.
When working with rings, and the map Spec A — Spec B induced by some ring hom A < B, the
scheme-theoretic fibre over p € Spec B is the Spec of the following ring:

AepK(p)

where the residue field K(p) at p is

[K(p) = Frac (B/p) = By/m, |

Remark. (Later in the course.) Prime ideals in the localisation B, are in 1:1 correspondence with
prime ideals of B contained in @, and p corresponds to the unique max ideal m, C B,,.
Exercise. After reading about localisation in Section prove Frac (B/p) = B, /m,,.

LOf course, Spec Z[z] is the union of the fibres of 7, explicitly: € SpecZ[z] lies in 7 (7(p)).
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The diagram for the fibre product is
Spec (A ®p K(p)) — Spec A
SpecK(p) Spec B

(one point (0)) —— (p)

In our case, 7 : Spec Z[x] — Spec Z, so

A = Za] B=1.
For p = (p): K((p)) = Frac (B/p) =T, A®pK((p) = Z[z] ®7 Fp = Fpx].
For p = (0): K((0)) = Frac (B/0) 2 Q AepK((0) =Z[z] @z Q = Q|x].
So the two diagrams for the fibre product are:
SpecFy,[x] —— Spec Z[z] Spec Q[z] — Spec Z[z]
Spec F, —— SpecZ SpecQ ——— Spec Z
(0) ——(p) (0) F——>(0)

Recall F,,[z] is a principal ideal domain, so SpecF,[z] = {(0)} U{(f) : f € Fp[x] irred}.
Recall Q[z] is a principal ideal domain, so Spec Q[z] = {(0)} U{(f) : f € Q[z] irred}.
Finally, recall Gauss’s lemma: a non-constant polynomial f € Z[z] is irreducible if and only if it
is irreducible in Q[z] and it is primitivd]in Z[X].
Combining these two calculations, we deduce the above description of Spec Z[x].

15.12. PROJ: the analogue of Spec for projective varieties
Recall we associated an affine scheme to a ring, which for k[zi,...,x,] recovers A". Can we
associate a scheme to an N-graded ring, which for k[xo, ..., z,] with grading by degree recovers P"?

Let A = ®p,>0A4m be a graded ring. The irrelevant ideal is A = @p,>0A4, (in analogy with
(20, ..., xy) C k[zo, ..., 2y] in Section[3.6). Then define

Proj(A) = {homogeneous prime ideals in A not containing the irrelevant ideal A4} ‘

with the Zariski topology: closed sets are V(I) = {p € Proj(A) : p D I} for all homogeneous ideals
I C A. The basic open sets are Dy = {p € Proj(A) : f ¢ p} for homogeneous f € A.

Example. For A = k[xq,...,x,], the maximal ideals in Proj A correspond to the (closed) points
{[a]} = Veassical(Ma) of P, where mg = (a;z; — ajx; : all4, j) (Sec[3.6). The full Proj A corresponds
geometrically to the collection of all the irreducible projective subvarieties V jassical(9) C P™ of P™.
Example. We will describe blow-ups in terms of Proj in Section

We define the structure sheaf O = Ox on X = Proj(A): for U C X an open subset, O(U)
consists of compatible families {f, € Oy}pev, equivalently functions

f:U—> |_| A(p), p’—>fp,
pel
where O, = A, is the homogeneous localisation which we defined in Section m Recall A,
consists of all fractions % of homogeneous elements of A of the same degree, whose denominator G
is not in g, equivalently G(p) # 0 € K(p) = Frac(A/gp). Compatibility is defined as before: locally,
on a basic neighbourhood D¢, there is a common function % € Aig) = O(Dg) whose restriction
gives the elements f,, for p € Dg (here A(g) is the homogeneous localisation at the multiplicative
set generated by a homogeneous element G of A, so we formally invert G).

1A polynomial is primitive if the g.c.d. of the coefficients is a unit.
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15.13. THE BLOW-UP AS A PROJ

The modern definition of blow-ups is via the Proj construction. Let R = k[z1,...,xy,]. For an
aff.var. Y C A" = Specm R, with defining ideal I = I"(Y), the blow-up of A" along Y (i.e.along the
ideal I) is

o0
ByA" = Proj (PI? =Proj(Re & *& )
d=0

where I° = R, so the homogeneous coordinate ring is S = Da>ol 4. The exceptional divisor is

oo
E =Proj @ I%/1""" =Proj(R/I & I/T* & I’/ ® ---)
d=0

which can be interpreted as follows: I/I? can be thoughlﬂ of as the vector space which is “normal”
to Y, and we want to take the projectivisation of this vector space. Compare P = P(A"*!): we
take the irrelevant ideal J = (xq,z1,...,2,) C k[xo,...,2,], then the k-vector space .J/J? can be
identified with A"*1, and to projectivise we take Proj ®4>¢ J¢/J4T!. Equivalently, this is the Proj
of the symmetric algebra Symp J/J? = k[xo, ..., zy).

Example. For Y = {0}, I = (z1,...,z,), we have a surjective hom

w - R{yh : 7yn] — 5= EBId/1d+17 Yi > T4

Then J = ker ¢ = (x;y; —x;y;) defines an aff.var. V(J) C A" x A™ which is how we originally defined
the blow-up ByA™ (after projectivising the second A" factor, i.e. V(J) C A™ x A" is the cone of
BoA™ C A" x P,

16. APPENDIX 1: Irreducible decompositions and primary ideals

This Appendix is non-examinable.
Recall, if X is an affine variety, then it has a decomposition into irreducible affine varieties

X=XiUXoU---UXpn (16.1)
which is unique up to reordering, providedﬂ we impose X; ¢ X; for all ¢ # j. This implies
I(X) =I(X1) NI(X2) N -+ NI(Xn) (16.2)

where P; = [(X;) C R = k[z1,...,zy,] are distinct prime ideals (in particular, radical).
Question. Can we recover (16.2)) by algebra methods? (then recover (16.1)) by taking V(-)).
The answer is yes, and the aim of this discussion is to explain the following:

LA tangent vector v € T,A™ normal to T,Y acts on functions by taking the directional derivative of f at p in the
direction v. In the normal space (the quotient of vector spaces T, X/T,Y), we view v as zero if v € T,Y. By only
allowing functions f € I (i.e. vanishing along Y') we ensure that v acts as zero if v € T,Y, since f does not vary in the
T,Y directions. Since differentiation only cares about first order terms, we only care about the quotient class f € I /I 2
(because d(I?) 5 d(X_ aib;) = 3 a;db; + > bida; = 0 along Y as the a;,b; € I vanish on Y). So the normal space is
the dual vector space (I/I%)* = (linear functionals v : I/I* — k). Example: Y = {p} (point) then I = m,, and the
normal space equals 7, X = (m,/m2)*.

2e.g. silly ways to make it non-unique are: take Xny41 =0 or Xn41 = {p} for some p € Xn.
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FACT. (LaskeIH-Noether Theorem) For any Noetherian ring A, and any ideal I C A,
I=LHn---NIn (163)

where I; are primary ideals (Definition .

The decomposition is called reduced if the P; = \/E are all distinct and the I; are irredundanﬂ
A reduced decomposition always exists, and the P; are unique up to reordering. The prime ideals P;
are called the associated primes of I, denoted

Ass(I) ={P,...,Pn}.
Moreover, viewing M = A/I as an A-module,
Ass(I) = {all annihilators Anny;(m) C A which are prime ideals of A}.
Recall Annyr(m) = {a € A:am =0¢€ M}, so for some non-unique a; € A,
Pj=Amy(@;) ={rcA:r-a;=0cM}={rcA:r-a; €1}

Definition 16.1 (Primary ideals). I C A is a primary ideal if all zero divisors of A/I are nilpotent.
Such an I is P-primary if VI = P. The decomposition (116.3)) is a primary decomposition of I.

Remarks. Being primary is weaker than being prime (in which case zero divisors of A/I are zero).
Exercise I primary = P = /1 is prime, in fact the smallest prime ideal containing I.

Examples of primary ideals.
1). The primary ideals of Z are (0) and (p™) for p prime, any m > 1. The (p") are (p)-primary.

(y) and are nilpotent since y? = 0. Notice (z,%)? C (z,y?) € (x,y), so primary ideals need not be

=

a power of a prime ideal. (Conversely, a power of a prime ideal need not be primary, although it is
true for powers of maximal ideals).

2). In k[z,y], I = (x,9?) is (z,y)-primary. Indeed the zero divisors of k[z,y]/I = k[y]/(y?) lie in

Exercise. Show the following are equivalent definitions for I to be primary:

e zero divisors of A/I are nilpotent

e Vf,gc A, if fgc Athen f € I or g € I or both f,g € V1.
e Vfge A if fg € Athen f €I or g €I for some m € N.
e Vf,ge A, if fge€ Athen f™ €I or g € I for some m € N.

Exercise. I,J both P-primary = I NJ is P-primary.

If I = NI; is a primary decomposition with P; = VI =/ ; = Pj, then we can replace I;, I; with
I;N1; since that is again P;-primary (by the last exercise). This way, one can always adjust a primary
decomposition so that it becomes reduced (see the statement of Lasker-Noether).

Examples of primary decompositions.

IThis is in fact also the famous chess player, Emanuel Lasker, world chess champion for 27 years.
2meaning no smaller subcollection of the I; gives I = NI;.
3This unfortunate notation seems to be standard. Allegedly, the Bourbaki group was thinking of “assassins”.
‘LEMMA. For any Noetherian ring A,
nilradical of A = nil(4) = {all nilpotent elements of A}
= intersection of the prime ideals of A

radicalof I = /I = {feA:fmel for some m}
= intersection of the prime ideals containing [
= preimage of nil(A/I) via the quotient hom A — A/I

Proof. For the first claim, suppose f € A is not nilpotent. Let P be an ideal that is maximal (for inclusion) amongst
ideals satisfying f™ ¢ P for all n > 1 (using A Noetherian). Then P is prime because: if zy € P with z,y ¢ P,
then (x) + P and (y) + P are larger than P, hence some f" € (z) + P, f™ € (y) + P, hence f*™ € (zy) + P C P,
contradiction. So nil(A) C N(prime ideals), and the converse is easy. The second claim follows by the correspondence
theorem: prime ideals in A/I correspond precisely to the prime ideals in A containing I. O
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1). A=2,1= (n), say n = pi*---pi is the factorization into distinct primes p;. Then I =
(pi*) N---N (piY) is the primary decomposition. So I; = (p;”) and P; = (pj) = AnnZ/(n)(]%).
2). I = (y?,zy) C k[z,y], here are several possible primary decompositions
I'=(y)n(zy)?® =Ny’ =Nty
In each case, P = \/(y) = (y) = Ann(x) and P, = /I = (z,y) = Ann(y).
3). A =Z[\/—-5] is an integral domain but not a UFD: unique factorization into irreducibles fails:

6=2-3=(1++v=5)(1—-+-5)

where you can check that 2, 3,1+ +/=5 are all irreducibles (but not primesEI) Notice that (14 +/—5)
is not primary: 2-3 =0 € A/(1 4+ +/—5) but the zero divisor 2 is not nilpotentEI Whereas (2), (3)
are primaryEI In this case, I = (6) = [1 NIy for I} = (2), Io = (3), andﬁ

Pr=+/(2) = (2,1 = V=5) = Anny (3 4+ 3v/-5)
P,=/(3) = (3, 11— \/—75) = AnnA/(G)(2 + 2\/?5)

The original goal of the Lasker-Noether theorem was to recover a “unique factorization” theorem in
such situations. Note: it is a unique factorization theorem for ideals, rather than elements.

Exercise.ﬁ A Noetherian = primary decompositions always exist.

The minimaﬂ elements of Ass(I) are called minimal prime ideals or isolated prime ideals in
I, the others are called embedded prime ideals in I. The V(P;) C V(I) are called associated
reduced components of V(I), and it is called an embedded component if V(P;) # V(I).

Geometrically, for X = V(I) and I € R = k[z1,...,zy], the minimal P; are the irreducible
components X; = V(F;) = V(I;), and the embedded P; are irreducible subvarieties contained inside
the irreducible components (if P; C P; then V(P;) D V(P)).

Example. I = (y*,zy) C k[z,y] then I = (y) N (z,y)? so Ass(I) = {(y), (z,y)}. So P1 = (y) is
minimal, and P» = (z,y) is embedded. Geometrically, V(I) = X1 = {(a,0) : a € k} = Al is already
irreducible, V(y) = V(I) is an associated component, the origin V(z,y) = {(0,0)} € V(I) is an
embedded component. Notice Xy = {(0,0)} does not arise in the irreducible decomposition
since Xo C X1, and in we get [(X) = (y) = P; because we decomposed I(X) = +/T not I.

GEOMETRIC MOTIVATION.

As you can see from the last example, primary decomposition is not very interesting in classical
algebraic geometry (i.e. reduced k-algebras). It becomes important in modern algebraic geometry,
when you consider the ring of “functions” O(Spec(A4)) = A (Section [15.1)).

Examples.

1). I = k[2?%,y] and A = k[x,y]/I. Then I is P-primary, where P = (x,y) corresponds to the origin
(0,0) € A2, What do the functions A on Spec(A) mean geometrically?
Write f = ag + aio + ao1y + asox? + a117y + agey? + higher € k[x, 7). Reducing modulo I gives

?:ao—l-aloxGA.

1e.g. 14 /=5 are zero divisors in A/(2).

Zbrute force: 2™ = (a4 by/=5)(1 + v/—5) = (a — 5b) + (a + b)y/—5 forces b = —a and 2™ = 6a, impossible.

3e.g. A/(2) has a zero divisor 1 + /=5, but it is nilpotent (1 +/—5)> = —4+2v/—5 =0 € A/(2).

4by Lasker-Noether, we just need to verify that those annihilators are prime. This holds as both quotients are
integral domains: Z/3 =2 A/(2,1 — v/=5) via 2 — /=5, and Z/3 = A/(3,1 — \/=5) via 2 > 2.

SHints: first show that every ideal is an intersection of indecomposable ideals (I C A is indecomposable if
I = JNK implies I = J or I = K). Do this by considering a maximal element amongst indecomposable ideals
(that a maximal element exists uses that A is Noetherian). Then show that for Noetherian A, indecomposable implies
primary. For this notice that I C A is indecomposable/primary iff 0 C A/ is indecomposable/primary, so you reduce
to studying the case: fg =0 and Ann(g) C Ann(g?) C --- C Ann(¢g™) C --- (again now use that A is Noetherian).

6minimal with respect to inclusion. One can show that these are in fact minimal amongst all prime ideals containing
I, and all such minimal prime ideals arise in the Ass([).
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The “values” of f at prime ideals p € Spec(A) onl “see” ag. But the abstract function f € A
also remembers the partial derivative aig = 0 f[(0,0)- So Spec(A) should be thought of as a point
(0,0) € A? together with the tangent vector d, in the horizontal z-direction.

2). For I = (z,9)* = (2%, 2y,9?), f € A = k[z,y]/I remembers 9, f and 9, f at zero (namely a9, ao1)
and thus by linearity it remembers all first order directional derivatives. Thus Spec(A) should be
thought of as the origin (0,0) € A? together with a first order infinitesimal neighbourhood of 0.
(Similarly, Spec(A) for I = (x,y)" is an (n — 1)-th order infinitesimal neighbourhood of zero: the
ring of functions remembers the Taylor expansion of f up to order n — 1).

3). I = (2?) C k[x,y] corresponds to the y-axis in A2 together with a first order infinitesimal
neighbourhood of the y-axis. It remembers all coefficients ag,,, a1, of f, all m > 0, so it remembers
all values of f and 0, f at any point on the y-axis.

4). The primary decomposition I = (2%, xy) = (z) N (z,y)? corresponds to the y-axis in A? together
with a first-order neighbourhood of the origin. The fact that I = (z) N (22, y) is another primary
decomposition reflects the geometric fact that if a “function” f € A = k[z,y]/I remembers all the
values on the y-axis, then it automatically remembers all the values of J, f along the y-axis, so the
only additional information coming from the first-order neighbourhood of the origin is the horizontal
derivative 9, f|(,0) (compare the discussion of (z2,y) in 1) above).

The remainder of this Section is less important (and non-examinable).

We explain below the last piece of the proof of the Lasker-Noether theorem: why Ass(A/I) are the
prime annihilators of the A-module M = A/I.

Lemma 16.2. If J is a P-primary ideal for I, then P = /J = \/Anny (@) for any a € A\ J.

Proof. If ra € J then, since J is primary, either r™ € .J (so r € v/J = P) or a € J (false, a € A\ J).
Thus Ann(a) C P. Conversely, if r € P then some r™ € J, so r™ € Ann(a), so r € \/Ann(a). O

Exercise. Ifa € A\ P then Anny(a) = J. Ifa € J then Anny(a) = A.
Exercise. Show that /IJ =INJ =+IN+J. Hence it follows from (16.3)) that:

\ﬁzplﬂpgﬂ“-ﬂpj\].

Now, for I = NI;, notice that: Annp/(a) = () Anng/ny, (@) = () Anny,g, (@) so by the two exercises,

VA @) = (VA @) = () P
J

agl;
Exercise. Let A be a ring, I; C A ideals, P C A a prime ideal. Then:
If P =nNJ; then P = J; for some j. If P > NJ; then P D J; for some j.

By the exercise, it follows that if \/Anny,(@) is prime, then it equals some P;. This is the converse
of Lemma [16.2] It also follows by the last two exercises that any prime ideal of A containing I must
contain a minimal prime ideal: P D> I = NI; then P = VP D Ny/1Ij =NP; so P D P;.

Lemma 16.3. A ma:cimaﬁ element of the collection {Anny (@) :a # 0 € M} is a prime ideal in A.

Proof. Notice that @ # 0 ensures that 1 ¢ Annys(a) C A are proper ideals. Suppose P = Ann(a) is
maximal amongst annihilators. If zy € P and y ¢ P, then zya =0 € M, ya # 0. So P C Ann(ya)
must be an equality, by maximality. But € Ann(ya), so z € P. ]

Lexplicitly: f(p) = (f mod p) = ao € K(p) = Frac(A/p) since 2> € I C g implies z € p, because g is prime.
2under inclusion.
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For A Noetherian, the Lemma implied]| that

U P; = {all zero divisors of A/I}.
PjeAss(T)

Lemma 16.4. For the A-module M = A/,
(P = Annps(m) is prime, for some m € M) <= (M contains a submodule N isomorphic to A/P)
for example N = Am C M. Moreover, P = Annys(n) for anyn € N.

Proof. The A-module hom A — Am, 1 — m by definition has kernel P, so A/P = Am as A-mods.
As P is prime, A/P has no zero divisors so an = 0 € Am forces a € P, so Annys(n) = P. Conversely
an iso A/P = N C M is a surjective hom ¢ : A — N, 1+ m with P = ker ¢ = Anny;(m). O

Lemma 16.5.
1). I is P-primary < Ass(I) = {P}.
2). If A is Noetherian, and I is P-primary, then P = Anny,;(8) for some 3 € A/I.

Proof. (1) follows by definition: I = I is a primary decomposition. Lemma implies (2). O
Lemma. For A Noetherian, let M = A/I,

Ass(I) = {all annhiliators Annps(@) which are prime ideals in A}
Remark. Notice we don’t need to take the radicals of the annihilators.

Proof. Consider a reduced primary decomposition I = NI, so P; = \/I? are the elements in Ass(7).
Consider the injective homﬂ
p: M=A/T—PA/I

By Lemmal16.4 applied to I;, A/P = N C A/I;. Notice that p(M)NN # 0 because by irredundancy
there is some m € Njxl; \ I;, so p(m) is only non-vanishing in the A/I; summand. Pick any such
m € o (N \ {0}), then ¢ defines an iso of A-mods A/I D Am = Ap(m) = N C A/I; (by
Lemma N = Agp(m)). So A/I also contains an A-submod iso to A/P, so by Lemma [16.4]
P = Annys(m). O

17. APPENDIX 2: Differential methods in algebraic geometry

This Appendix is non-examinable.
THE TANGENT SPACE IN DIFFERENTIAL GEOMETRY

In physics, we think of a tangent vector to a smooth manifold M (e.g. a smooth surface) at a point
p € M as the velocity vector /(0) of a smooth curve v : (—g,e) — M passing through v(0) = p.
Mathematically, we define the tangent space T, M as the collection of all equivalence classes [y] of
smooth curves through v(0) = p, identifying two curves if in local coordinates they have the same
velocity 7/(0). The Taylor expansiorﬂ of v at ¢ = 0 in local coordinates is

v(t) = p+ tv + (t*-terms and higher) (17.1)

so 7(0) = p, 7/(0) = v, and v € R™ is the tangent vector in local coordinates.
Notice: reducing modulo #? we get v(t) = p + tv € R[t]/t?, and this determines the pair (p,v).

The curve v also defines a differential operator: for a smooth function f : M — R, v “operates”
on f by telling us the rate of change of f along v at p:

Fro o FO®) = Dyf -+/(0) = Dpf v ER.

Hfra=0¢ A/I, then the maximal annihilator containing Ann(a@) will be an associated prime ideal containing r.
Conversely, if r € UP;, then r™ € I; for some j, m, so pick a € Njx;I; \ I; (using irredundancy) then r™a =0 ¢€ A/I
shows that r is a zero divisor of A/I.

2The quotient map A — @A/I; is surjective and has kernel NI; = I.

3Not all smooth functions are equal to their Taylor series (e.g. e~1/%% has zero Taylor series at « = 0). This will
not be an issue for us since we only care about the best linear approximation.
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So we can also define T),M as the vector space of derivations at p, meaning R-linear maps L :
C>®(M) — R acting on smooth functions and satisfying the Leibniz rule:

L(fg) = L(f) - 9(p) + f(p) - L(g)- (17.2)
The ~ in ([17.1]) corresponds to the operator
L(f) = Dpf v = (0 (p),0) = 3 00 ()
so the inner product between v = ~/(0) and the vector (axl fooii)0p, f )|x:p of partial derivatives.

Example. For M = R", ~(t) = (¢,0,...,0) corresponds to the standard basis vector v = e; =
(1,0,...,0) and it operates by f = D,f -e; = gj so we think of v as the operator d,,.
Consider the ideal of smooth functions vanishing at p:

my, =1I(p) = {f € C*(M) : f(p) = 0}
Then consider the above linear map L : m, — R restricted to m,. Notice that L(mg) = 0 by Leibniz
(17.2), since f, g vanish at p. Thus we get an R-linear map:

L:m,/m2 —R. (17.3)

Conversely, given such a linear map L can we recover the derivation L? For f € C*(M), write
f=1w)+(f—fp) eRDm,. (17.4)
A derivation L always vanishes on constant functions: L(1) = L(1-1)=L(1)-1+1- L(1) = 2L(1),

so L(1) = 0, so by linearity L(R) = 0. So given (17.3), we define L via L(f) = L(f — f(p))- Is L a
derivation? Abbreviating f(p) = fp, 9(p) = gp, and using that L vanishes on (f — f,)- (g —gp) €m

L(fg) = £(fg fo9p)
= £((f fp) - 9p+ fp - (9 9p) + (f = 1p) - (9= 9p)) (17.5)
= L(f - fp) 9p+ fp- (9 gp)
= L(f)-gp+ fp- L(g).

Example. For M = R"™, p = 0, then mp/mf, >~ R7z1 + --- + RT, (as a vector space), and knowing
what L does on each Z; determines L. Indeed L = 3 v;0,, corresponds to L(7;) = v;.
So we can define T, M as the vector space of linear functionals (17.3)):

TyM = (mp,/m2)*.
Suppose we Taylor expand f € C*°(M) at p in local coordinates,
[=Ffp)+ Zaz xi —pi) + Zam z; — p;)(xj — p;) + (higher order (x; — p;)).
where a; = 0y, f|z=p € R. Composing with - and dropping t? terms:

fon(t) = flp)+ Zaivit € R[t]/t*. (17.6)

We recover p,v by taking f = z;: f oy = p; +v;it € R[t]/t?. So each v defines an R-algebra hom
C>(M) — R[t]/t?, f — f o~ and such a hom ¢ determines p,v via p(x;) = p; + vit. Thusﬂ

o(f) = ¢ [fp) + Xai(w; —pi) +---] = f(p) + ZaiL(x; — pi) t. (17.7)
So L, L, ¢ completely determined each other. So via vt = p(x; — p;) we get:
T,M ={p € HomR_alg(C’oo(M),R[t]/t2) : (p(x;) mod t) = p; € R[t]/t}.

Suppose now that the manifold is already embedded in Euclidean space, so M C R™ (e.g. the unit
sphere S? C R3), then we can think of T,M as sitting inside R™ as follows.

Suppose P : R™ < M C R™ is a local parametrization of M, with P(pg) = p.
Example. Spherical coordinates (6, ¢) € R? give P(6, ) = (sin f cos ¢, sin @ sin ¢, cos §) € S? C R3.

IR-algebra homs send 1 to 1, s0 C* DR -1 — R-1 C R[t]/t? is the identity map.
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A local curve y(t) = pp + vot + - - - € R™ then gives rise to a curve Po~y(t) =p+vt+--- € R™
By the chain rule, v = 04— P oy = Dp,P-vp. So local tangent vectors vg € R = T,,,R™ correspond
to vectors D), P - v € R" sitting inside R". So

TpM = Image(D,,P) = D,,P - R™ C R".
This is a vector subspace of R”. Finally, if M is locally defined by the vanishing of functions
M =V(Fy,...,Fy) locally near p

(e.g. S? C R3 is defined by F = X2+ Y2+ Z%2 — 1 = 0), then for any curve vy C M C R", all
F;(v(t)) = 0. Differentiating via the chain rule: all D,F; -+'(0) = 0. Equivalently:

7' (0) = v € ker DpFy N -+~ Nker D, Fy. (17.8)

Conversely, a vy satisfying is a curve ~(t) on which each Fj vanishes to second order or higher.
So T, M can be identified with the vector subspace ker D, F1N---Nker D, Fy C R™. The affine plane
p+ T,M C R" is the plane which best approximates M C R"™ at p and it is the plane which we
usually visualise in pictures as the tangent space.

Since v and £(t) = p + tv are equal modulo #2, i.e. equivalent curves in R",

p+T,M = U{lines C:L(t) =p+tv e R", each Fjo{ vanishes to order > 2 at t =0} C R".

These ¢ are not curves in M usually, they are curves in R"™. So we are describing T),M as a vector
subspace of T, R" by deciding which tangent vectors of R™ are also tangent to M. The above describes
p+T,M as the union of straight lines which “touch” M at p (meaning, to order at least two, indeed
tangent lines arise as limits of secant lines which intersect M at least twice near p).

One sometimes abbreviates by d,, f the linear part of the Taylor expansion of f at p, so

dpf = Y00, (D) - (25 — p2). (17.9)
In this notation, the affine plane p + T, M C R™ can be described succinctly as:
p+T,M =V(d,Fi,...,d,Fn) CR".
THE TANGENT SPACE IN ALGEBRAIC GEOMETRY

For X an affine variety, recall the stalk Ox, = k[X]y,) consists of germs of regular functions at p,
and this is a local ring whose unique maximal ideal is:
my, =1(p) - Oxp = {f : g,h € k[X], g(p) = 0, h(p) # 0}.

A k-algebra A is a k-vector space which is also a ring (commutative with 1), such that the
operations are compatible in the obvious way. So in particular, A contains a copy of k = k - 1.

A k-algebra homomorphism ¢ : A — B means: ¢ is k-linear and ¢ is a ring hom (in particular,
this requires ¢(1) = 1). So in particular ¢ is the identity map on k-1 — k- 1.

A k-derivation L € Dery(A, M) from a k-algebra A to an A-module M means a k-linear map
A — M satisfying the Leibniz rule L(ab) = L(a)b+ aL(b).
Theorem 17.1. Let X = V(F,...,Fy) C A". The following definitions are equivalentﬂ

(1) Writing £,(t) = p + tv for the straight line in A™ through p with velocity v,

p+1,X = U{EU 2 all Fj(4y(t)) vanish to order > 2 att=0} C A"

(2) Recall the notation dpf =Y 0y, f(p)-(xi—pi). Then p+T,X is an intersection of hyperplanes:

p+T,X =V(d,F,,... dyFy) C A"

(3) Recall the notation Dpf -v =" 0y, f(p) - vi. Then T,,X is the vector space

‘TPX:keerFlﬂ---ﬂkeerFN C k‘”‘

LClarification. What we called T,X in Section corresponds to p + Tp X in this Section (we now want Tp,X to
denote the vector space not the translated affine plane).
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(4) Let Jac(F):(gf;) be the Jacobian matriz of F=(Fy,...,Fx):A" =AY s0 X = F~1(0).

T, X = ker Jac(F)

(5) Viewing k as an Ox p-module via K(p) = Ox p/m, =k, § — %,

TpX = Derk((’)x,p, ]C)

(6) The cotangent space at p is the k-vector space mp/mf,. Its dual is

T,X = (my/my)*

(7) TpX = Homk_alg(OXJ,, k[t]/t2)

Remark. (0)) is the official definition. In scheme theory one replaces k by K(p) = Frac(Ox ,/p).

Proof. We show (1)< (2). Note F;j(£(0)) = Fj(p) = 0 as p € X. So (Fj(£(t)) = order t?) < (the

derivative at 0 vanishes) < (the linear part d,F} in the Taylor series vanishes at z = {(t) = p + tv).

We show (I)<@): O¢li=oFj(€(t)) = 0 < DyF; - £'(0) =0 < > 0,,F;(p) - vi = 0 < v € (ker D, Fj.

(alternatively (2)< (3] since dpFj(€(t)) = dpFj(p + tv) = 304, F;(p) - tvi).

That <:> is clear: the rows of the matrix Jac(F') are the linear functionals D, Fj.

Now & @: derivations L : Ox , — k vanish on k-1 and mf, by Leibniz . Just as ,
Oxp=kdm,

as k-vector spaces, and m, = (m,, /mg) &) mg. So, arguing as in , L is determined by a k-linear

L: mp/mg — k.
Now (6) < (7). Let ¢ : Ox,p — k[t]/t? be a k-alg hom ¢ : Ox , — k[t]/t*.
Claim. p(my,) C (t).
Sub-proof. Compose ¢ with the quotient map k[t]/t> — k[t]/t = k to get p : Ox, — k. Since
(1) = 1, ¥ is surjective, so Ox p/kerp = k. So kerg C Ox ) is a maximal ideal so it must equal
the unique maximal ideal m,. Finally $(m,) = 0 implies p(m,) C (¢t) O
So p(f — f(p)) € (t). We recover L via o(f — f(p)) = L(f — f(p))t. So:

p(f) = lf)+ (f = F®)] = f(p) + L(f — f(p)) t € K[t)/2>.
Now & ([7): the analogue of (L7.6)), for f € k[X], is that
F@) = flp+to) = f(p) + X0, f(p) - vit = (f) € K[t]/#*
defines a k-alg hom ¢ : k[X] — k[t]/t?. Indeed,
0(f9) = F()g(0) + 200 f(0) - 9(p) + (D) - D 9(p)) - vit = @(f) - p(g) modulo t*.

Conversely, given ¢, define v; via p(Z; — p;) = v;t. Then since F; = 0 € k[X] (by definition
k[X] = klz1,...,2,]//(F}1, ..., Fy)), we have ¢(Fj) = 0. So, using Fj(p) = 0 and t* = 0, we get

0= @(F}) = ¢ [F;(p) + Y0:,Fj(p) - (wi — pi) + (terms in I(p)*)] = Y0, F(p) - vit. O
Lemma 17.2. For X =V (J) C A", let T,=1(p) - k[X] Ck[X] then

my/my 2 T, /T3 = 1(p) / (I(p)* + J)

Proof. Apply the third isomorphism theoremﬂ using that J C I(p) since p € X. O

Theorem 17.3. The disjoint union T X of all tangent spaces T, X, as we vary p € X, is:

TX = Homy,_qy(k[X], k[t]/t*)| (i.e. morphisms Spec(k[t]/t*) — X)

lFor R-modules S ¢ M C B (“small,medium,big”), B/M = (B/S)/(M/S). Apply this to J C I(p)?> + J C I(p).
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Proof. Given a k-algebra hom ¢ : k[X] — k[t]/t?, compose with the quotient k[t]/t* — k[t]/t = k
to get a k-alg hom @ : k[X] — k. This is surjective (since 1 + 1) so the kernel is a maximal ideal
of k[X] (as k[X]/ker = k). But the maximal ideals of k[X] are precisely the I(p) for p € X. Thus

®(I(p)) = 0, so ¢(I(p)) C (). Localising ¢ at I(p), gives p : Ox,, — k[t]/t2. O
Exercise. For a k-alg A, the module of Kéahler differentials is the A-mod 2,4/, generated over
A by the symbols df for all f € A, modulo the relations making
dA—)QA/k,fl—)df
a k—derivationﬂ For any k-mod M, show there’s a natural iso
Derk(A’ M) = HOIIlA(QA/k,M), L (QA/k — M, df — L(f))

If A is also a local ring, with max ideal m and residue field A/m = k, showEI that there is an
isomorphism

m/m? = Qa®ak, fr—df

Denote Q2x p = Qo /x for affine X. Show thatﬁ

mp/mfo = Qxp oy, ks fr=df

Dery(Ox p, k) = Homoy , (Qx p, k), a%j’fczp — (dxj)” (17.10)

where k = Ox ,/m, = K(p) as Ox ,-mod, and (dz;)* is defined by (dz;)*(dz;) = da:i(%) = 0jj.
Remark. Globally, TX and Qx are sheaves (the tangent sheaf and the cotangent sheaf), and ((17.10))
says they are dual in the sense that:

TX = Der(Ox) = Homop (Qx,O0x).
The non-singular points of X are in fact those where €2x ,, is a free Ox ,-module, i.e. where Q2x is a
vector bundle.
Example. We describe T,A" = A",
Using ([I)): I(A™) = {0} and (0 o ¢)(¢) vanishes to infinite order for ¢(p) = p + tv, any v € A™.
Using ([2)), or ([@): I(A™) = {0} so ker D0 = ker 0 = A",
Using (B): Oanyp = {f =% : h(p) # 0} C k(x1,...,2n), s0 Derg(Opn p, k) 2 kL1 @ --- @k Ly, where

_ 0
Lj - Wj‘x:p

Using ([@): mp, = (21 — p1,....2n — n) - Oxp = {£ : g(p) = 0,h(p) # 0} C k(z1,...,2,). Thus
mP/mz% Zkel®---Dke, = k™ as vector spaces where the basis is e; = x; — p;. Thus
(mp/m2) = kLy @B kL, =k
using the dual basis L; = %\I:p cmy,/m2 — k.
]

Using (7): Homyaig(Ox p, k[t]/t?) 2 k1 @ -+ - &k, where ;(f) =p+ L;(f)t.
Using (17.10): Qx ), ®oy, k = kdz1 & - & kdzy.

Exercise. Describe T, X for the cuspidal cubic X = V(y? — 23) at p = 0. Show that by the Lemma,
mp/mg ~ (z,y) /(2% 2y, y?, y* — 23) 2 kT & kY, and Qx ®ox, k= kdT @ kdy.

Lso d is k-linear and d(fg) = f(dg) + (df)g.

2To show injectivity it may be easier to show surjectivity of the dual map Homy (Qayk, k) — Homy(m/m? k). If
a € A equals c+m € k@ m, consider L(a) = L(m) for L € (m/m?)*.

3For f + X — k think of df as the linear functional Dy f : T, X — Ty, )k = k. Such D, f satisfy relations, e.g. in
V(y? — z®), Dp(y* — 2%) = 0 implies 2ps dy — 3p? dz = 0. The - ®ox., k just means evaluate coefficient functions at p.
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