Exercise sheet 3*

(for the class in W8)

Exercise 1.1. Let $r \ge 2$. Prove that $\mathbb{A}^r_{\mathbb{C}} \setminus \{0\}$ is not affine.

Exercise 1.2 (noetherian induction for schemes). Let *T* be a noetherian scheme. Let $P(\bullet)$ be a property of closed subschemes of *T*. Suppose that P(empty scheme) holds and that for all closed subschemes *C* of *T*, the statement

if P(C') holds for all closed subschemes $C' \stackrel{\neq}{\hookrightarrow} C$ then P(C) holds

is verified. Then P(T) holds.

Exercise 1.3. Let X be an integral scheme and let $\phi : F \to G$ be a morphism of coherent locally free sheaves on X. Let $U \subseteq X$ be an affine open subscheme and suppose that $\phi(U) : F(U) \to G(U)$ is an injective map. Prove that ϕ is a monomorphism.

Exercise 1.4. Let R, J be rings and let $(f, f^{\#})$: Spec $R \to$ Spec J be a closed immersion. Show that the corresponding map of rings $\phi : J \to R$ is surjective. Let $I := \ker \phi$. Show that the quasi-coherent sheaf of ideals associated with $(f, f^{\#})$ is isomorphic to \tilde{I} . Show that the image of f is V(I).¹ Show that the composition of two closed immersions is a closed immersion.

Exercise 1.5 (optional). Let X be a noetherian scheme and let X_{red} be the reduced closed subscheme of X associated with the closed subset X of X. Show that X_{red} is affine if and only if X is affine.

^{*}For the course C2.6 Introduction to Schemes, Oxford, Hilary Term 2019

¹for $\tilde{\bullet}$ and $V(\bullet)$, see sections 2.1 and 2.3 in the notes.