Exercise sheet 4*

(for the last class, at the beginning of Trinity Term)

Exercise 1.1. Let $\phi : A \to B$ be a morphism of integral rings. Suppose that $\operatorname{Spec}(\phi) : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ has dense image. Show that ϕ is injective.

Exercise 1.2. Let X be a noetherian scheme and let L, M be line bundles on X.

(a) Suppose that L is ample. Show that for sufficiently large $n \ge 0$, the line bundle $L^{\otimes n} \otimes M$ is ample.

(b) Suppose that L and M are ample. Show that the line bundle $L \otimes M$ is ample.

Exercise 1.3. Let L be a line bundle on $\mathbb{P}^1_{\mathbb{C}}$. Let $\sigma \in \Gamma(\mathbb{P}^1_{\mathbb{C}}, L)$ and suppose that $\sigma \neq 0$. Let $Z(\sigma) \hookrightarrow \mathbb{P}^1_{\mathbb{C}}$ be the zero scheme associated with σ . Let $V_{\sigma} := \Gamma(Z(\sigma), \mathcal{O}_{Z(\sigma)})$ where V_{σ} is viewed as a \mathbb{C} -vector space. Prove that $\dim_{\mathbb{C}}(V_{\sigma})$ is independent of σ . It is called the **degree** of L.

Exercise 1.4. Let L, M be line bundles on $\mathbb{P}^1_{\mathbb{C}}$. Suppose that $\Gamma(\mathbb{P}^1_{\mathbb{C}}, L) \neq 0$ and that $\Gamma(\mathbb{P}^1_{\mathbb{C}}, M) \neq 0$. Suppose that L and M have the same degree. Prove that L is isomorphic to M as an $\mathcal{O}_{\mathbb{P}^1_{\mathbb{C}}}$ -module.

^{*}For the course C2.6 Introduction to Schemes, Oxford, Hilary Term 2019