Noncommutative Rings Problem Sheet 3

Throughout this sheet, A will denote a ring.

- 1. Let S be a left localisable subset of A, and let M be a left A-module. Prove that
 - (a) $t_S(M)$ is an A-submodule of M,
 - (b) $t_S(M/t_S(M)) = 0$,
 - (c) the map $M \to S^{-1}M$ given by $m \mapsto 1 \setminus m$ has kernel $t_S(M)$,
 - (d) $S^{-1}M = 0$ if and only if $M = t_S(M)$.
- 2. Let S be a multiplicatively closed subset of A, let I be a two-sided ideal in A and let \overline{S} be the image of S in $\overline{A} := A/I$. Prove that \overline{S} is a left Ore set in \overline{A} if S is a left Ore set in A. Is the converse true?
- 3. Let P be a two-sided ideal in A such that A/P is a domain. Suppose that $S := A \setminus P$ is left localisable. Prove that $S^{-1}P$ is the unique maximal left ideal of $S^{-1}A$.
- 4. Let R be a commutative domain, and suppose that $A = M_n(R)$ for some $n \ge 1$.
 - (a) Show $s \in A$ is regular if and only if $det(s) \neq 0$.
 - (b) Prove that regular elements form a left Ore set in A.
- 5. Let k be a field, let V be a countably-infinite dimensional k-vector space and let $A = \text{End}_k(V)$. Show that $S := \{s \in A : s \text{ is surjective}\}$ is multiplicatively closed, and that $S^{-1}A$ is the zero ring.
- 6. Show that a maximal two-sided ideal in A is left primitive, and a left primitive ideal in A is prime. Find an example of a ring A, and a prime ideal P in A, such that P is not left primitive.
- 7. (a) Let A = k[x, y, z] be the polynomial ring in three variables over a field k, and let I = (xy, yz, zx). Find min(I), and justify your answer.
 - (b) Suppose that A is a commutative Noetherian graded ring, and let I be a graded ideal in A. Prove that \sqrt{I} is also a graded ideal.
- 8. Suppose that A is commutative and Noetherian.
 - (a) If M is a finitely generated A-module and $I = \operatorname{Ann}_A(M)$, show that A/I is isomorphic to an A-submodule of M^n for some $n \in \mathbb{N}$.
 - (b) If $J \triangleleft A$ and d is a dimension function for A, prove that $d(A/J) = d(A/J^m)$ for all $m \ge 1$.
 - (c) Prove that a dimension function for A is completely determined by the values it takes on modules of the form A/P where $P \in \text{Spec}(A)$.