Noncommutative Rings

Problem Sheet 4

- 1. Let $A = \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z} \end{pmatrix}$ and let $P = \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & 0 \end{pmatrix}$. Show that P is a prime ideal in A. Also, show that $S := A \setminus P$ is multiplicatively closed but is not a right Ore set. Prove that S is a left localisable subset of A and that $S^{-1}A \cong \mathbb{Q}$.
- 2. Suppose that A is left Noetherian, and let S be a left localisable subset of A.
 - (a) Prove that $Q := S^{-1}A$ is also left Noetherian.
 - (b) Show that if I is a two-sided ideal in A then $Q \cdot I$ is also a two-sided ideal in Q.
 - (c) Suppose further that A is also right Noetherian, and that P is a prime ideal in A such that $P \cap S = \emptyset$. Show that $Q \cdot P$ is a prime ideal in Q.
- 3. Let A be a filtered ring and let M be a filtered left A-module.
 - (a) Show that $\widetilde{M}/t\widetilde{M}$ is isomorphic to gr M as a left gr A-module.
 - (b) Viewing M as a left \widetilde{A} -module via the isomorphism $\widetilde{A}/(t-1)\widetilde{A} \cong A$ from Lemma 4.20(2), show that $\widetilde{M}/(t-1)\widetilde{M}$ is isomorphic to M as a left \widetilde{A} -module.
- 4. (a) Verify that the commutator bracket on a ring A is a Poisson bracket.
 - (b) Let k be a field. Suppose that $\{,\}$ is a Poisson bracket on the polynomial ring $A = k[x_1, \ldots, x_n]$ such that $\{k, A\} = 0$. Prove that $\{,\}$ is completely determined by its values on the x_i 's.
 - (c) Let A be a filtered ring such that $\operatorname{gr} A$ is commutative, and let $\{,\}$ be the induced Poisson bracket on $\operatorname{gr} A$. Show that $\operatorname{gr} I$ is closed under $\{,\}$ for any left ideal I in A.
 - (d) Find an example of a filtered ring A and a graded ideal J in gr A such that gr A is commutative and $\{J,J\}\subseteq J$ but $\{\sqrt{J},\sqrt{J}\}\nsubseteq \sqrt{J}$.
- 5. Let B be a left Noetherian ring, and let $t \in B$ be a central regular element. By considering the ring $(t^{\mathbb{N}})^{-1}B$ or otherwise, show that for any left ideal I of B there is an integer n such that $I \cap t^n B \subseteq tI$.
- 6. Let $n \ge 1$, and let k be a field of characteristic zero. Show that there are no $n \times n$ matrices X, Y with entries in k that satisfy the relation YX XY = 1. What happens if the characteristic of k is positive?
- 7. Let R be a filtered ring, let M be a filtered left R-module with filtration $(M_i)_{i\in\mathbb{Z}}$ and let N be a submodule of M. Equip N with the subspace filtration $N_i := N \cap M_i$, and equip M/N with the quotient filtration $(M/N)_i := (M_i + N)/N$. Show that

- (a) there is an injective gr R-module homomorphism $\alpha:\operatorname{gr} N\to\operatorname{gr} M,$
- (b) there is a surjective gr R-module homomorphism $\beta:\operatorname{gr} M\to\operatorname{gr}(M/N),$
- (c) $\ker \beta = \operatorname{Im} \alpha$.
- 8. Let $A = A_n(k)$ be the Weyl algebra, and let r be an integer such that $n \le r \le 2n$. Give an example of a cyclic A-module M such that d(M) = r. Justify your answer.