C2.3 Representations of semisimple Lie algebras

Mathematical Institute, University of Oxford Hilary Term 2020

Problem Sheet 1

1. Let V, W be g-modules and suppose that V is finite dimensional. Exhibit an isomorphism

 $V^* \otimes_{\mathsf{k}} W \cong \operatorname{Hom}_{\mathsf{k}}(V, W)$

of $\mathfrak{g}\text{-modules}.$

2. Let V be a finite dimensional complex vector space and $\mathfrak{g} = \mathfrak{sl}(V)$.

- (i) Verify that $V \otimes V = S^2(V) \bigoplus \bigwedge^2 V$ is a decomposition as g-representations.
- (ii) Show that $S^2(V)$ and $\bigwedge^2 V$ are simple g-modules.
- (iii) Let $\mathfrak{g}' \subset \mathfrak{g}$ be an orthogonal (or symplectic) Lie algebra with respect to the nondegenerate bilinear symmetric (or skew-symmetric) form B. Then from (ii), $S^2(V)$ and $\bigwedge^2 V$ are \mathfrak{g}' -modules. Are they simple \mathfrak{g}' -modules?

3. Let g be a finite dimensional Lie algebra over a field k of characteristic 0.

- (i) Show that every derivation D of \mathfrak{g} extends to a unique derivation D' of $U(\mathfrak{g})$.
- (ii) If $D = \operatorname{ad}_{\mathfrak{g}}(x)$, show that D'(u) = xu ux for all $u \in U(\mathfrak{g})$.
- (iii) Notice that there exists a unique derivation D'' of $S(\mathfrak{g})$ which extends D. Show that $D'' \circ \phi = \phi \circ D'$, where $\phi : S(\mathfrak{g}) \to U(\mathfrak{g})$ is the symmetrizing isomorphism

$$\phi(x_1 x_2 \cdots x_m) = \frac{1}{m!} \sum_{\sigma \in S_m} x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(m)}.$$

- (iv) Recall that \mathfrak{g} acts on both $S(\mathfrak{g})$ and $U(\mathfrak{g})$ via 'extending' the adjoint action of \mathfrak{g} on itself to tensor products. Prove that ϕ is an isomorphism of \mathfrak{g} -modules.
- (v) Deduce that there is a linear isomorphism between the spaces of \mathfrak{g} -invariants $S(\mathfrak{g})^{\mathfrak{g}} \cong U(\mathfrak{g})^{\mathfrak{g}}$. Check that the latter space is in fact the centre of $U(\mathfrak{g})$.

4. Let $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ and recall the finite dimensional irreducible \mathfrak{g} -modules V(n) of dimension n + 1 constructed in the lectures. (Here, $n \ge 0$ is an integer.)

- (i) Verify that $V(n) \cong S^n(V(1))$ as g-modules, where S^n denotes the *n*-th symmetric power.
- (ii) Decompose the tensor product $V(2) \otimes V(3)$ into a direct sum of simple g-modules.
- (iii) For $n \ge m \ge 0$, prove that

$$V(n) \otimes V(m) \cong V(n+m) \oplus V(n+m-2) \oplus \cdots \oplus V(n-m).$$

(iv) Find the decomposition of $S^n(V(2))$ into a direct sum of irreducible representations.

[*Hint: use the eigenspace decomposition with respect to the action of* $h \in \mathfrak{g}$.]

5. Suppose the characteristic of the field k is p > 0, and let $\mathfrak{g} = \mathfrak{sl}(2, \mathsf{k})$ and let V(n) be the \mathfrak{g} -modules of dimension n + 1 as before. Prove that V(n) is irreducible as long as n < p, but reducible when n = p.

6 (*optional*). Suppose that we know that every \mathfrak{g} -module of length 2 is completely reducible. Prove that every \mathfrak{g} -module of finite length is completely reducible. (This is a general lemma that holds in every abelian category.)

[*Hint: use induction on the length of the module. If* V *is a reducible module of finite length, let* S *be a simple submodule of* V*, and consider* Q = V/S.]

 $^{^{1}}$ Warning: this linear isomorphism is not an isomorphism of algebras, even though it is a linear isomorphism and both algebras are commutative!