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Health Warning: Although I have set the problem sheet, these solutions
are still not ‘model’ solutions. Almost every year I discover something new
or worthwhile to say. Some of these new things are different approaches from
students which I find interesting, but some of them are also subtle gaps in
the current solutions. Really, you should use a Theorem Checker/Prover (e.g.
Isabelle) to prove these to get rid of all the subtle gaps.

Also, this is very long and a little rambling. You can write much shorter,
essentially perfect solutions.

Question 1

Some general points:

• The point of this question is to understand that the ∈-relation is ‘just’
a binary relation. One way to understand it is to draw directed graphs
(with the a← b standing for a ∈ b) and play around with it.

• Try to understand what a particular ∈-formula means in the given struc-
ture.

For example in a total order < the formula z ⊆ x ≡ ∀t (t ∈ z → t ∈ x)
translates to ∀t (t < z → t < x) which is equivalent to z ≤ x.

Similarly, the emptyset formula z = ∅ ≡ ∀t(t ∈ z ← False) corresponds to
∀t(t < z ← False), i.e. that z is minimal.

• If you try to understand quantified formulae ‘relativized’ to (Q, <) there
are two different ∈, the external one (x ∈ Q or more generally x ∈ C for
some class C, i.e. a formula with one free variable) and the internal one
∈Q which is <. Thus going back to φ(z, x) ≡ ∀t (t ∈ z → t ∈ x) we get
φ(Q,<)(z, x) ≡ ∀Qt (t < z → t < x) where ∀Qt quantifies over all rational
t and is usually written as ∀t ∈ Q.

• Different authors use different (but similar) axioms for ZFC. In the con-
text of all the other axioms these are (usually) equivalent, but changing
more than one axiom can lead to unexpected consequences.
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Extensionality : Suppose q, p ∈ Q with q 6= p, wlog q < p. Then there is
r ∈ (q, p) ∩Q and r < p and ¬(r < q). Hence Q |= Extensionality

Emptyset : If q ∈ Q then q − 1 ∈ Q and q − 1 < q. Thus ¬Q |= Emptyset.
Note that this implies that Q does not satisfy Separation either since Q is
non-empty.

Powerset: First note that r ⊆ q means ∀t (t < r → t < q), i.e. r ≤ q.
Here is a subtlety: if you take the weak Powerset axiom:

∀x∃z∀r [r ∈ z ← r ⊆ x]

then Q |= Powerset: Let q ∈ Q. Try any z ≥ q: if r ∈ Q such that r ⊆ q which
means r ≤ x then certainly r ≤ q + 1.

However if you take the strong Powerset axiom:

∀x∃z∀r [t ∈ z ↔ r ⊆ x]

then Q 6|= Powerset: take q = 0 and any z ∈ Q: if q < z then take r ∈ Q with
q < r < z (e.g. r = (q+ z)/2) and note that r 6≤ q but r < z. If z ≤ q then take
r = q and note that r ≤ q but r 6< z.

So in the absence of Separation (see below) the distinction becomes impor-
tant.

Infinity: As stated, ¬Q |= Infinity since there is no y ∈ Q such that ∀z z 6∈ y.
(Exercise: what is a successor in a linear order and when does a linear order
have a ‘non-empty’ ‘inductive’ point.) Also for every rational q and any n (in
the meta-theory) we have q − 1, . . . , q − n < q so q is not ‘finite’.

Separation: Let φ(r) ≡ r < r and fix q ∈ Q. We ask whether there is any
p ∈ Q such that ∀t [t < p↔ t < q ∧ φ(t)]? Suppose there was some such p and
consider t = min {p− 1, q − 1} ∈ Q. Then t < p but ¬φ(t) a contradiction.

Let φ(r, q) ≡ r < q. Fix q, s ∈ Q. We ask whether there is any p ∈ Q such
that ∀t [t < p↔ t < s ∧ φ(t, q)]. Clearly p = min {s, q} satisfies this.

Note that you cannot reference any particular element of Q without using
a parameter: φ(v) ≡ t = 0 is not a valid formula (since our language does not
contain any constants). You can of course use φ(v1, v2) ≡ v2 = v1 and then
consider the parameter a1 = 0 and x = 1 to form z = {t ∈ 1 : φ(0, t)} which is
shorthand for t < z ↔ (t < 1 ∧ t = 0) and it is clear that no such z exists (in
(Q, <)).

Question 2

By recursion on ω: we need to show that P (x) = x ∪ {{y, z} : y, z ∈ x} is a set
(see below) and use {〈x, P (x)〉 : x ∈ U} as our class function F to obtainMn for
n ∈ ω such that M0 = {∅} and Mn+1 = P (Mn). We finally use Replacement,
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Infinity (to get that ω is a set) and Union to define M =
⋃

{Mn : n ∈ ω} as
a set.

Note that P (∅) = ∅, so we have to start with {∅}. Of course, we could use
P̂ (x) = x ∪ {y ∈ P (x) : ∃t1, t2 y ⊆ {t1, t2}} and start with M0 = ∅.

First we show by induction on n that no element of Mn contains more than
two elements (straightforward) and deduce that no element of M contains more
than two elements. For transitivity assume x ∈ M . Find the least n such that
x ∈Mn. If n = 0 then x = ∅ and we are vacuously done. Otherwise n = m+ 1
for some m and there are y, z ∈ Mn with x = {y, z}. So now assume t ∈ x.
Then t = y or t = z. In either case t ∈Mn ⊆M as required.

Note that clearly Mn ⊆ Mn+1 by construction and hence by induction we
have n ≤ m implies Mn ⊆ Mm. Thus if x, y ∈ M then {x, y} ∈ M (for a more
formal proof see below).

For the axioms (key point: after getting your ‘candidate’ you have to check
that it belongs to M and that M believes the right stuff about it!).

• Extensionality follows from transitivity of M .

• Emptyset is trivial, but remember that you need to remark that being the
emptyset is absolute for M,U = {x : x = x} (because they are transitive)
so ∅U = ∅M .

• Pairing follows by construction: let x, y ∈ M and find n,m such that
x ∈Mn, y ∈Mm. Wlog n ≤ m and by the note above we then have x, y ∈
Mm so that z = {x, y} ∈Mm+1 ⊆M . Because z = {x, y} is absolute (for
transitive non-empty classes) andM is non-empty and transitive, we have

[z = {x, y}]M as required.

• For Separation, let φ(y; v1, . . . , vn) be a formula, a1, . . . , an ∈ M and
u ∈ M . Let n be least such that u ∈ Mn. If n = 0 then u = ∅, so let
z = ∅ ∈ M and M |= t ∈ z ↔ t ∈ u ∧ φ(t; a1, . . . , an) is vacuously true.
So assume n = m + 1 for some m. By leastness, there are x, y ∈ Mm

with u = {x, y}. Set z =
{

t ∈ u : φ(t; a1, . . . , an)
M
}

. Then z is one of ∅,
{x}, {y} or {x, y} all of which belong to M . Finally M |= t ∈ z ↔ t ∈
u ∧ φ(t; a1, . . . , an)

M as required.

• For Replacement assume that φ(x, y) is a formula, d ∈M and

∀x ∈ d∀y, y′ ∈M
[

φ(x, y)M ∧ φ(x, y′)M → y = y′
]

.

(This is equivalent to the relativization of M believes that φ codes a
function on d).

Define z =
{

y ∈M : ∃x ∈M(x ∈ s ∧ φ(x, y)M )
}

. Firstly, z is a set by
Separation. If we can show that z ∈M then we are done (because by con-
struction it is the ‘right’ set). So, let n be least such that s ∈Mn. If n = 0
then s = ∅ and hence z = ∅ and clearly M |= ∀t [t ∈ z ↔ t ∈ s ∧ . . . ].
Otherwise let n = m+1 and by leastness find u, v ∈Mm with s = {u, v}.
Then there are is at most one a ∈ M with φ(u, a)M and only one b ∈ M
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with φ(v, b)M . But all of ∅, {a} , {b} , {a, b} (depending on whether or not
a, b ∈M exist) belong to M . So z ∈M as required.

• We claim that Powerset fails in M : Note that ⊆ is absolute for M,U by
transitivity, so we don’t specify which one we mean.

Let x, y ∈M be distinct (e.g. x = ∅, y = 1 = {∅}) and set t = {x, y} ∈M .
Suppose that there is z ∈M such that ∀s ∈M [s ⊆ t→ s ∈ z] (this is the
‘weaker’ version of Powerset relativized to M noting that ⊆ is absolute
for M).

We then have: ∅ ∈M and of course ∅ ⊆ s; {x} , {y} ∈M and {x} , {y} ⊆ s;
{x, y} ∈ M and {x, y} ⊆ s. Thus ∅, {x} , {y} , {x, y} ∈ z and so z has at
least four distinct elements, contradicting z ∈M .

• Similarly, Union fails in M : take x, y, r, t ∈M distinct (it is not difficult
to write down four distinct elements of M) and form a = {x, y} , b =
{r, t} , c = {a, b} ∈ M . As in the argument for Powerset, if there is
z ∈ M with M |= z =

⋃

c then x, y, r, t ∈ c (because z =
⋃

c is absolute)
leading to a contradiction.

• Finally, Infinity: this is tricky since α+1 = α∪{α} might not make sense
(as Union does not hold). So we have to go back to the ∈-definitions of
these concepts, i.e.

z = α+ 1 ≡ α ∈ z ∧ [∀t ∈ α t ∈ z] ∧ ∀t ∈ z [t ∈ α ∨ t = α]

and α+ 1 ∈ w ≡ ∃z ∈ w z = α+ 1.

Now assume that Infinity holds as witnessed by w. Then ∅ ∈ w, and
M |= {∅} = ∅ + 1 and M |= {∅, {∅}} = (∅ + 1) + 1 noting that all these
are in M . Write 0, 1, 2 for these three respectively. Now we need to check
whether M |= ∃z ∈ w z = 2 + 1. As before we would require 0, 1, 2 ∈ z
contradicting z ∈M .

• Finally Choice: There are of course multiple versions of the Choice axiom
(which are equivalent under ZF). We will look at two of them and show
that M |= Choice.

Choice: For every set u of disjoint non-empty sets there is a transversal
v, i.e. there is v such that for every y ∈ u, v ∩ y is a singleton. Formally:

∀u [[∀y ∈ x y 6= ∅]→ ∃v [∀y ∈ u ∃t v ∩ y = {t}]]

Note that by transitivity ofM , we have (x∩y = ∅)M if and only if x∩y = ∅
and (x = ∅)M if and only if x = ∅.

So let u ∈ M . If u = ∅ then v = ∅ vacuously works. Otherwise, let
u = {x, y} (as above). By transitivity and the above we may assume
(the first line relativized to M is equivalent to it not relativized to M)
that u consists of pairwise disjoint non-empty sets, i.e. x 6= ∅, y 6= ∅ and
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x ∩ y = ∅. As x, y 6= ∅, there are a, b ∈ M with x = {a, b} and distinct
(from a, b but possibly not from each other) c, d ∈M with y = {c, d}. So
let v = {a, c} ∈ M and observe that this v works. (We have not used
choice here - finitely many ‘choices’ are covered by logic and induction!)

Well ordering principle: For every set u there is a well-ordering ≤ on
u, formally:

∀u∃R [R is a well-order on u]

where of course R is a well-order on u means

∀t ∈ R [t is a 2-tuple]∧ (1)

∀t ∈ u 〈t, t〉 6∈ R∧ (2)

∀t, r, s ∈ u [〈t, r〉 ∈ R ∧ 〈r, s〉 ∈ R→ 〈t, s〉 ∈ R]∧ (3)

∀y [y ⊆ u ∧ y 6= ∅ → ∃m ∈ y∀m′ ∈ y 〈m,m′〉 ∈ R] (4)

So assume that u ∈M . If u = ∅ or u = {x} for some x ∈M , then R = ∅ ∈
M is a well-order on u (check the condidtions). Otherwise u = {x, y} for
x, y ∈M with x 6= y and we define R = 〈x, y〉 = {{x} , {x, y}}. Note that
R ∈M (it is a pair of pairs of elements of M) and it is straightforward to
check that M |= R is a well-order on u.

Question 3

Let a be non-empty, transitive and let m be its ∈-minimal element (from Foun-
dation). If x ∈ m then by transitivity x ∈ a, contradicting minimality of m. So
m = ∅ as required.

Please avoid trying to assume that ∅ 6∈ a and defining a decreasing infinite
∈-chain (which would contradict Foundation). This will most likely require
(some form of) Choice and would be messier than necessary.

Question 4

Suppose x, y are sets. Write 0 = ∅ and 1 = {∅} = P (∅). Then 0, 1 ⊆ 1
so 0, 1 ∈ P (1) so by Separation {0, 1} is a set (in fact, P (1) = {0, 1} so
another application of Powerset can avoide Separation). By Replacement
(with φ(v1, v2, r, t) as

(r = 0 ∧ t = v1) ∨ (r = 1 ∧ t = v2)

and parameters v1 = x, v2 = y and d = {0, 1}) this gives that {x, y} is a set.
Note that we are using a very weak form of Replacement here.
Also note that it is not ‘clean’ to say something like: apply Replacement

with φ(r, t) ≡ (r = 0 ∧ t = x) ∨ (r = 1 ∧ t = y). This appears to define one
formula for every ‘instance’ of Pairing. Also, the above is not a formula of LST
(if you think of x, y as constants).
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Question 5

Clearly being well-ordered implies being totally ordered so (i) implies (ii). We
focus on (ii) implies (i): Suppose that α is transitive and totally ordered by ∈.
Let x ⊆ α and assume that x 6= ∅. Apply Foundation to find m ∈ x such that
m∩x = ∅. Since α is transitive, m ∈ α and by construction m is the ∈-minimal
element of x.

For the deduce, note that α is transitive and totally ordered by ∈ is a ∆0 for-
mula, so absolute for transitive non-empty classes A ⊆ B. As long as A,B satisfy
Foundation, the above show that A |= α is transitive and well-ordered by ∈
if and only if A |= α is transitive and totally-ordered by ∈ if and only if B |=
α is transitive and totally-ordered by ∈ if and only ifB |= α is transitive and well-ordered by ∈,
as required.

Question 6

The most difficult part is to find out what you are actually asked to do. We
want to show that: If

• A,B satisfy enough of ZF so that the Recursion Theorem on On holds
and

• a ∈ A and

• that F is a formula such that A |= F is a class function (we will write
FA(a) for the unique y ∈ A with A |= F (a, y)) and

• B |= F is a class function (similarly FB(b) is the unique y ∈ B such that
B |= F (a, b)) and

• F is absolute for A,B (i.e. for a ∈ A, FA(a) = FB(a)) and

• GA (resp. GB) are formulae such that

A |= G is a class function on OnA∧ (5)

G(0A) = a (6)

∧∀α ∈ OnA GA((α+ 1)A) = FA(GA(α)) (7)

∧∀γ ∈ LimA GA(γ) =
(

⋃

{GA(β) : β ∈ α}
A
)A

(8)

(resp. the above for B and GB) where all the superscript As mean that
we should interpret this formula in A

then
∀α ∈ OnA GA(α) = GB(α).

For the proof, we first note that since A,B are non-empty transitive classes
satisfying enough of ZF we have ∅A = ∅B , OnA ⊆ OnB and LimA ⊆ LimB
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(being an ordinal is absolute and being a successor ordinal is absolute, hence
being a limit ordinal is absolute).

So assume there is α ∈ OnA with GA(α) 6= GB(α). Since A satisfies enough
of ZF, there is a minimal such α, say α0.

Case α0 = 0A = 0B: Then GA(α0) = a = BB(α0), a contradiction.

Case α0 is a successor (in A): Being a successor is absolute for A,B, so α0

is successor in B. Let βA ∈ On
A be such that A |= α0 = βA + 1 and similarly

for βB . Since Pairing and Union are absolute, A,B |= βA + 1 = βB + 1 and
it follows that A,B |= βA = βB . We will simply write β for βA. Since β ∈ α0,
by minimality of α0 we must have

GA(α0) = FA(GA(β)) = FA(GB(β) = FB(GB(β)) = GB(α0)

(where the second = comes from the minimality of α0 and the third from abso-
luteness of F ), giving another contradiction.

Case α0 is a limit (in A): Again, α0 will be a limit in B. Now apply minimal-

ity of α0 to see that for β ∈ α0, GA(β) = GB(β), so that {GA(β) : β ∈ α}
A
=

{GB(β) : β ∈ α}
B
, so that by absoluteness of

⋃

, we get GA(α0) = GB(α0).

Remark: Note that we implicitly used that the Recursion Theorem holds
(both existence and uniqueness). We can try a more explicit proof which will
be messier:

We take ψF,a(α, g) and G from the Recursion Theorem. We then assert that
under the assumptions

∀z ∈ A
(

z ∈ GA ↔ z ∈ GB
)

where

z ∈ G ≡ z is an ordered pair ∧ ∃g ψF,a(π1(z), g) ∧ g(π1) = π2(z).

Maybe we should get rid of the abbreviations to see that π1(z), π2(z) are really
harmless:

z ∈ G ≡ ∃a, b ∈ z ∃α, y ∈ b

z = {a, b} ∧ a = {α} ∧ b = {α, y} (expressing that z = 〈α, y〉)

∧ ∃g ψF,a(α, g) ∧ ∃w ∈ g w = z (the last bit expressing that g(α) = y).

We drill down into the definition of ψF,a similarly.
We then relativize everything to A and B respectively (even the α+1 and

⋃

) and then apply that A,B satisfy enough of ZF and are transitive to get rid
of most of the relativizations (i.e. prove these subformulae are equivalent to
the ones without the relativization) except for ∃g ∈ A and ∃g ∈ B respectively
(α ∈ On is absolute by question 5 and everything else should be ∆0, I hope).
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So assume that there is z ∈ GA. Then z ∈ B (as A ⊆ B) and the g ∈ A
which witnesses z ∈ GA also belongs to B. But the stuff it satisfies is absolute,
so it also witnesses that z ∈ GB .

Conversely, assume that z ∈ GB ∩ A (note that we don’t actually need the
∩A in this case - see below). Take the α, y and the g from GB . Now note that
α ∈ On ⊆ A and α ∈ On is absolute so by the proof of the recursion theorem in
A there is ĝ ∈ A such that ψF,a(α, ĝ)

A. The latter is equivalent (absoluteness)
to ψF,a(α, ĝ)

B . By the proof of the recursion theorem in B, such a ĝ is unique
so that g = ĝ ∈ A and y = g(α) = ĝ(α) ∈ A. Then 〈α, y〉 ∈ GA and because
being the ordered pair of α and y is absolute, we have z = 〈α, y〉 ∈ GA.

Remark: in fact we have used OnA = OnB to show GA = GB instead of
merely GA = GB ∩A (we never used that z ∈ A but rather got this information
out of the proof.

Question 8

1. x ⊆ y ≡ ∀t ∈ x [t ∈ y] which is ∆0 so absolute.

2. z = {x1, . . . , xn} ≡ x1 ∈ z ∧ . . . xn ∈ z ∧ ∀t ∈ z [t = x1 ∨ · · · ∨ t = xn]
which is ∆0 so absolute.

3. z = 〈x1, . . . , xn〉: We define this by induction (in the meta-theory) as
follows:

z = 〈〉 ≡ z = ∅ ≡ ∀t ∈ z [t 6= t] (9)

z = 〈x1〉 ≡ z = {x1} (10)

z = 〈x2〉 ≡ z = {{x1} , {x1, x2}} (11)

z = 〈x1, x2, . . . , xn+1〉 ≡ z = 〈〈x1, . . . , xn〉 , xn+1〉 (12)

We could of course write out a formula for each n, but this would be
painful. However, all the ‘defined’ notions which we use are ∆0 so the
formula we would to write down (if we were forced to do so) are ∆0.

The alternative is to define the two-tuple, some totally ordered set of size
n (e.g. n ∈ ω) and then z = 〈x1, . . . , xn〉 by z = {〈0, x1〉 , . . . , 〈n− 1, xn〉}.

4. x is an n-tuple: The obvious definition ∃x1, . . . , xnz = 〈x1, . . . , xn〉 is not
∆0. But we can be slightly tricky as follows:

∃xn, tn−1 ∈ z∃xn−1, tn−2 ∈ tn−1 . . . ∃x2, t1 ∈ t2∃x1 ∈ t1 [z = 〈x1, . . . , xn〉]
(13)

and this is ∆0.

So (the important case), z is a two-tuple would be

∃x2, t1 ∈ z∃x1 ∈ t1 [z = 〈x1, x2〉] . (14)
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Similarly, if you define the tuple via functios, you can be crafty and write
down a ∆0 formula for a given n.

Note however that the formula ‘for some n, z is an n-tuple’is tricky: the
inductive definition does not work since the resulting formula would be an
infinite disjunction. The definition via functions does work ∃n ∈ ω . . . but
this might not mean what you think it does: there are ‘weird’ structures
satisfying enough of ZF in which elements of ω are not necessarily what
you think they should be.

5. z is an n-tuple and πi(z) = x: We write down the formula above but also
but in ∧xi = x and again we have absoluteness. Explicitly:

∃xn, tn−1 ∈ z∃xn−1, tn−2 ∈ tn−1 . . . ∃x2, t1 ∈ t2∃x1 ∈ t1 [z = 〈x1, . . . , xn〉 ∧ xi = x]
(15)

Or we could do this inductively, saying

z is a 0-tuple ≡ z = ∅ (16)

6. z = x∪ y: Either we define this as z =
⋃

{x, y} (for
⋃

see later - but this
only makes sense in the presence of Pairing) or explicitly as

∀t ∈ z [∃w ∈ x [t ∈ w] ∨ ∃w ∈ y [t ∈ w]] (17)

∧∀t ∈ x [t ∈ z] ∧ ∀t ∈ y [tinz] (18)

which is ∆0 so absolute.

7. z = x ∩ y: We could use separation, but it is less demanding to define it
as

∀t ∈ z [t ∈ x ∧ t ∈ y] (19)

∧∀t ∈ x [t ∈ y → tinz] (20)

which is again ∆0.

8. z =
⋃

x: Instead of the ‘obvious’∀t [t ∈ z ↔ ∃y ∈ x [t ∈ y]] which is not
∆0, we can use

∀t ∈ z∃y ∈ x [t ∈ y] (21)

∧∀y ∈ x∀t ∈ y [t ∈ z] (22)

which is ∆0.

9. z = x \ y:

∀t ∈ z [t ∈ x ∧ ¬ [t ∈ y]] (23)

∧∀t ∈ x [¬ [t ∈ y]→ t ∈ z] (24)

is ∆0.
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10. x is an n-ary relation on y1, . . . , yn (take all the yi equal to y):

∀t ∈ x∃x1 ∈ y1, . . . xn ∈ yn [t = 〈x1, . . . , xn〉] (25)

is ∆0.

11. x is a function:

∀t ∈ x [t is a 2-tuple] (26)

∧∀t1, t2 ∈ x [π1(t1) = π1(t2)→ t1 = t2] (27)

where π1(t1) = π1(t2) should of course be replaced by the appropriate
formula from above, namely

∃w ∈ t1∃u ∈ t2∃x1, x2 ∈ w∃y1, y2 ∈ u [t1 = 〈x1, x2〉 ∧ t2 = 〈y1, y2〉 ∧ x1 = y1]
(28)

and everything is ∆0

12. z = x× y:

∀t ∈ z∃x1 ∈ x∃y1 ∈ y [t = 〈x1, y1〉] (29)

∧∀x1 ∈ x∀y1 ∈ ∃t ∈ z [t = 〈x1, y1〉] (30)

is ∆0

13. x is a function and dom(x) = z:

x is a function (31)

∧∀t ∈ x π1(t) ∈ z (32)

∧∀w ∈ z∃t ∈ x π1(t) = w (33)

where π1(t) ∈ z should of course be replaced by an appropriate ∆0 formula.

14. x is a function and ran(x) = z: very similar to the previous one.

15. x is transitive:

∀y ∈ x∀t ∈ y [t ∈ x] (34)

is ∆0

16. x is an ordinal: This one is not absolute for transitive classes satisfying
only ZF−! See the lecture notes. However, assuming foundation, there is
an equivalent definition which is absolute.

17. x is a successor ordinal:

x ∈ On ∧ ∃y ∈ x [x = y ∪ {y}] (35)

and this is absolute provided being and ordinal is absolute.
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18. x is a limit ordinal: either x is an ordinal and not a successor ordinal or
x is an ordinal and ∀y ∈ x∃z ∈ x [z = y ∪ {y}]. Again, this is absolute
provided being an ordinal is absolute.

19. x = ω:

x is a limit ordinal ∧ x 6= ∅ (36)

∧∀y ∈ x [y is a successor ordinal ∨ y = ∅] (37)

which is absolute if being an ordinal is absolute.
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