Solutions to Sheet 1

Rolf Suabedissen

February 10, 2020

Health Warning: Although I have set the problem sheet, these solutions are still not 'model' solutions. Almost every year I discover something new or worthwhile to say. Some of these new things are different approaches from students which I find interesting, but some of them are also subtle gaps in the current solutions. Really, you should use a Theorem Checker/Prover (e.g. Isabelle) to prove these to get rid of all the subtle gaps.

Also, this is very long and a little rambling. You can write much shorter, essentially perfect solutions.

Question 1

Some general points:

- The point of this question is to understand that the \in-relation is 'just' a binary relation. One way to understand it is to draw directed graphs (with the $a \leftarrow b$ standing for $a \in b$) and play around with it.
- Try to understand what a particular \in-formula means in the given structure.
For example in a total order $<$ the formula $z \subseteq x \equiv \forall t(t \in z \rightarrow t \in x)$ translates to $\forall t(t<z \rightarrow t<x)$ which is equivalent to $z \leq x$.
Similarly, the emptyset formula $z=\emptyset \equiv \forall t(t \in z \leftarrow$ False) corresponds to $\forall t(t<z \leftarrow$ False $)$, i.e. that z is minimal.
- If you try to understand quantified formulae 'relativized' to $(\mathbb{Q},<)$ there are two different \in, the external one ($x \in \mathbb{Q}$ or more generally $x \in C$ for some class C, i.e. a formula with one free variable) and the internal one $\in^{\mathbb{Q}}$ which is $<$. Thus going back to $\phi(z, x) \equiv \forall t(t \in z \rightarrow t \in x)$ we get $\phi^{(\mathbb{Q},<)}(z, x) \equiv \forall_{\mathbb{Q}} t(t<z \rightarrow t<x)$ where $\forall_{\mathbb{Q}} t$ quantifies over all rational t and is usually written as $\forall t \in \mathbb{Q}$.
- Different authors use different (but similar) axioms for ZFC. In the context of all the other axioms these are (usually) equivalent, but changing more than one axiom can lead to unexpected consequences.

Extensionality : Suppose $q, p \in \mathbb{Q}$ with $q \neq p$, wlog $q<p$. Then there is $r \in(q, p) \cap \mathbb{Q}$ and $r<p$ and $\neg(r<q)$. Hence $\mathbb{Q} \models$ Extensionality

Emptyset : If $q \in \mathbb{Q}$ then $q-1 \in \mathbb{Q}$ and $q-1<q$. Thus $\neg \mathbb{Q} \vDash$ Emptyset. Note that this implies that \mathbb{Q} does not satisfy Separation either since \mathbb{Q} is non-empty.

Powerset: First note that $r \subseteq q$ means $\forall t(t<r \rightarrow t<q)$, i.e. $r \leq q$.
Here is a subtlety: if you take the weak Powerset axiom:

$$
\forall x \exists z \forall r \quad[r \in z \leftarrow r \subseteq x]
$$

then $\mathbb{Q} \models$ Powerset: Let $q \in \mathbb{Q}$. Try any $z \geq q$: if $r \in \mathbb{Q}$ such that $r \subseteq q$ which means $r \leq x$ then certainly $r \leq q+1$.

However if you take the strong Powerset axiom:

$$
\forall x \exists z \forall r \quad[t \in z \leftrightarrow r \subseteq x]
$$

then $\mathbb{Q} \not \vDash$ Powerset: take $q=0$ and any $z \in \mathbb{Q}$: if $q<z$ then take $r \in \mathbb{Q}$ with $q<r<z$ (e.g. $r=(q+z) / 2)$ and note that $r \not \leq q$ but $r<z$. If $z \leq q$ then take $r=q$ and note that $r \leq q$ but $r \nless z$.

So in the absence of Separation (see below) the distinction becomes important.

Infinity: As stated, $\neg \mathbb{Q} \models$ Infinity since there is no $y \in \mathbb{Q}$ such that $\forall z z \notin y$. (Exercise: what is a successor in a linear order and when does a linear order have a 'non-empty' 'inductive' point.) Also for every rational q and any n (in the meta-theory) we have $q-1, \ldots, q-n<q$ so q is not 'finite'.

Separation: Let $\phi(r) \equiv r<r$ and fix $q \in \mathbb{Q}$. We ask whether there is any $p \in \mathbb{Q}$ such that $\forall t[t<p \leftrightarrow t<q \wedge \phi(t)]$? Suppose there was some such p and consider $t=\min \{p-1, q-1\} \in \mathbb{Q}$. Then $t<p$ but $\neg \phi(t)$ a contradiction.

Let $\phi(r, q) \equiv r<q$. Fix $q, s \in \mathbb{Q}$. We ask whether there is any $p \in \mathbb{Q}$ such that $\forall t[t<p \leftrightarrow t<s \wedge \phi(t, q)]$. Clearly $p=\min \{s, q\}$ satisfies this.

Note that you cannot reference any particular element of \mathbb{Q} without using a parameter: $\phi(v) \equiv t=0$ is not a valid formula (since our language does not contain any constants). You can of course use $\phi\left(v_{1}, v_{2}\right) \equiv v_{2}=v_{1}$ and then consider the parameter $a_{1}=0$ and $x=1$ to form $z=\{t \in 1: \phi(0, t)\}$ which is shorthand for $t<z \leftrightarrow(t<1 \wedge t=0)$ and it is clear that no such z exists (in $(\mathbb{Q},<))$.

Question 2

By recursion on ω : we need to show that $P(x)=x \cup\{\{y, z\}: y, z \in x\}$ is a set (see below) and use $\{\langle x, P(x)\rangle: x \in U\}$ as our class function F to obtain M_{n} for $n \in \omega$ such that $M_{0}=\{\emptyset\}$ and $M_{n+1}=P\left(M_{n}\right)$. We finally use Replacement,

Infinity (to get that ω is a set) and Union to define $M=\bigcup\left\{M_{n}: n \in \omega\right\}$ as a set.

Note that $P(\emptyset)=\emptyset$, so we have to start with $\{\emptyset\}$. Of course, we could use $\hat{P}(x)=x \cup\left\{y \in \mathcal{P}(x): \exists t_{1}, t_{2} y \subseteq\left\{t_{1}, t_{2}\right\}\right\}$ and start with $M_{0}=\emptyset$.

First we show by induction on n that no element of M_{n} contains more than two elements (straightforward) and deduce that no element of M contains more than two elements. For transitivity assume $x \in M$. Find the least n such that $x \in M_{n}$. If $n=0$ then $x=\emptyset$ and we are vacuously done. Otherwise $n=m+1$ for some m and there are $y, z \in M_{n}$ with $x=\{y, z\}$. So now assume $t \in x$. Then $t=y$ or $t=z$. In either case $t \in M_{n} \subseteq M$ as required.

Note that clearly $M_{n} \subseteq M_{n+1}$ by construction and hence by induction we have $n \leq m$ implies $M_{n} \subseteq M_{m}$. Thus if $x, y \in M$ then $\{x, y\} \in M$ (for a more formal proof see below).

For the axioms (key point: after getting your 'candidate' you have to check that it belongs to M and that M believes the right stuff about it!).

- Extensionality follows from transitivity of M.
- Emptyset is trivial, but remember that you need to remark that being the emptyset is absolute for $M, U=\{x: x=x\}$ (because they are transitive) so $\emptyset^{U}=\emptyset^{M}$.
- Pairing follows by construction: let $x, y \in M$ and find n, m such that $x \in M_{n}, y \in M_{m}$. Wlog $n \leq m$ and by the note above we then have $x, y \in$ M_{m} so that $z=\{x, y\} \in M_{m+1} \subseteq M$. Because $z=\{x, y\}$ is absolute (for transitive non-empty classes) and M is non-empty and transitive, we have $[z=\{x, y\}]^{M}$ as required.
- For Separation, let $\phi\left(y ; v_{1}, \ldots, v_{n}\right)$ be a formula, $a_{1}, \ldots, a_{n} \in M$ and $u \in M$. Let n be least such that $u \in M_{n}$. If $n=0$ then $u=\emptyset$, so let $z=\emptyset \in M$ and $M \models t \in z \leftrightarrow t \in u \wedge \phi\left(t ; a_{1}, \ldots, a_{n}\right)$ is vacuously true. So assume $n=m+1$ for some m. By leastness, there are $x, y \in M_{m}$ with $u=\{x, y\}$. Set $z=\left\{t \in u: \phi\left(t ; a_{1}, \ldots, a_{n}\right)^{M}\right\}$. Then z is one of \emptyset, $\{x\},\{y\}$ or $\{x, y\}$ all of which belong to M. Finally $M \models t \in z \leftrightarrow t \in$ $u \wedge \phi\left(t ; a_{1}, \ldots, a_{n}\right)^{M}$ as required.
- For Replacement assume that $\phi(x, y)$ is a formula, $d \in M$ and

$$
\forall x \in d \forall y, y^{\prime} \in M\left[\phi(x, y)^{M} \wedge \phi\left(x, y^{\prime}\right)^{M} \rightarrow y=y^{\prime}\right] .
$$

(This is equivalent to the relativization of M believes that ϕ codes a function on d).
Define $z=\left\{y \in M: \exists x \in M\left(x \in s \wedge \phi(x, y)^{M}\right)\right\}$. Firstly, z is a set by Separation. If we can show that $z \in M$ then we are done (because by construction it is the 'right' set). So, let n be least such that $s \in M_{n}$. If $n=0$ then $s=\emptyset$ and hence $z=\emptyset$ and clearly $M \models \forall t[t \in z \leftrightarrow t \in s \wedge \ldots]$. Otherwise let $n=m+1$ and by leastness find $u, v \in M_{m}$ with $s=\{u, v\}$. Then there are is at most one $a \in M$ with $\phi(u, a)^{M}$ and only one $b \in M$
with $\phi(v, b)^{M}$. But all of $\emptyset,\{a\},\{b\},\{a, b\}$ (depending on whether or not $a, b \in M$ exist) belong to M. So $z \in M$ as required.

- We claim that Powerset fails in M : Note that \subseteq is absolute for M, U by transitivity, so we don't specify which one we mean.
Let $x, y \in M$ be distinct (e.g. $x=\emptyset, y=1=\{\emptyset\}$) and set $t=\{x, y\} \in M$. Suppose that there is $z \in M$ such that $\forall s \in M[s \subseteq t \rightarrow s \in z]$ (this is the 'weaker' version of Powerset relativized to M noting that \subseteq is absolute for M).
We then have: $\emptyset \in M$ and of course $\emptyset \subseteq s ;\{x\},\{y\} \in M$ and $\{x\},\{y\} \subseteq s$; $\{x, y\} \in M$ and $\{x, y\} \subseteq s$. Thus $\emptyset,\{x\},\{y\},\{x, y\} \in z$ and so z has at least four distinct elements, contradicting $z \in M$.
- Similarly, Union fails in M : take $x, y, r, t \in M$ distinct (it is not difficult to write down four distinct elements of M) and form $a=\{x, y\}, b=$ $\{r, t\}, c=\{a, b\} \in M$. As in the argument for Powerset, if there is $z \in M$ with $M \models z=\bigcup c$ then $x, y, r, t \in c$ (because $z=\bigcup c$ is absolute) leading to a contradiction.
- Finally, Infinity: this is tricky since $\alpha+1=\alpha \cup\{\alpha\}$ might not make sense (as Union does not hold). So we have to go back to the \in-definitions of these concepts, i.e.

$$
z=\alpha+1 \equiv \alpha \in z \wedge[\forall t \in \alpha t \in z] \wedge \forall t \in z[t \in \alpha \vee t=\alpha]
$$

and $\alpha+1 \in w \equiv \exists z \in w z=\alpha+1$.
Now assume that Infinity holds as witnessed by w. Then $\emptyset \in w$, and $M \models\{\emptyset\}=\emptyset+1$ and $M \models\{\emptyset,\{\emptyset\}\}=(\emptyset+1)+1$ noting that all these are in M. Write $0,1,2$ for these three respectively. Now we need to check whether $M \models \exists z \in w z=2+1$. As before we would require $0,1,2 \in z$ contradicting $z \in M$.

- Finally Choice: There are of course multiple versions of the Choice axiom (which are equivalent under ZF). We will look at two of them and show that $M \models$ Choice.

Choice: For every set u of disjoint non-empty sets there is a transversal v, i.e. there is v such that for every $y \in u, v \cap y$ is a singleton. Formally:

$$
\forall u[[\forall y \in x y \neq \emptyset] \rightarrow \exists v[\forall y \in u \exists t v \cap y=\{t\}]]
$$

Note that by transitivity of M, we have $(x \cap y=\emptyset)^{M}$ if and only if $x \cap y=\emptyset$ and $(x=\emptyset)^{M}$ if and only if $x=\emptyset$.
So let $u \in M$. If $u=\emptyset$ then $v=\emptyset$ vacuously works. Otherwise, let $u=\{x, y\}$ (as above). By transitivity and the above we may assume (the first line relativized to M is equivalent to it not relativized to M) that u consists of pairwise disjoint non-empty sets, i.e. $x \neq \emptyset, y \neq \emptyset$ and
$x \cap y=\emptyset$. As $x, y \neq \emptyset$, there are $a, b \in M$ with $x=\{a, b\}$ and distinct (from a, b but possibly not from each other) $c, d \in M$ with $y=\{c, d\}$. So let $v=\{a, c\} \in M$ and observe that this v works. (We have not used choice here - finitely many 'choices' are covered by logic and induction!)
Well ordering principle: For every set u there is a well-ordering \leq on u, formally:

$$
\forall u \exists R[R \text { is a well-order on } u]
$$

where of course R is a well-order on u means

$$
\begin{gather*}
\forall t \in R[t \text { is a 2-tuple }] \wedge \tag{1}\\
\forall t \in u\langle t, t\rangle \notin R \wedge \tag{2}\\
\forall t, r, s \in u[\langle t, r\rangle \in R \wedge\langle r, s\rangle \in R \rightarrow\langle t, s\rangle \in R] \wedge \tag{3}\\
\forall y\left[y \subseteq u \wedge y \neq \emptyset \rightarrow \exists m \in y \forall m^{\prime} \in y\left\langle m, m^{\prime}\right\rangle \in R\right] \tag{4}
\end{gather*}
$$

So assume that $u \in M$. If $u=\emptyset$ or $u=\{x\}$ for some $x \in M$, then $R=\emptyset \in$ M is a well-order on u (check the condidtions). Otherwise $u=\{x, y\}$ for $x, y \in M$ with $x \neq y$ and we define $R=\langle x, y\rangle=\{\{x\},\{x, y\}\}$. Note that $R \in M$ (it is a pair of pairs of elements of M) and it is straightforward to check that $M \models R$ is a well-order on u.

Question 3

Let a be non-empty, transitive and let m be its \in-minimal element (from Foundation). If $x \in m$ then by transitivity $x \in a$, contradicting minimality of m. So $m=\emptyset$ as required.

Please avoid trying to assume that $\emptyset \notin a$ and defining a decreasing infinite \in-chain (which would contradict Foundation). This will most likely require (some form of) Choice and would be messier than necessary.

Question 4

Suppose x, y are sets. Write $0=\emptyset$ and $1=\{\emptyset\}=\mathcal{P}(\emptyset)$. Then $0,1 \subseteq 1$ so $0,1 \in \mathcal{P}(1)$ so by Separation $\{0,1\}$ is a set (in fact, $\mathcal{P}(1)=\{0,1\}$ so another application of Powerset can avoide Separation). By Replacement (with $\phi\left(v_{1}, v_{2}, r, t\right)$ as

$$
\left(r=0 \wedge t=v_{1}\right) \vee\left(r=1 \wedge t=v_{2}\right)
$$

and parameters $v_{1}=x, v_{2}=y$ and $\left.d=\{0,1\}\right)$ this gives that $\{x, y\}$ is a set.
Note that we are using a very weak form of Replacement here.
Also note that it is not 'clean' to say something like: apply Replacement with $\phi(r, t) \equiv(r=0 \wedge t=x) \vee(r=1 \wedge t=y)$. This appears to define one formula for every 'instance' of Pairing. Also, the above is not a formula of LST (if you think of x, y as constants).

Question 5

Clearly being well-ordered implies being totally ordered so (i) implies (ii). We focus on (ii) implies (i): Suppose that α is transitive and totally ordered by \in. Let $x \subseteq \alpha$ and assume that $x \neq \emptyset$. Apply Foundation to find $m \in x$ such that $m \cap x=\emptyset$. Since α is transitive, $m \in \alpha$ and by construction m is the \in-minimal element of x.

For the deduce, note that α is transitive and totally ordered by \in is a Δ_{0} formula, so absolute for transitive non-empty classes $A \subseteq B$. As long as A, B satisfy Foundation, the above show that $A \models \alpha$ is transitive and well-ordered by \in if and only if $A \models \alpha$ is transitive and totally-ordered by \in if and only if $B \models$ α is transitive and totally-ordered by \in if and only if $B \models \alpha$ is transitive and well-ordered by \in, as required.

Question 6

The most difficult part is to find out what you are actually asked to do. We want to show that: If

- A, B satisfy enough of ZF so that the Recursion Theorem on $O n$ holds and
- $a \in A$ and
- that F is a formula such that $A \models F$ is a class function (we will write $F^{A}(a)$ for the unique $y \in A$ with $\left.A \models F(a, y)\right)$ and
- $B \models F$ is a class function (similarly $F^{B}(b)$ is the unique $y \in B$ such that $B \models F(a, b))$ and
- F is absolute for A, B (i.e. for $\left.a \in A, F^{A}(a)=F^{B}(a)\right)$ and
- G_{A} (resp. G_{B}) are formulae such that

$$
\begin{gather*}
A \models G \text { is a class function on } O n^{A} \wedge \tag{5}\\
G\left(0^{A}\right)=a \tag{6}\\
\wedge \forall \alpha \in \mathrm{On}^{A} G_{A}\left((\alpha+1)^{A}\right)=F^{A}\left(G_{A}(\alpha)\right) \tag{7}\\
\wedge \forall \gamma \in \operatorname{Lim}^{A} G_{A}(\gamma)=\left(\bigcup\left\{G_{A}(\beta): \beta \in \alpha\right\}^{A}\right)^{A} \tag{8}
\end{gather*}
$$

(resp. the above for B and G_{B}) where all the superscript A s mean that we should interpret this formula in A
then

$$
\forall \alpha \in O n^{A} G_{A}(\alpha)=G_{B}(\alpha)
$$

For the proof, we first note that since A, B are non-empty transitive classes satisfying enough of ZF we have $\emptyset^{A}=\emptyset^{B}, O n^{A} \subseteq O n^{B}$ and $L_{i m}{ }^{A} \subseteq \operatorname{Lim}^{B}$
(being an ordinal is absolute and being a successor ordinal is absolute, hence being a limit ordinal is absolute).

So assume there is $\alpha \in O n^{A}$ with $G_{A}(\alpha) \neq G_{B}(\alpha)$. Since A satisfies enough of ZF, there is a minimal such α, say α_{0}.

Case $\alpha_{0}=0^{A}=0^{B}$: Then $G_{A}\left(\alpha_{0}\right)=a=B_{B}\left(\alpha_{0}\right)$, a contradiction.
Case α_{0} is a successor (in A): Being a successor is absolute for A, B, so α_{0} is successor in B. Let $\beta_{A} \in O n^{A}$ be such that $A \models \alpha_{0}=\beta_{A}+1$ and similarly for β_{B}. Since Pairing and Union are absolute, $A, B \models \beta_{A}+1=\beta_{B}+1$ and it follows that $A, B \models \beta_{A}=\beta_{B}$. We will simply write β for β_{A}. Since $\beta \in \alpha_{0}$, by minimality of α_{0} we must have

$$
G_{A}\left(\alpha_{0}\right)=F^{A}\left(G_{A}(\beta)\right)=F^{A}\left(G_{B}(\beta)=F^{B}\left(G_{B}(\beta)\right)=G_{B}\left(\alpha_{0}\right)\right.
$$

(where the second $=$ comes from the minimality of α_{0} and the third from absoluteness of F), giving another contradiction.

Case α_{0} is a limit (in A): Again, α_{0} will be a limit in B. Now apply minimality of α_{0} to see that for $\beta \in \alpha_{0}, G_{A}(\beta)=G_{B}(\beta)$, so that $\left\{G_{A}(\beta): \beta \in \alpha\right\}^{A}=$ $\left\{G_{B}(\beta): \beta \in \alpha\right\}^{B}$, so that by absoluteness of \bigcup, we get $G_{A}\left(\alpha_{0}\right)=G_{B}\left(\alpha_{0}\right)$.

Remark: Note that we implicitly used that the Recursion Theorem holds (both existence and uniqueness). We can try a more explicit proof which will be messier:

We take $\psi_{F, a}(\alpha, g)$ and G from the Recursion Theorem. We then assert that under the assumptions

$$
\forall z \in A\left(z \in G^{A} \leftrightarrow z \in G^{B}\right)
$$

where

$$
z \in G \equiv z \text { is an ordered pair } \wedge \exists g \psi_{F, a}\left(\pi_{1}(z), g\right) \wedge g\left(\pi_{1}\right)=\pi_{2}(z)
$$

Maybe we should get rid of the abbreviations to see that $\pi_{1}(z), \pi_{2}(z)$ are really harmless:

$$
\begin{aligned}
z \in G \equiv \exists a, b & \in z \exists \alpha, y \in b \\
& z=\{a, b\} \wedge a=\{\alpha\} \wedge b=\{\alpha, y\} \quad \text { (expressing that } z=\langle\alpha, y\rangle) \\
& \left.\wedge \exists g \psi_{F, a}(\alpha, g) \wedge \exists w \in g w=z \quad \text { (the last bit expressing that } g(\alpha)=y\right)
\end{aligned}
$$

We drill down into the definition of $\psi_{F, a}$ similarly.
We then relativize everything to A and B respectively (even the $\alpha+1$ and $\cup)$ and then apply that A, B satisfy enough of ZF and are transitive to get rid of most of the relativizations (i.e. prove these subformulae are equivalent to the ones without the relativization) except for $\exists g \in A$ and $\exists g \in B$ respectively ($\alpha \in$ On is absolute by question 5 and everything else should be Δ_{0}, I hope).

So assume that there is $z \in G^{A}$. Then $z \in B$ (as $A \subseteq B$) and the $g \in A$ which witnesses $z \in G^{A}$ also belongs to B. But the stuff it satisfies is absolute, so it also witnesses that $z \in G^{B}$.

Conversely, assume that $z \in G^{B} \cap A$ (note that we don't actually need the $\cap A$ in this case - see below). Take the α, y and the g from G^{B}. Now note that $\alpha \in \mathrm{On} \subseteq A$ and $\alpha \in \mathrm{On}$ is absolute so by the proof of the recursion theorem in A there is $\hat{g} \in A$ such that $\psi_{F, a}(\alpha, \hat{g})^{A}$. The latter is equivalent (absoluteness) to $\psi_{F, a}(\alpha, \hat{g})^{B}$. By the proof of the recursion theorem in B, such a \hat{g} is unique so that $g=\hat{g} \in A$ and $y=g(\alpha)=\hat{g}(\alpha) \in A$. Then $\langle\alpha, y\rangle \in G^{A}$ and because being the ordered pair of α and y is absolute, we have $z=\langle\alpha, y\rangle \in G^{A}$.

Remark: in fact we have used $\mathrm{On}^{A}=\mathrm{On}^{B}$ to show $G^{A}=G^{B}$ instead of merely $G^{A}=G^{B} \cap A$ (we never used that $z \in A$ but rather got this information out of the proof.

Question 8

1. $x \subseteq y \equiv \forall t \in x[t \in y]$ which is Δ_{0} so absolute.
2. $z=\left\{x_{1}, \ldots, x_{n}\right\} \equiv x_{1} \in z \wedge \ldots x_{n} \in z \wedge \forall t \in z\left[t=x_{1} \vee \cdots \vee t=x_{n}\right]$ which is Δ_{0} so absolute.
3. $z=\left\langle x_{1}, \ldots, x_{n}\right\rangle$: We define this by induction (in the meta-theory) as follows:

$$
\begin{gather*}
z=\langle \rangle \equiv z=\emptyset \equiv \forall t \in z[t \neq t] \tag{9}\\
z=\left\langle x_{1}\right\rangle \equiv z=\left\{x_{1}\right\} \tag{10}\\
z=\left\langle x_{2}\right\rangle \equiv z=\left\{\left\{x_{1}\right\},\left\{x_{1}, x_{2}\right\}\right\} \tag{11}\\
z=\left\langle x_{1}, x_{2}, \ldots, x_{n+1}\right\rangle \equiv z=\left\langle\left\langle x_{1}, \ldots, x_{n}\right\rangle, x_{n+1}\right\rangle \tag{12}
\end{gather*}
$$

We could of course write out a formula for each n, but this would be painful. However, all the 'defined' notions which we use are Δ_{0} so the formula we would to write down (if we were forced to do so) are Δ_{0}.
The alternative is to define the two-tuple, some totally ordered set of size n (e.g. $n \in \omega$) and then $z=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ by $z=\left\{\left\langle 0, x_{1}\right\rangle, \ldots,\left\langle n-1, x_{n}\right\rangle\right\}$.
4. x is an n-tuple: The obvious definition $\exists x_{1}, \ldots, x_{n} z=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is not Δ_{0}. But we can be slightly tricky as follows:

$$
\begin{equation*}
\exists x_{n}, t_{n-1} \in z \exists x_{n-1}, t_{n-2} \in t_{n-1} \ldots \exists x_{2}, t_{1} \in t_{2} \exists x_{1} \in t_{1}\left[z=\left\langle x_{1}, \ldots, x_{n}\right\rangle\right] \tag{13}
\end{equation*}
$$

and this is Δ_{0}.
So (the important case), z is a two-tuple would be

$$
\begin{equation*}
\exists x_{2}, t_{1} \in z \exists x_{1} \in t_{1}\left[z=\left\langle x_{1}, x_{2}\right\rangle\right] . \tag{14}
\end{equation*}
$$

Similarly, if you define the tuple via functios, you can be crafty and write down a Δ_{0} formula for a given n.
Note however that the formula 'for some n, z is an n-tuple'is tricky: the inductive definition does not work since the resulting formula would be an infinite disjunction. The definition via functions does work $\exists n \in \omega \ldots$ but this might not mean what you think it does: there are 'weird' structures satisfying enough of ZF in which elements of ω are not necessarily what you think they should be.
5. z is an n-tuple and $\pi_{i}(z)=x$: We write down the formula above but also but in $\wedge x_{i}=x$ and again we have absoluteness. Explicitly:
$\exists x_{n}, t_{n-1} \in z \exists x_{n-1}, t_{n-2} \in t_{n-1} \ldots \exists x_{2}, t_{1} \in t_{2} \exists x_{1} \in t_{1}\left[z=\left\langle x_{1}, \ldots, x_{n}\right\rangle \wedge x_{i}=x\right]$

Or we could do this inductively, saying

$$
\begin{equation*}
z \text { is a } 0 \text {-tuple } \equiv z=\emptyset \tag{16}
\end{equation*}
$$

6. $z=x \cup y$: Either we define this as $z=\bigcup\{x, y\}$ (for \bigcup see later - but this only makes sense in the presence of Pairing) or explicitly as

$$
\begin{align*}
& \forall t \in z {[\exists w \in x[t \in w] \vee \exists w \in y[t \in w]] } \tag{17}\\
& \wedge \forall t \in x[t \in z] \wedge \forall t \in y[t i n z] \tag{18}
\end{align*}
$$

which is Δ_{0} so absolute.
7. $z=x \cap y$: We could use separation, but it is less demanding to define it as

$$
\begin{gather*}
\forall t \in z[t \in x \wedge t \in y] \tag{19}\\
\wedge \forall t \in x[t \in y \rightarrow \operatorname{tinz}] \tag{20}
\end{gather*}
$$

which is again Δ_{0}.
8. $z=\bigcup x$: Instead of the 'obvious' $\forall t[t \in z \leftrightarrow \exists y \in x[t \in y]]$ which is not Δ_{0}, we can use

$$
\begin{gather*}
\forall t \in z \exists y \in x[t \in y] \tag{21}\\
\wedge \forall y \in x \forall t \in y[t \in z] \tag{22}
\end{gather*}
$$

which is Δ_{0}.
9. $z=x \backslash y$:

$$
\begin{gather*}
\forall t \in z[t \in x \wedge \neg[t \in y]] \tag{23}\\
\wedge \forall t \in x[\neg[t \in y] \rightarrow t \in z] \tag{24}
\end{gather*}
$$

is Δ_{0}.
10. x is an n-ary relation on y_{1}, \ldots, y_{n} (take all the y_{i} equal to y):

$$
\begin{equation*}
\forall t \in x \exists x_{1} \in y_{1}, \ldots x_{n} \in y_{n}\left[t=\left\langle x_{1}, \ldots, x_{n}\right\rangle\right] \tag{25}
\end{equation*}
$$

is Δ_{0}.
11. x is a function:

$$
\begin{gather*}
\forall t \in x[t \text { is a 2-tuple }] \tag{26}\\
\wedge \forall t_{1}, t_{2} \in x\left[\pi_{1}\left(t_{1}\right)=\pi_{1}\left(t_{2}\right) \rightarrow t_{1}=t_{2}\right] \tag{27}
\end{gather*}
$$

where $\pi_{1}\left(t_{1}\right)=\pi_{1}\left(t_{2}\right)$ should of course be replaced by the appropriate formula from above, namely
$\exists w \in t_{1} \exists u \in t_{2} \exists x_{1}, x_{2} \in w \exists y_{1}, y_{2} \in u\left[t_{1}=\left\langle x_{1}, x_{2}\right\rangle \wedge t_{2}=\left\langle y_{1}, y_{2}\right\rangle \wedge x_{1}=y_{1}\right]$
and everything is Δ_{0}
12. $z=x \times y$:

$$
\begin{align*}
& \forall t \in z \exists x_{1} \in x \exists y_{1} \in y\left[t=\left\langle x_{1}, y_{1}\right\rangle\right] \tag{29}\\
& \wedge \forall x_{1} \in x \forall y_{1} \in \exists t \in z\left[t=\left\langle x_{1}, y_{1}\right\rangle\right] \tag{30}
\end{align*}
$$

is Δ_{0}
13. x is a function and $\operatorname{dom}(x)=z$:

$$
\begin{gather*}
x \text { is a function } \tag{31}\\
\wedge \forall t \in x \pi_{1}(t) \in z \tag{32}\\
\wedge \forall w \in z \exists t \in x \pi_{1}(t)=w \tag{33}
\end{gather*}
$$

where $\pi_{1}(t) \in z$ should of course be replaced by an appropriate Δ_{0} formula.
14. x is a function and $\tan (x)=z$: very similar to the previous one.
15. x is transitive:

$$
\begin{equation*}
\forall y \in x \forall t \in y[t \in x] \tag{34}
\end{equation*}
$$

is Δ_{0}
16. x is an ordinal: This one is not absolute for transitive classes satisfying only ZF^{-}! See the lecture notes. However, assuming foundation, there is an equivalent definition which is absolute.
17. x is a successor ordinal:

$$
\begin{equation*}
x \in O n \wedge \exists y \in x[x=y \cup\{y\}] \tag{35}
\end{equation*}
$$

and this is absolute provided being and ordinal is absolute.
18. x is a limit ordinal: either x is an ordinal and not a successor ordinal or x is an ordinal and $\forall y \in x \exists z \in x[z=y \cup\{y\}]$. Again, this is absolute provided being an ordinal is absolute.
19. $x=\omega$:

$$
\begin{gather*}
x \text { is a limit ordinal } \wedge x \neq \emptyset \tag{36}\\
\wedge \forall y \in x[y \text { is a successor ordinal } \vee y=\emptyset] \tag{37}
\end{gather*}
$$

which is absolute if being an ordinal is absolute.

