Sheet 2

Question 1

See lecture notes (complete proofs are given).

Question 2

We define a® = 1, o' = o .avand for v € Lim, o” = Uﬁ<7 o?. By induction
on On we easily see that o € On provided a, 3 € On.
We need some facts about ordinal addition and multiplication:

e if z is a set of ordinals then supz =, ., a;

e if  is an unbounded set in v € Lim then sup x = ~;

e thus for 7 a limit ordinal and z unbounded in v we have o + v =
Uﬂexa + 6, ay = Uﬁew a.f and oY = Uﬂex o’

e ordinal addition and multiplication are non-decreasing in their second
variable;

e ordinal addition and multiplication are associative;
e if v € Lim and 8 € On then g+ ~, 5.7, 87 € Lim,;

In the following, we always assume that « is a non-zero ordinal:

First we show that o is non-decreasing in : it is enough to show o <
aP*1 as then the claim follows by induction. If o = 0 this is trivial. Otherwise
ot = af.a > of as multiplication is non-decreasing and a > 1.

Next we show a7 = a®.a”: we induct on 7. The base case is trivial.
For the successor case

QPO = BN — (B o = 0P 0V = of .o

where the first equality is the (recursive) definition of ordinal addition, the
second fact the (recursive) definition of exponentiation, the third the induc-
tive hypothesis and the last the (recursive) definition (together with various
omitted facts about ordinal multiplication).



For the limit case:

ot = U o’ as B+ is a limit
6< B4y
= U o’ as {B+6:0 <~} is unbounded in B + 7
6<y
= U a?.a’ inductive hypothesis
6<y

=l

where the last inequality follows from the fact that o” is a limit if v is and
that {045 10 < ’y} is unbounded in 7.

Now we do o’ = (a”)7: Again, we induct on 7. The base case is trivial.
For the successor step

B0 — (BB — (B o = (aﬁ)w'aﬂ — (aﬁ)wl

For the limit case:

aP = U ol = U aBd = U(aﬁ)é — (a5)7

0<B.y o<y o<y

where each equality is either from the definition or justified as for a®*7 =
aPar.

Inductively, 2" < w for n € w: 2" = 2".2 = 2" + 2" Now consider the
case that n = 0 so that 2" +2"=2=(0+1) + 1 <w and n = m + 1 giving
2 4 2mHl = (2" 4 2™) + 1+ 1 < w. Thus 2¥ < w.

But if n € w, n > 1 then again by induction 2™ > n so that {2" : n € w}
is unbounded in w and hence 2¥ > w.

Question 3

Define by recursion on n € w, ag = o + 1 and o, 41 = F(ap) and let v =
Unew @n+1 (this is the union of a set of ordinals, hence an ordinal). We
claim that F(y) = v. If F(ap) = «ap then inductively «, = «p for all
n € w and hence v = o9 = F(ag) = F(7y). Otherwise oy < «; and by
induction on n we see that «,, < a,; for all n so that v € Lim. Then
F(v) = Use, F(B). Now, if n € v then 8 € a,, C a1 = Flan) € F(7).



Conversely, if n € F(f) for f < v then 5 € « so there is a,, with 8 < a,, and
hence n € F(B) C F(ay) = any1 C 7.

The smallest non-zero fixed point of F(z) = w.x is w¥: first w.w* =
SUD, e, W-W" = SUP, e, W' = w¥; secondly, if @ < w* then a < w™ for some
n. Let n be least such that o < w". Either n = 0 giving o = 0 which
was disallowed. Or n = m + 1 and then w™ < a < w™"!. But then (as
multiplication is non-decreasing) F'(w™) = w.w™ = ™ =w" > a = F(a),
a contradiction.

The Transitive Closure

Given a set  we want to define the transitive closure of z, denoted by T'C(z),
as the smallest transitive set containing x as a subset. To do so, we have to
construct a transitive set containing x: By recursion on w we define g = x
and 2,1 = x,UJz,. The z, are sets by Union and Pairing and induction.
Also z,, C x4 for each n € w and hence Vn,m € w [n <m — x, C )]
(by induction on m > n). By Replacement and Union we then have that
2=, en, Tn is a set.

We now claim that z is transitive and contains x as a subset: since zg = ©
the latter is trivial. For the former, assume v € w € z. Find n € w such that
w € x, and then note that w € {t:Jytecyecx,} = Jx, C 2,41 so that
u € z as required.

We could now either apply Separation to form the smallest transitive
subset containing = as a subset. Or we show that z is as required: for
suppose 2’ is transitive and contains z as a subset. Then 2y = x C 2z’ and by
transitivity Vw w C 2’ — (Jw C 2’ so that inductive each of the z,, C 2’ and
hence z C 2’ as required.

Let us also note that TC'({z}) is the smallest transitive set containing «
as an element.

Question 4

Suppose H,, # V,,. Assume first that H, \ V,, # () and pick z € H, \ V,,. If
x C 'V, then for each t € z, let n; € w be least with ¢t € V,,,. As z is finite,
N = max; n; € w exists and then x C Vy, giving x € P (V) = Vi1 C V,,
a contradiction. Thus TC'(z) \ V,, 2 2\ V, # 0 and thus TC(z) \ V,, (it
is a set by Separation) has a €-minimal element m. As () € V,,, m # 0.
By assumption m € H, (using m € TC(z) — TC(m) C TC(z)) and by



minimality and transitivity of TC(x), Vt € m t € V,,. But as above, this
gives m C Vi for some N € w and thus m € Vi, a contradiction.

Next we show by induction on n, that V,, is finite (and in fact has size
2m).

Next, assume that V, \ H, # 0 and we again pick a €-minimal element
m €V, \ H, (we already know that V,, is transitive and that V,, \ H, is a
set). If m = () then we are done as TC(0) = ). Otherwise m € V,,1; for some
n and thus m C V,, and m is finite. For ¢ € m we have t € V,, by transitivity
of V,, and t € H, by minimality of m. Thus TC(m) = {m} U ,c,, TC(t) is
a finite union of finite sets, so finite. Hence m € H,,, a contradiction.

Question 5

Only the forward direction is interesting (since V' |= Foundation the back-
wards direction is trivial). So assume Foundation. Assume for a con-
tradiction that there is x with * € V. Use Separation and Union and
Replacement to form the set TC(z) and z =TC(x)\V 22\ V. If 2 =10
then x C V and thus x € V. Otherwise, let m be €-minimal in z. Since
TC(x) is transitive and m is €-minimal in z we must have Vi e mt € V| i.e.
m C V giving m € V' a contradiction.

Question 6

For Union: Suppose z € V. Then = € V, for some least & € On. Note
that o must be a successor ordinal 8 + 1 (if o is a limit then z € (Jgc, Vi
so x € Vp for some € a contradicting minimality of o). Hence z C V. In
Uform z = |JVz. Fort € zfindy € z witht € y € x C Vj. Since Vj is
transitive ¢ € V3 and hence z C V. Thus z € V,,. Also, z = (Jx is absolute
soif UEz=Jrand z,z€ VthenV =z =Juz.

For Infinity: We can either show (see next sheet) that w C V,, so that
w € V1. Or we show that V, is an inductive non-empty set: clearly () €
ViV, IfxelV,thenax € V,y for somen € w,sox CV, C V, .
Also {z} C V11 so z U {z} C V44 giving that x U {z} € V..o C V. All
of these operations are absolute, so V' also believes that V,, is inductive and
non-empty. Finally V, € V,;,; C V.



Question 7

From lectures we have o« C V,, N On.

Now we inductively (on On) prove equality: this is clear for (). Suppose
VonNnOn =a. If g€ Vo1 NOnthen 8 C On and f C V,. Thus g C
V, N On = «a. Hence either 5 € a or § = « so that in either case f € a+ 1
as required.

For the second part, if & € V3 then by (i) we must have o € § (as the
other cases lead to quick contradictions) so a+ 1 < g giving V,, € P (V,) =
Vas1 C Vj since (from lectures) § < g — V5 C V3 (induction on f).

Question 8

See the separate document on General Recursion.



