Definition 1. A relation R on a class A is well-founded if and only if

$$\forall x \subseteq A \ [x \neq \emptyset \to \exists m \in x \ \forall b \in x \ \neg [bRm]]$$

(i.e. every non-empty subset of A has an R-minimal element).

Definition 2. A relation *R* on a class *A* is set-like if and only if

$$\forall x \in A \; \exists z \; \forall t \; [t \in z \leftrightarrow tRx]$$

Lemma 1. Suppose R is a set-like relation on a class A. Then $\operatorname{pred}_R : A \to U$ given by $\operatorname{pred}_R(x) = \{t \in A : tRx\}$ is a class function on A.

Proof. By **Extensionality** and the definition of being set-like.

Lemma 2. Suppose R is a well-founded, set-like relation on a class A. Then R^* given by

 $xR^{\star}y \equiv \exists n \in \omega \; \exists f \colon n+2 \to A \; \left[f(0) = x \wedge f(n+1) = y \wedge \forall m \in n+1 \; \left[f(m)Rf(m+1)\right]\right]$

is a well-founded, set-like relation on A that is transitive and contains R.

Proof. Clearly it is a relation on A.

If xRy then n = 0 and $f = \{\langle 0, x \rangle, \langle 1, y \rangle\}$ witnesses xR^*y so $R \subseteq R^*$.

For $x, y \in A$ such that xR^*y , we write p(x, y) for the smallest $n \in \omega$ which witnesses xR^*y .

We will show transitivity (i.e. $\forall x, y, z \in A \ [xR^*y \land yR^*z \to xR^*z]$) by induction on p(y, z). So assume this is true provided p(y, z) < n and that p(y, z) = n. Let g be a witness of yR^*z with dom(g) = n + 2. The special case n = 0 is easy to handle manually. Otherwise, note that p(y, g(n)) < n so that by inductive hypothesis there is $m \in \omega$ and $f: m + 2 \to A$ witnessing $xR^*g(n)$. Then m + 1 together with $f \cup \{\langle m + 2, z \rangle\}$ witnesses xR^*z .

Next we show that R^* is set-like. Fix $x \in A$. By induction on $n \in \omega$, we can see that

$$P_n = \{z \in A : zR^{\star}x \land p(z,x) \le n+1\} = \bigcup \left\{ \operatorname{pred}_R(y) : y\mathbb{R}^{\star}x \land p(y,x) \le n \right\}$$

is a set (by **Union** and **Replacement**) and (another application of **Union** and **Replacement**) so is $\operatorname{pred}_{R^*}(x) = \bigcup \{P_n : n \in \omega\}$.

Finally for well-foundedness, let $C \subseteq A$ and $C \neq \emptyset$ and assume that x has no R^* -minimal element. Let $x_0 \in C$ and

$$a = \{x \in \operatorname{pred}_{R^{\star}}(x_0) \cup \{x_0\} : \exists y \in C \ yR^{\star}x\}$$

(noting that this is a set by **Separation** and the fact that R^* is set-like.)

Since $x_0 \in C$ is not R^* -minimal, $x_0 \in a$, so $a \neq \emptyset$. Since R is well-founded, a has an R-minimal element m. By definition of a, we can find $y \in C$ such that yR^*m . Since mR^*x_0 (or $m = x_0$) and R^* is transitive, we obtain yR^*x_0 and since C has no R^* -minimal element there must be $y' \in C$ with $y'R^*y$, giving $y \in a$. Find an $n \in \omega$ and $f: n + 2 \to A$ witnessing yR^*m . Now $f(n)R^*m$ and mR^*x_0 or $m = x_0$ given $f(n)R^*x_0$ by transitivity of R^* . Also $yR^*f(n)$ or y = f(n) so that $f(n) \in a$. But we also have f(n)Rm, contradicting Rminimality of m in a. **Definition 3.** Suppose R is a well-founded, set-like relation on U and $F: U \times U \rightarrow U$ is a class function.

We define

$$\psi_{F,R}(a,g) \equiv g \text{ is a function on } \{a\} \cup \operatorname{pred}^{\star}(a) \land \\ \forall x \in dom(g) \ g(x) = F\left(x, g|_{\operatorname{pred}(x)}\right)$$

and

$$G_{F,R} \equiv \{ \langle a, b \rangle : \exists g \ \psi_{F,R}(a,g) \land b = g(a) \}$$

Theorem 1. Suppose R is a well-founded, set-like relation on U.

If $F: U \times U \to U$ is a class function then, writing G for $G_{F,R}$, G is a class function on U such that

$$\forall x \ G(x) = F(x, G|_{\operatorname{pred}(x)})$$

and for every class function H on U such that $\forall x \ H(x) = F(x, H|_{\text{pred}(x)})$ we have $\forall x \ G(x) = H(x)$.

We first prove a lemma (this is sort of the 'internal' version of the theorem 'up to any a').

Lemma 3. Suppose R is a well-founded, set-like relation on Y. If $F: U \times U \to U$ is a class function then

$$\forall a \exists ! g \psi_{F,R}(a,g).$$

Proof. Suppose this is not the case. Fix $x_0 \in U$ such that $\neg \exists ! g \ \psi_{F,R}(x_0,g)$ and let a be R^* -minimal in $\{y \in \{x_0\} \cup \text{pred}^*(x_0) : \neg \exists ! g \ \psi_{F,R}(y,g)\}$ (noting that this is a set and contains x_0 so is non-empty). Note that a is then R^* -minimal such that $\neg \exists ! g \ \psi_{F,R}(a,g)$.

Case $\neg \exists g \ \psi_{F,R}(a,g)$: Note that by R^* -minimality of a, we have

$$\forall y \in \operatorname{pred}^{\star}(a) \exists ! g \ \psi_{F,R}(y,g)$$

so that

$$f = \{g : \exists y \in \operatorname{pred}^{\star}(a) \ \psi_{F,R}(y,g)\}, \quad h = \bigcup f$$

are sets (by **Replacement** and **Union**). Note that if $g, g' \in f$ and $y \in dom(g) \cap dom(g')$ then $\hat{y} = \{y\} \cup \text{pred}^{\star}(y) \subseteq dom(g) \cap dom(g')$ and that $\psi_{F,R}(y,g|_{\hat{y}})$ as well as $\psi_{F,R}(y,g'|_{\hat{y}})$. Further $yR^{\star}a$ so that by R^{\star} -minimality of a we must have $g|_{\hat{y}} = g'|_{\hat{y}}$ and hence g(y) = g'(y). Thus h is a function.

Next for $y \in \text{pred}^*(a)$ find g such that $\psi_{F,R}(y,g)$ so that $g \subseteq h$ and hence $y \in dom(g) \subseteq dom(h)$.

Thus h is a function on pred^{*} (a) and we note that

$$g = h \cup \left\{ \left\langle a, F(a, h|_{\text{pred}(a)}) \right\rangle \right\}$$

is a function on $\{a\} \cup \text{pred}^*(a)$ such that $\psi_{F,R}(a,g)$, a contradiction.

Case $\exists g, g' \; [\psi_{F,R}(a,g) \land \psi_{F,R}(a,g') \land g \neq g']$: By R^* -minimality of $a, \forall y \in \text{pred}^*(a) \; g(y) = g'(y)$ and in particular $g|_{\text{pred}(a)} = g'|_{\text{pred}(a)}$. But then $g(a) = F(a,g|_{\text{pred}(a)}) = F(a,g'|_{\text{pred}(a)}) = g'(a)$ so that g = g', a contradiction. \Box

Proof of the General Recursion Theorem. First, if $x \in U$ suppose that there are $y, y' \in U$ such that $\langle x, y \rangle, \langle x, y' \rangle \in G_{F,R}$. Find g, g' such that $\psi_{F,R}(x,g)$ and g(x) = y and $\psi_{F,R}(x,g')$ and g'(x) = y'. Then by the Lemma g = g' so that y = g(x) = g'(x)y'. Thus $G_{F,R}$ is a class function on some class A.

Next if $x \in U$ then there is (by the Lemma) g such that $\psi_{F,R}(x,g)$ so that $\langle x, g(x) \rangle \in G_{F,R}$. Hence $G_{F,R}$ is a class function on U.

That $G(a) = F(a, G|_{pred(a)})$ follows from the construction of G and the method in the previous Lemma.

Similarly the 'uniqueness' is an easy consequence of the previous Lemma by considering a ' R^* -minimal' counterexample.