
We first note that we can define the usual arithmetic functions on ω (inter-
preted as N) by the Recursion Theorem and that these are absolute.

In the meta-theory, we then use a ‘nice’ Gödel numbering of the formu-
lae of LST (although this is only relevant at the very end - but it does help
understanding). Of course this does depend on our language, so we need to
fix it: The terms are v′ . . .′ (or more formally we define recursively t0 = {v′},
tn+1 = {s′ : s ∈ tn}) and we code them by

⌈t⌉ =

{

2; t = v′

2 ⌈s⌉ ; t = s′

So ‘terms’ are powers of 2 and we write vk instead of v′ . . .′ (k ′s) (for sanity
reasons) and we let T =

{

2k : k ∈ ω, k ≥ 1
}

.
Next, the atomic formulae are (for t, s terms, so we can think ⌈t⌉ , ⌈s⌉ ∈ T )

t = s

t ∈ s

coded by

⌈t = s⌉ =3⌈t⌉5⌈s⌉71

⌈t ∈ s⌉ =3⌈t⌉5⌈s⌉72

and we let A =
{

3t5s7k : t, s ∈ T, k ∈ {1, 2}
}

.
Finally, the formulae are

φ; φ an atomic formula

¬φ; φ a formula

φ ∧ ψ; ψ, φ formulae

∀vkφ; vk a term, φ a formula

coded by

⌈¬φ⌉ =3⌈φ⌉73

⌈φ ∧ ψ⌉ =3⌈φ⌉5⌈ψ⌉74

⌈∀vkφ⌉ =3⌈φ⌉5⌈vk⌉75

and we let

F = A ∪
{

3p73 : p ∈ F
}

∪
{

3p5q74 : p, q ∈ F
}

∪
{

3p5t75 : p ∈ F, t ∈ T
}

.

Of course, the definition of F doesn’t seem to make sense, so we should (by
recursion on ω) set

F0 =A

Fn+1 =F0 ∪
{

3p73 : p ∈ Fn
}

∪
{

3p5q74 : p, q ∈ Fn
}

∪
{

3p5t75 : p ∈ Fn, t ∈ T
}

F =
⋃

n∈ω

Fn.
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We note that T,A, F can be defined in a sufficiently large fragment of ZF−
Powerset and are absolute for transitive non-empty transtive models of this
fragment.

Now we define the function free on ω which takes values in ω<ω (the finite
subsets of ω as follows (by recursion on ω):

free(0) = {0}

free(n+ 1) =


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{0} ; n+ 1 6∈ F

{t, s} n+ 1 ∈ F ∧ n+ 1 = 3k5s7

{t, s} n+ 1 ∈ F ∧ n+ 1 = 3k5s72

free(k); n+ 1 ∈ F ∧ n+ 1 = 3k73

free(k) ∪ free(l); n+ 1 ∈ F ∧ n+ 1 = 3k5l74

free(k) \ {l} ; n+ 1 ∈ F ∧ n+ 1 = 3k5l75.

You should convince yourself that free gives {0} if the input is not (the code
for) a formula and otherwise the set of free variables in the formula.

(Note that I have made sure that 0 6∈ T so that 0 ∈ free(k) if and only if
k 6∈ F .)

We observe that free is absolute for non-empty transitive classes satisfying
enough of ZF−Powerset.

Finally, given x, we can define a funcion valx : ω × x<ω → {0, 1, 2} by recur-
sion on ω (here I interpret x<ω = {a : b→ x : b finite ⊂ ω}).

valx(0, a) = 2

valx(n+ 1, a) =
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2; n+ 1 6∈ F

2; n+ 1 ∈ F ∧ free(n+ 1) 6⊆ dom(a)

0; n+ 1 ∈ F ∧ free(n+ 1) ⊆ dom(a) ∧ ∃k, l ∈ ω
[

n+ 1 = 3k5l71 ∧ a(k) 6= a(l)
]

1; n+ 1 ∈ F ∧ free(n+ 1) ⊆ dom(a) ∧ ∃k, l ∈ ω
[

n+ 1 = 3k5l71 ∧ a(k) = a(l)
]

0; n+ 1 ∈ F ∧ free(n+ 1) ⊆ dom(a) ∧ ∃k, l ∈ ω
[

n+ 1 = 3k5l72 ∧ a(k) 6∈ a(l)
]

1; n+ 1 ∈ F ∧ free(n+ 1) ⊆ dom(a) ∧ ∃k, l ∈ ω
[

n+ 1 = 3k5l72 ∧ a(k) ∈ a(l)
]

0; n+ 1 ∈ F ∧ free(n+ 1) ⊆ dom(a) ∧ ∃k, l ∈ ω
[

n+ 1 = 3k73 ∧ valx(k, a) = 1
]

1; n+ 1 ∈ F ∧ free(n+ 1) ⊆ dom(a) ∧ ∃k, l ∈ ω
[

n+ 1 = 3k73 ∧ valx(k, a) = 0
]

0; n+ 1 ∈ F ∧ free(n+ 1) ⊆ dom(a) ∧ ∃k, l ∈ ω
[

n+ 1 = 3k5l74∧

[valx(k, a) = 0 ∨ valx(l, a) = 0]]

1; n+ 1 ∈ F ∧ free(n+ 1) ⊆ dom(a) ∧ ∃k, l ∈ ω
[

n+ 1 = 3k5l74∧

[valx(k, a) = 1 ∧ valx(l, a) = 1]]

0; n+ 1 ∈ F ∧ free(n+ 1) ⊆ dom(a) ∧ ∃k, l ∈ ω
[

n+ 1 = 3k5l75∧

∃â ∈ x<ω
[

â|free(n+1)\{l} = a|free(n+1)\{l} ∧ l ∈ dom(â) → valx(k, â) = 0
]]

1; n+ 1 ∈ F ∧ free(n+ 1) ⊆ dom(a) ∧ ∃k, l ∈ ω
[

n+ 1 = 3k5l75∧

∀â ∈ x<ω
[

â|free(n+1)\{l} = a|free(n+1)\{l} ∧ l ∈ dom(â) → valx(k, â) = 1
]]

Note that because x<ω is absolute (for transitive non-empty classes satisfying

2



enough of ZF−Powerset), valx is in fact absolute for these transitive non-empty
classes.

For a formula φ(vk1 , . . . , vkn) of LST with all free variables shown, and
a1, . . . , an ∈ x we define

(x,∈) |= φ(a1, . . . , an) ≡ valx(⌈φ⌉ , {〈ki, ai〉 : i = 1, . . . , n}) = 1.

We now need to prove (by induction on the complexity of the formula) in
the meta-theory that if A is a transitive, non-empty class satisfying enough
of ZF − Powerset then for every formula φ(vk1 , . . . , vkn) of LST with all free
variables shown

ZF−Powerset ⊢ ∀a1, . . . , an ∈ x [φ(a1, . . . , an)
x ↔ (x,∈) |= φ(a1, . . . , an)]

A
.

This is the ‘standard’ model theoretic proof that syntactic truth and semantic
truth coincide.
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