
THE GÖDEL INCOMPLETENESS THEOREMS

R. W. Knight

Hilary 2019

1

MODIFIED HEALTH WARNING

This text corresponds more or less to what I wrote on the board in the lectures in
Hilary Term 2020. Some errors that I am aware of have been corrected. If you spot any
others, please let me know.

I will continue to edit this document throughout the term.

END HEALTH WARNING

2

Everything in the lectures or on the problem sheets is on the syllabus and examinable,
unless otherwise indicated.*

Prerequisites: an introductory course in logic is assumed.

* Anything in the footnotes is not on the syllabus.

3

0. Introduction

We will usually assume that the semiring (N, 0, 1,+, ·) exists and has the usual familiar
properties (from which it will follow that various axiom systems for it are consistent, since
they have a model).

I assume familiarity with the Completeness Theorem of first-order logic; so when I
prove a statement such as S ⊢ φ (φ is formally provable from assumptions S) I will on the
whole not provide a formal proof of φ from S; I will instead argue that such a formal proof
exists (which is quite different and much easier). I also assume some skill in distinguishing
language from metalanguage and theorems from metatheorems.

These lectures are based on lecture notes by Dan Isaacson, and on Raymond Smullyan’s
book Gödel’s Incompleteness Theorems (OUP, 1992). However, I sometimes depart (in no-
tation or in other respects) from both sources.

1. A formal language for arithmetic

1.1. The language itself
We choose a formal language to make Gödel numbering more straightforward.

Definition 1.1.1. The symbols of the language LE are:

0 + v f ′ () ¬ → ∀ = ≤ #

An expression in LE is any finite, non-empty sequence of symbols of L that does not
begin with +.

The rules of syntax are as follows.

Definition 1.1.2. The terms of LE are defined as follows.

0 is a numeral term, and if σ is a numeral term, then so is σ+. We will write 0
followed by n +’s as n.

v is a variable term, and if τ is a variable term, then so is τ ′. If n is a natural number
(including zero), then we’ll write vn for v followed by n ′’s.

The function labels are f , f ′, and f ′′.

A term is a numeral term, a variable term, an expression σ+ where σ is a term, or
an expression σ(τυ), where σ is a function label and τ and υ are terms.

Definition 1.1.3. LE contains the following formulae.

An atomic formula is an expression σ = τ or σ ≤ τ , where σ and τ are terms.

Other formulae are: ¬φ, (φ → ψ), ∀xφ, where φ and ψ are formulae, and x is a
variable term.

We sometimes write (φ ∨ ψ) for (¬φ → ψ), (φ ∧ ψ) for ¬(¬φ ∨ ¬ψ), (φ ↔ ψ) for
((φ → ψ) ∧ (ψ → φ)), and ∃xφ for ¬∀vi ¬φ, where φ and ψ are formulae, and vi is a
variable term.

Definition 1.1.4. L is the sublanguage of LE containing no occurrences of f ′′.

4

1.2. Logical rules
Given the Completeness Theorem of first-order Predicate Calculus, it does not much

matter which system of axioms and logical rules we use. We choose to use one which makes
it easier to prove the (meta)theorems we want to use (but which is also difficult to use for
constructing formal proofs).

So, we use the following axiom schemes:

Definition 1.2.1. The logical axioms are all instances of the following schemata, where
φ, χ and ψ may be any formulae:

(A1) (φ→ (χ→ φ))
(A2) ((φ→ (χ→ ψ)) → ((φ→ χ) → (φ→ ψ)))
(A3) ((¬φ→ ¬χ) → (χ→ φ))
(A4) (∀vi φ(vi) → φ(t)), where vi is a variable letter and t is a term which can be

sensibly substituted for vi, that is, it contains no variable letter vj such that vi occurs free
in φ in the scope of a quantifier ∀vj,

(A5) (∀vi (φ→ χ) → (φ→ ∀vi χ)), for vi a variable letter, provided vi does not occur
free in φ.

(A6) ∀vi (vi = vi)
(A7) If F and G are atomic formulae, where G is obtained from F by replacing some,

but not necessarily all, occurrences of vi by vj, then ((vi = vj) → (F → G)).

Definition 1.2.2. The rules of inference are the following, where φ and χ are any
formulae and x is any variable letter:

(MP) Modus Ponens: that is, from φ and φ→ χ deduce χ
(Gen) Generalisation: from φ deduce ∀vi φ.

Definition 1.2.3. If Γ is a (possibly empty) set of formulae, and φ is a formula, we say
that φ can be proved from Γ, and write Γ ⊢ φ, if and only if there exists a finite sequence
φ1, . . . , φn of formulae such that φn = φ, and for each i, φi is an element of Γ, or a
logical axiom, or else it is deduced from previous members of the sequence using a rule of
inference.

We will need to refer to the details of the system occasionally.

1.3. Interpretation
We will usually interpret L as applying to the semiring (N, 0, 1,+, ·), where 0 is

interpreted as referring to 0, + as referring to the successor function n 7→ n + 1 (so that
n refers to n), and the function symbols f , f ′ as referring, respectively, to addition and
multiplication; and we interpret LE as referring to the expansion obtained by adding the
exponentiation operation, when f ′′ will refer to exponentiation.

For terms σ and τ , we normally rewrite f(σ, τ) as σ + τ , f ′(σ, τ) as σ.τ , and f ′′(σ, τ)
as στ .

We will normally define truth with respect to this interpretation, though we will
sometimes remember to say “true in N” to make this a little clearer. We will occasionally
refer to other interpretations.

Definition 1.3.1. A subset A of N
k is definable if and only if there exists a for-

mula φ(v1, . . . , vk) with only v1, . . . , vk free, such that φ(n1, . . . , nk) is true if and only if

5

(n1, . . . , nk) ∈ A. We say that A is provably definable from a set of assumptions S if
S ⊢ φ(n1, . . . , nk) if (n1, . . . , nk) ∈ A, and S ⊢ ¬φ(n1, . . . , nk) if (n1, . . . , nk) /∈ A.

A function g : Nk → N is definable if and only if the set A = {(n1, . . . , nk, g(n1, . . . , nk)) :
n1, . . . , nk ∈ N} is definable, and is weakly provably definable from a set of assumptions
S if A is provably definable. f is provably definable from S if for all n1, . . . , nk ∈ N,
S ⊢ ∀v1 (φ(n1, . . . , nk, v1) ↔ v1 = g(n1, . . . , nk)), where φ is the formula defining A.

2. Peano arithmetic

2.1. The Peano axioms
We will be considering a number of axiom schemes for arithmetic on N of different

strengths. The most famous, and most commonly used, is:

Definition 2.1.1. We will denote by PA (Peano Arithmetic) the following list of state-
ments (all of which are expressible in L):

1. ∀vi ¬vi
+ = 0; ∀vi∀vj (vi

+ = vj
+ → vi = vj).

(n 7→ n+ is an injection from N ↔ N \ {0}).
2. ∀vi vi + 0 = vi and ∀vi vi.0 = 0.
3. ∀vi∀vj vi + vj

+ = (m+ n)+ and ∀vi∀vj vi.vj
+ = (vi.vj) + vi.

4. ∀vi 0 ≤ vi; ∀vi∀vj (vi ≤ vj ↔ (vi = vj ∨ vi
+ ≤ vj)); ∀vi vi ≤ vi; ∀vi∀vj (vi ≤

vj ∨ vj ≤ vi); ∀vi∀vj∀vk ((vi ≤ vj ∧ vj ≤ vk) → (vi ≤ vk)); ∀vi∀vj (vi ≤ vj ∨ vj ≤ vi).
(≤ is a total order, with initial element 0, and n+ is the immediate successor of n).
5. (Induction Schema): For any formula φ(v1) of L, the following is an axiom: if

φ(0), and if for all n, φ(n) implies φ(n+), then ∀nφ(n).
Formally:

((φ(0) ∧ (∀v1 φ(v1) → φ(v1
+))) → ∀v1 φ(v1)).

Exercise 2.1.2. The successor function n 7→ n+ is onto N \ {0}.

Exercise 2.1.3. m ≤ n iff ∃km+ k = m.

The strongest axiom set for arithmetic we’ll be using is the following.

Definition 2.1.4. We will denote by PAE (Peano Arithmetic with Exponentiation) PA,
augmented by the following statements:

2′: ∀vi vi
0 = 1.

3′: ∀vi, vj vi
vj

+

= vi
vj .vi.

5′: instances of the induction schema involving formulae φ(v1) belonging to LE but
not to L.

2.2. Gödel numbering

Notation 2.2.1. We will from time to time write numbers in base 13. When we do that,
we will use the symbol A to refer to ten, B to refer to eleven, and C to refer to twelve.

When confusion is likely, we’ll use a subscript 13 to indicate that a number is to be
read in base 13, and 10 to indicate that it should be read in base 10.

The alphabet of L has thirteen symbols, and we will assign numbers 0 to 12 to them.
A string has a Gödel number, which is got by replacing each symbol by a digit in the set
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B, C, and then interpreting the result as a number in base 13.

6

(Thirteen is convenient partly because it’s prime, and partly because with more sym-
bols, it’s easier to work out how to write stuff. We could get away with two symbols, by
representing each of the above thirteen symbols by a different string of four 0’s and 1’s.)

More formally:

Definition 2.2.2. Gödel numbers are assigned to the symbols of the language LE as
follows:

+ 0 () f ′ v ¬ → ∀ = ≤ #
0 1 2 3 4 5 6 7 8 9 A B C

—where all numbers are to be red in base 13. If s is a symbol of LE , then its Gödel number
may be written as psq.

The Gödel number of an expression of LE is obtained by writing the Gödel numbers of
the individual symbols in order, and reading the result in base 13; that is, if φ = s0s1 . . . sr,
where the si are symbols of L and s0 is not +, then:

pφq =
(

ps0qps1q . . .psrq
)

13
.

One can quickly convince oneself that

(

ps0qps1q . . . psrq
)

13
= ps0q13

r + ps1q13
r−1 + · · ·+ psrq.

Definition 2.2.3. The Gödel number of a term or formula is defined as in the previous
definition. The Gödel number of a sequence of terms or formulae is obtained by separating
the formulae by #, so that

p(φ1, . . . , φk)q = p#φ1#φ2# . . .#φk#q.

NOTE: All we really require of our system of Gödel numbering is that there should
exist a definable (inLE) function ◦ such that pφψq = pφq◦pψq, and such that the function
n 7→ pnq is definable.

We commit the abuse of using symbols such as x, y, m, n and so forth for v0, v1 and
so forth.

2.3. The arithmetic hierarchy
We classify formulae in prenex normal form according to the string of quantifiers at

the front.

Definition 2.3.1. A bounded quantifier is of the form ∃m ≤ n or ∀m ≤ n (strictly not
in our language, but ∃m ≤ nφ can be expressed by ∃m (m ≤ n ∧ φ), and ∀m ≤ nφ can be
expressed by ∀m (m ≤ n→ φ).)

Definition 2.3.2. A formula is Σ0, Π0, or ∆0, if it contains no unbounded quantifiers.
If φ is Σn, then ∀mφ is Πn+1, and if φ is Πn, then ∃mφ is Σn+1.
We say that a formula φ is provably Σn (or) Πn if there is a formula φ′ which is

respectively Σn or Πn, such that φ↔ φ′ is a theorem. If S is a set of axioms, then we say

7

φ is provably Σn or Πn with respect to S if there is a formula φ′ which is respectively Σn
or Πn, such that S ⊢ φ ↔ φ′. If φ is provably Σn and provably Πn, then we say that it is
∆n; similarly with ∆n with respect to S.

We often omit the word “provably”.

Example 2.3.3. As an example, (¬m ≤ n ∨ ∃km + k = n) is not Σ0, but is provably
Σ0, since it is provably equivalent to ∃k ≤ n (¬m ≤ n ∨m+ k = n).

2.4. Results concerning expressibility

Definition 2.4.1. A set T of expressions of LE is definable if and only if there exists
a formula φ(x) such that φ(pψq) is true if and only if ψ belongs to T .

If S is a set of sentences of LE , and T is a set of expressions, we will say that T is
provably definable from S if for some formula φ, φ(pψq) is provable from S if and only if
ψ belongs to T , and ¬φ(pψq) is provable from S if and only if ψ does not belong to T .

Definition 2.4.2. A property φ of natural numbers or of finite sequences of natural
numbers is expressible iff the set {n : φ(n)} is definable.

Proposition 2.4.3. Any finite set of expressions is definable, and is indeed provably
definable (from ∅).

Lemma 2.4.4. Express m < n as m ≤ n ∧ ¬m = n. This is Σ0.
m | n is provably Σ0.
Write [m,n] for 1

2(m+n+1)(m+n)+m. The function (m,n) 7→ [m,n] is a bijection
between N× N and N, and is provably Σ0.

Lemma 2.4.5. The n alternating blocks of quantifiers in a Σn or Πn formula can be of
any length.

Proof: Problem sheets. �

Lemma 2.4.6. The statement that r is the largest number such that 13r ≤ n is expressible
in Σ0.

Proof: We express it as follows: 13
r
≤ n ∧ ¬13

r+

≤ n. �

Lemma 2.4.7. The statement that n is the result of concatenating k and l is expressible
in Σ0.

Proof: We express the statement as follows:
k 6= 0; also l = 0 and n = 13.k, or l 6= 0 and there exists r ≤ l such that r is the

greatest number such that 13r ≤ l, and n = 13r
+

k + l. �

It’s straightforward to get concatenations of more than two.

Lemma 2.4.8. k is an initial part of n: there exists l ≤ n such that n is the result of
concatenating k and l. We write this as k B n.

l is a final part of n: there exists k ≤ n such that n is the result of concatenating k
and l. We write this as k E n.

k is a substring of n: there exists l ≤ n such that l is an initial part of n and k is a
final part of l. We write this as k P n.

8

These are all provably Σ0.

Lemma 2.4.9. The first element of the string with Gödel number n has Gödel number
m (where n is not zero, and in this case necessarily, m is not zero) can be expressed thus:
0 < m, m < 13, and for some k ≤ n, n is the result of concatenating m and k.

The last element of the string with Gödel number n has Gödel number m: m = 0 and
13 | n, or 0 < m < 13 and there exists k ≤ n such that n is the result of concatenating k
and m.

These statements are provably Σ0.

Lemma 2.4.10. n codes a sequence of formulae or terms, the last member of which is
σ: σ contains no #, and either n results from concatenating p#q, pσq, and p#q, or there
exists a ≤ n such that a has first and last characters #, the string ## does not occur in
a, and n results from concatenating paq, pσq and p#q.

This is Σ0.

2.5. Defining provability

Lemma 2.5.1. “n = pmq” is expressible in Σ0.

Proof: n = 13mp0q+
∑m−1
i=0 13ip+q = 13mp0q since p+q = 0. �

Corollary 2.5.2. “n is the Gödel number of a numeral term” is expressible in Σ0.

Proof: We say: there exists m ≤ n such that n = pmq. �

Lemma 2.5.3. “n = pvmq” is expressible in Σ0.

Proof: The following are all expressible in Σ0: the first character of the expression that
n codes for, is v, and all the other characters are ′; and m is largest such that 13m ≤ n.

Corollary 2.5.4. “n is the Gödel number of some variable term” is expressible in Σ0.

Proof: We say: there exists m ≤ n such that n = pvmq. �

The following looks overcomplicated to me and I’ll try and streamline it before Mon-
day.

Lemma 2.5.5. “n is the Gödel number of a term” is expressible in ∆1.

Proof: The basic strategy is to define a way of expressing the following notion in Σ0: “k
is the Gödel number of a string of terms, each of which is a numeral term, or a variable term,
or is derived from previous terms in the sequence using the successor function, addition,
multiplication, or exponentiation”; and then quantifying over values k such that n occurs,
or doesn’t, in the associated string.

Let Φ(k, n) express the conjunction of the following, in which I will indicate from time
to time that certain numbers are ≤ k, in order to emphasise that this can be expressed in
Σ0.

1. p##q does not occur as a part of k.
2. The first digit and last digit of k are both #.
3. The number obtained by concatenating p#q, n and p#q in that order occurs as a

part of n.

9

4. Suppose that l ≤ k is an initial part of k, and that the concatenation of p#q, r ≤ k
and p#q is a final part of l, where p#q is not a part of r.

Then one of the following must be true.
4i. r is the Gödel number of a numeral term.
4ii. r is the Gödel number of a variable term.
4iii. There exists a number ≤ k which is a part of l, and is the concatenation of p#q,

s ≤ k and p#q, where p#q is not a part of s and r = 13.s (ie. r can be obtained from s
by putting + on the end).

4iv. For i = 1, 2, there exists a number ≤ k which is a part of l, and is the concate-
nation of p#q, si ≤ k and p#q, where p#q is not a part of si, and r is the concatenation
of one of pfq, pf ′q or pf ′′q, with p(q, s1, s2, and p)q.

Now we can express the notion “n is the Gödel number of a term” as ∃kΦ(k, n), which
is Σ1.

Now we observe that for any given n we can calculate (based on the number of digits
in n) a number K such that if there exists k such that Φ(k, n), then some such k must
exist such that k ≤ K.

We reason as follows. The number of substrings of n is 1
2
n(n − 1) < n2, and they

all have length no greater than that of n itself. The length of n is around log13 n and is
definitely no greater than n. A total of n2 strings of length n, with n2 + 1 #’s added, has
length n2(1 + n) + 1. A number whose base 13 representation has that length, must be

less than 13× 13n
2(1+n)+1. So let K(n) = 132+n

2(1+n) (which is expressible in Σ0).
Then we can express “n is the Gödel number of a term” by ∀m (m ≥ K(n) → ∃k ≤

mΦ(k, n), which is Π1. �

Lemma 2.5.6. The notion “n is the Gödel number of an atomic formula” is expressible
in ∆1.

Proof: We say the following: there exist k ≤ n and l ≤ n such that k and l are the
Gödel numbers of terms, and n is the concatenation of k, one of p=q or p≤q, and l. �

Lemma 2.5.7. The notion “n is the Gödel number of a formula” is expressible in ∆1.

Proof: Similar to the corresponding argument for terms. �

Lemma 2.5.8. The notion “n is the Gödel number of a logical axiom” is expressible in
∆1.

Proof: We express “n is the Gödel number of an instance of (A1), or of (A2), . . . , or of
(A7)”.

For most of the schemata (Ai), it is fairly straightforward, and we give (A1) as an
example.

We express “n is the Gödel number of an instance of (A1)” by: there exist k, l ≤ n such
that k and l are the Gödel numbers of formulae, and n can be obtained by concatenating,
in this order, p(q, k, p→ (q, l, p→q, k, and p))q.

The most important exception is (A4). We approach this cautiously.
First, we express the notion “k is the Gödel number of a term t such that whenever

vj occurs in t, vi never occurs free in the formula φ in the scope of a quantifier ∀vj”.
We express it as the conjunction of the following two statements:

10

1. k is the Gödel number of a term.
2. Suppose that j ≤ k and there exist m1 and m2, which are the Gödel numbers of

expressions such that k = m1
apvjq

am2 (here using a to indicate concatenation). Then
the following never happens: there exist m3 and m4 which are the Gödel numbers of
expressions such that pφq = m3

apviq
am4 (so vi occurs in φ at a particular location);

there do not exist m5, m6, m7 and m8 such that m3 = m5
am6 and m4 = m7

am8 and
m6

apviq
am7 is the Gödel number of a formula beginning with ∀vi (so, that occurrence

of vi is free), while there do exist m9, m10, m11 and m12 such that m3 = m9
am10,

m4 = m11
am12, m10

apviq
am11 is the Gödel number of a formula beginning ∀vj (so, that

occurrence of vi is inside the scope of a ∀vj).
Now we define the relation Φ(φ, ψ) to hold if and only if for some formula θ, φ = ∀vi θ,

and ψ = θ(t). We can define this by recursion. We say that Φ(φ, ψ) holds in any of the
following cases.

1. φ = ∀vi vi ≤ 0, then ψ = t ≤ 0; and similarly for the various other atomic formulae.
2. φ = ∀vi ¬φ1 and ψ = ¬ψ1, where Φ(∀vi φ1, ψ1) holds.
3. φ = ∀vi (φ1 → φ2) and ψ = (ψ1 → ψ2), where Φ(∀vi φ1, ψ1) and Φ(∀vi φ2, ψ2) hold.
4. φ = ∀vi ∀vi φ1 and ψ = ∀vi ψ1, where ψ1 = φ1.
5. For j 6= i, φ = ∀vi ∀vj φ1 and ψ = ∀vj ψ1, where Φ(∀vi φ1, ψ1) holds.
Now we say that the sequence ((θ1, χ1), (θ2, χ2), . . . , (θr, χr)) witnesses Φ(θ, χ) if θ =

θr, χ = χr, and for each i, Φ(θi, χi) holds, and either χi is atomic, or the recursive definition
of the relation Φ for θi and χi refers to pairs (θj, χj) earlier in the sequence.

Now we use the same ideas as in the proof of Lemma 2.5.5. We can express the stat-
ment “n is the Gödel number of an expression ##θ1#χ1##θ2#χ2## · · ·##θr#χr##
such that the sequence ((θ1, χ1), . . . , (θr, χr)) witnesses Φ(θ, χ)” in complexity ∆1, and
because we can provide a bound for the shortest length of a sequence witnessing Φ(θ, χ) in
terms of the Gödel numbers of θ and χ, we can express “there exists S such that S codes
a sequence witnessing Φ(θ, χ), where k = pθq and l = pχq” in complexity ∆1.

Now, to express that n is the Gödel number of an instance of (A4), we need to say:
“there exist k, l,m ≤ n such that k is the Gödel number of a formula ∀vi φ, l is the Gödel
number of a formula χ, the relation Φ(∀vi φ, χ) holds, whenever vj occurs in t, vi does not
occur free in φ in the scope of a quantifier ∀vj , and

n = p(qakap→qalap)q”.

�

Lemma 2.5.9. The statement “n is the Gödel number of a formula, of which m
is the Gödel number of a proof from assumptions S” may be expressed by ∆i formula
proofS(n,m), if S is definable in ∆i.

Proof: We define proofS(n,m) as follows.
n is the Gödel number of a formula. m codes a sequence whose last member is n.

Whenever c is a member of this sequence, then either c codes an axiom, or an assumption,
or there exist earlier members a and b of the sequence coding sequences which are connected
to c by a rule of inference. �

Lemma 2.5.10. Suppose that S is a set of assumptions definable in Σi, where i ≥ 1.

11

Then there is a Σi formula PrS(n) which holds if and only if n is the Gödel number
of a formula provable from S.

Proof: PrS(n) can be written as ∃m proofS(n,m).
This is Σi. �

Lemma 2.5.11. Assume that PAE is consistent, and true in N.
If S is a definable set of assumptions, then proofS(n,m) is provable from PAE if and

only if n is the Gödel number of a formula φ, and m is the Gödel number of a proof of φ
from S.

Lemma 2.5.12. Assume that PAE is consistent, and true in N.
If S is a definable set of assumptions, then PrS(n) is provable from PAE if and only

if n is the Gödel number of a formula provable from S.

Proof: Recall that PrS(n) can be written as ∃m proofS(n,m).
If n = pφq, where φ is provable from S, then for some m, proofS(n,m) is true. If it’s

true, then we can prove from PAE that m is the Gödel number of a proof of φ from S.
Hence we can prove that there exists an m which is the Gödel number of a proof of φ

from S; that is, we can prove PrS(n).
Now suppose that PrS(n) is provable from PAE. From our assumption that PAE is

true in N, PrS(n) is true in N by the Soundness Theorem. Hence by Lemma 2.5.10, n is
the Gödel number of a formula provable from S. �

Note that we cannot in general express PrS(n) in complexity ∆i; we do have here an
increase in complexity.

Definition 2.5.13. Suppose that S is a set of sentences of L. Then a proof predicate
for S is a formula PrS(x) such that for all formulae φ of L, φ is provable from S if and
only if PrS(φ) is provable from PAE.

So what we have just proved is that any ∆i-definable set of formulae has a Σi-definable
proof predicate.

2.6. PA and PAE are definable

Notation 2.6.1. Suppose φ(v1) is a formula, and σ is a term.
Then we write ∀v1 (v1 = σ → φ(v1)) as φ[σ], and note that it is provably equivalent

to φ(σ).
Note that

pφ[σ]q = p∀v1 (v1 =qapσqap→qapφ(v1)q
ap)q,

which is easily calculated from pφ(v1)q.

Before looking at how to express PA and PAE, we look at the induction schema:
For all formulae φ(x) of L, the following is an axiom:

Indφ = (φ(0) ∧ ∀x(φ(x) → φ(x+)) → ∀xφ(x).

We note that Indφ is equivalent to:

INDφ = (φ[0] ∧ ∀y(φ[y] → φ[y+]) → ∀y φ[y].

12

Recalling that φ[y] = ∀x (x = y → φ(x)), we see that the following is the case:

Lemma 2.6.2. There exists a ∆1-formula F (x, y) of L such that for all formulae φ of
L, for each formula φ, the following statement is provable from PAE:

For all n, F (pφq, n) holds if and only if n = pINDφq.

Corollary 2.6.3. The set of all formulae INDφ, for φ a formula, is definable in ∆1.

Proof: This set is defined by: there exists y ≤ x such that y is the Gödel number of a
formula, and F (y, x) holds. �

Theorem 2.6.4. PA and PAE are definable in ∆1.

Proof: Note that each of PA and PAE is the union of the induction schema for the
appropriate language with a finite set.

The result follows. �

Corollary 2.6.5. ∆1 formulae proofPA(m,n) and proofPAE(m,n) expressing that n
codes a proof of the statement coded by m, in PA and PAE respectively, can be defined,
and so can Σ1 proof predicates PrPA(n) and PrPAE(n).

3. Diagonalisation and truth

3.1. Diagonalisation

Definition 3.1.1. Let En be the expression (whatever it is) of Gödel number n, assuming
this exists.

Definition 3.1.2. d(n) = En[n]. (d for “diagonal”.)

Definition 3.1.3. D(m,n) is the formula n = pd(m)q.

Theorem 3.1.4. (Diagonal Theorem): given a formula F (x), there exists a formula C
such that C ↔ F (pCq) is provable in PAE.

This is a fixed-point theorem.

Proof: We consider the formula F (pd(y)q).

This is equivalent to ψ(y) := ∀z
(

D(y, z) → F (z)
)

.

Let k = pψq.

Let C = ψ[k].

Now C is ψ[k], which is equivalent to ψ(k), which is equivalent to F (pd(k)q).

Also k = pψq, so C = Ek[k] = d(k). Hence F (pd(k)q) = F (pCq).

So C is equivalent to F (pCq). �

13

3.2. The undefinability of truth
Truth is not expressible.

Theorem 3.2.1. (Tarski’s Theorem) There does not exist a formula True(x) such that
True(pφq) is true exactly when φ is true in N.

Proof: Suppose such a formula to exist.
Then by the Diagonal Lemma, there exists a formula C such that C holds if and only

if ¬True(pCq).
But then, True(pCq) is true if and only if C is true, if and only if ¬True(pCq) is true,

giving a contradiction. �

4. Recursive functions

In this section we pin down exactly what sets and functions can be described in
complexity ∆1 and Σ1.

4.1. Recursive functions

Definition 4.1.1. The primitive recursive functions are the smallest class of functions
from finite powers of N to N with the following properties.

1. The constant function n 7→ 0 is primitive recursive.
2. The successor function n 7→ n+ 1 is primitive recursive.
3. For any positive integer k, for any i ≤ k, the projection function (n1, . . . , nk) 7→ ni

is primitive recursive.
4. The function h(n1, . . . , nk) = g(f1(n1, . . . , nk), . . . , fm(n1, . . . , nk)) is primitive

recursive, when g and all fj are primitive recursive.
5. Primitive recursion: f is primitive recursive, where f(n1, . . . , nk, 0) = g(n1, . . . , nk),

and for all n, f(n1, . . . , nk, n + 1) = h(n1, . . . , nk, n, f(n1, . . . , nk, n)), where g and h are
primitive recursive.

Example 4.1.2. The addition function A : (m,n) 7→ m+ n is primitive recursive.

Proof: Let h(m,n, k) = k + 1 (this is primitive recursive, since it is the composition of
a projection function with the successor function).

Let g(m) = m (the identity on N is a projection, so is primitive recursive).
Then for all m, we define A by primitive recursion so that A(m, 0) = g(m), and for

all m and n, A(m,n+ 1) = h(m,n,A(m,n)). �

Example 4.1.3. The modified subtraction function S defined so that S(m,n) = m−n if
m ≥ n and S(m,n) = 0 if m < n, is primitive recursive.

Multiplication and exponentiation are primitive recursive.

We obtain the recursive partial functions by also using the minimalisation operator,
which, given a function g, returns the least n such that g(n1, . . . , nk, n) = 0 if there is one,
and is undefinable otherwise.

Definition 4.1.4. The recursive functions are the smallest class of partial functions
from finite powers of N to N with the following properties.

1. Any primitive recursive function is recursive.

14

2. Minimalisation: suppose that g(n1, . . . , nk, nk+1) is a primitive recursive func-
tion. Then the partial function f(n1, . . . , nk), defined to be the least value of n such that
g(n1, . . . , nk, n) = 0 if this exists, and undefined if it does not, is recursive.

Example 4.1.5. Ackerman’s function is recursive but not primitive recursive:
ψ(0, n) = n+ 1
ψ(m+ 1, 0) = ψ(m, 1)
ψ(m+ 1, n+ 1) = ψ(m,ψ(m+ 1, n)).

It also grows rather fast.

Fact 4.1.6. The recursive partial functions f(x1, . . . , xk) are precisely those that can
in principle be calculated by a computer algorithm (that is, such that there is an algo-
rithm that when presented with input (a1, . . . , ak) for which f(a1, . . . , ak) is defined, out-
puts f(a1, . . . , ak) after a finite time, and when presented with input for (a1, . . . , ak) for
which f(a1, . . . , ak) is undefined, runs for ever without halting).

Primitive recursion is expressible in LE .

Theorem 4.1.7. Every primitive recursive function is definable in complexity Σ1.

Proof: We argue by induction on the length of the demonstration that a function is
primitive recursive. The only difficult step is when we use primitive recursion. Then we
appeal to the following lemma.

Lemma 4.1.8. Suppose that g : Nk → N and h : Nk+1 → N are functions that can be
defined in complexity Σ1.

Then the function f defined by primitive recursion from g and h, that is to say, defined
so that:

1. f(n1, . . . , nk, 0) = g(n1, . . . , nk), and
2. f(n1, . . . , nk, n+ 1) = h(n1, . . . , nk, n, f(n1, . . . , nk, n)),
is definable in complexity Σ1.

Proof: We express the statement z = f(n1, . . . , nk, n) as follows.
Consider the statement D(y), where y is a natural number: “y is the Gödel number

of a sequence, the first element of which is [0, g(n1, . . . , nk)], and for each m ≤ y, if m is
a member of the sequence, then for all i, j ≤ y such that m = [i, j], for all m′ ≤ y, if m′

immediately follows m in the sequence, for all i′, j′ ≤ y such that m′ = [i′, j′], i′ = i + 1
and j = [i, h(n1, . . . , nk, i, j)]”.

This statement is Σ1, and expresses the idea that y codes a derivation of values of the
function f using primitive recursion.

We now express “z = f(n1, . . . , nk, n)”.as “There exists y such that D(y) holds, and
[n, z] occurs in the sequence coded by y.”

This is Σ1. �

Theorem 4.1.9. Every recursive partial function is Σ1-definable, and vice versa.

Proof: ⇒): Easy once we know primitive recursion is expressible. Minimalisation adds
an existential quantifier.

⇐): Let φ be Σ0 such that y = f(x) ↔ ∃z φ(x, y, z).

15

Roughly speaking, search for y and z—or for [y, z]—such that φ(x, y, z). If one exists,
stop and output y. If not, return ⊥.

How do we tell if φ(x, y, z)?
We define primitive recursive hψ which tells whether ψ is true or not by recursion on

Σ0 ψ as follows. We will define hψ to have k arguments, where k is largest such that vk
occurs free in ψ.

hvi=vj (n0, . . . , nk) = S(1, S(ni, nj) + S(nj, ni)), where k is the larger of i and j.
hvi≤vj (n0, . . . , nk) = S(1, S(ni, nj)) where k is the larger of i and j.
hvi=n(n0, . . . , ni) = S(1, S(ni, n)+ S(n, ni)), and so on through all the other kinds of

atomic formula.
h¬ψ(n0, . . . , nk) = S(1, hψ(n0, . . . , nk)).
hφ→ψ(n0, . . . , nk) = S(1, hφ(n1, . . . , ni).S(1, hψ(n1, . . . , nj))) where k is the larger of

i and j.
h∀vi≤vj φ(n0, . . . , nk) = maxm≤nj

hφ(n
′
0, . . . , n

′
l), where l = k unless i = k and j < k,

when l = k − 1, and n′
r = nr unless r = i, when n′

r = m.
h∃vi≤vj φ(n0, . . . , nk) = minx≤y hφ(n

′
0, . . . , n

′
l), where l = k unless i = k and j < k,

when l = k − 1, and n′
r = nr unless r = i, when n′

r = m.
Similarly for formulae beginning ∀vi ≤ n and ∃vi ≤ n.
Then express “f(x) = y” as: “y is the first component of [y, z], where n = [y, z] is

least such that 1− hφ(x, y, z) = 0”. �

Definition 4.1.10. A set is recursive if its characteristic function χA is recursive, and
recursively enumerable if the partial function πA which is 1 on the set and undefined off,
is recursive.

Theorem 4.1.11. Equivalently, a set is recursively enumerable iff it is Σ1, and recursive
iff it is ∆1.

Proof: If A is recursively enumerable, then πA is recursive, and hence Σ1-definable.
Then A is defined by the statement “πA(n) = 1”, which is Σ1.

Suppose A is defined by a Σ1 formula φ.
Then we define πA thus: a pair (n,m) belongs to the graph of πA if and only if φ(n)

and m = 1. This statement can be expressed in Σ1.
Suppose A is recursive. Then πA = π{1} ◦ χA, which is recursive, and πAc = π{0} ◦

χA + 1, which is also recursive.
By the above reasoning, both A and its complement are Σ1-definable.
Also by the above, if A is ∆1, then A and its complement are both Σ1. Let us suppose

that A is defined by φ and its complement by ψ.
Then we may define χA in Σ1 as follows: The formula θ(n,m) asserting that (n,m)

belongs to the graph of χA expresses: “either φ(n) and m = 1, or ψ(n) and m = 0”.
So χA is Σ1-definable, and therefore recursive. �

Corollary 4.1.12. A set A is recursive if and only if both A and its complement are
recursively enumerable.

Corollary 4.1.13. A subset A of N is recursively enumerable if and only if it is the
range of some recursive partial function.

16

Proof: If A is recursively enumerable, then define f(n) to be n.πA(n). This is recursive,
and has range A.

Now suppose that f is a recursive partial function with range A. Since f is recursive,
the statement “(n,m) is in the graph of f” is Σ1-definable. Now the statement “(n,m) is
in the graph of πA” may be expressed as: “there exists k such that (k, n) is in the graph
of f , and m = 1”. �

4.2. Defining exponentiation

Lemma 4.2.1. The property of being a power of 13 can be defined in L in complexity Σ0.

Proof: We express “n is a power of 13” as: “n = 1, or 13 | n, and if p ≤ n and p | n
and ¬13 | p, then p = 1”. �

Lemma 4.2.2. The statement “n is the smallest power of 13 greater than m” can be
expressed in L in complexity Σ0.

Proof: We express it as “n is a power of 13 and n is greater than m and for all k ≤ n,
if k is a power of 13 greater than m, then k = n”. �

Lemma 4.2.3. We can express the concatenation operator (m,n) 7→ man in L in
complexity Σ0.

Proof: We express “k = man” as “there exists l ≤ k such that l is the smallest power
of 13 greater than n, and k = m.l + n”. �

Proposition 4.2.4. We can express any primitive recursive function in L in complexity
∆1, and any recursive partial function in complexity Σ1.

Corollary 4.2.5. The statement k = mn, for m, n and k natural numbers, is definable
in L, and is indeed ∆1.

Proof: Exponentiation is primitive recursive. �

Corollary 4.2.6. Any formula φ of LE is provably equivalent from PAE to a formula
φ′ of L.

Moreover, for n ≥ 1, if φ is Σn, then φ
′ can be chosen to be Σn, and if φ is Πn, then

φ′ can be chosen to be Πn.

Proposition 4.2.7. A formula of L is provable in PAE if and only if it is provable in
PA.

Proof: Exponentiation can be defined in L so that formulae of L equivalent to the
axioms of PAE can be written in L.

In more detail, the axioms of PAE not included in PA fall into two classes.
Firstly, instances of the induction schema written in LE . These are rewritten as

equivalent instances of the induction schema written in L, which are already axioms of
PA.

Secondly, the two statements ∀v1 v1
0 = 1 and ∀v1 ∀v2 (v1

v2
+

= v1
v2 .v1). The replace-

ments of these are theorems of PA. �

17

Corollary 4.2.8. Any subset of N
k, or any function, that is Σn or Πn in PAE is

similarly in PA, for n ≥ 1.

Corollary 4.2.9. If n is the Gödel number of a formula of L, then the statements
PrPA(n) and PrPAE(n) are equivalent.

5. Provability

5.1. Properties of provability

Theorem 5.1.1. Suppose S is a provably definable set of assumptions, and S ⊢ φ.
Then PA ⊢ PrS(φ).

Proof: Write out a formal proof of φ from S. Let n be its Gödel number. Then
PA ⊢ proofS(pφq, n).

In more detail (we will be referring to this in the proof of the next theorem but one),
suppose that (φ1, . . . , φm) is a formal proof of φ from S, and that n = p(φ1, . . . , φm)q. We
argue that PA ⊢ proofS(pφq, n).

Let ψS(x) be a formula which provably expresses “x is the Gödel number of a member
of S”, that is, ψS(x) is such that PA ⊢ ψS(n) if n is the Gödel number of an element of S,
and PA ⊢ ¬ψS(n) otherwise.

Let ψax(x) be a formula which provably expresses “x is the Gödel number of a logical
axiom”, let ψrule(x, y, z) express “x is the Gödel number of a formula which can be obtained
by means of a logical rule (MP or Gen) from the formulae with Gödel numbers y and z”.
Let ψlast(x, y) provably express “x is a formula, and is the last member of the sequence of
formulae whose Gödel number is y”.

Then proofS(x, y) expresses the following: “x is the Gödel number of a formula, y is
the Gödel number of a sequence of formulae, if φi occurs in this sequence, then ψS(pφiq) or
ψax(pφiq) or for some earlier members φj and φk, ψrule(pφiq, pφjq, pφkq); and ψlast(x, y)”.

Now proofS(pφq, p(φ1, . . . , φm)q) is true, so we can compile a proof of it from PA by
putting together the proofs of the various formulae ψ∗(x, y) that we need. �

Theorem 5.1.2. Suppose S is a definable set of assumptions. PA ⊢ PrS(φ → ψ) →
(PrS φ→ PrS ψ).

Proof: We show that PA ∪ {Prφ,Pr(φ→ ψ)} ⊢ Prψ, and deduce the result from that.
Suppose that in a model of PA, proof(pφq, n1) and proof(p(φ→ ψ)q, n2).

Then if n = na

1 n
a

2 pψq
ap#q, then proof(pψq, n) holds. �

Theorem 5.1.3. Suppose that S is a provably definable set of assumptions, including
PA as a subset.

Then PA ⊢ PrS(pψq) → PrS(pPrS(pψq)q).

Proof: This is an arithmetised version of the proof of Theorem 5.1.1.
Consider the statement “m is the Gödel number of a proof of φ from S which

is l steps long”; write as proof∗S(pφq, m, l). Note that proofS(pφq, m) is equivalent to
∃l proof∗S(pφq, m, l). We will argue inductively that for all l, if proof∗S(pφq, m, l) holds,

then PrS(pPrS(pφq)q) holds; the argument will proceed by recursively constructing the

18

Gödel number M of a proof in S of PrS(pφq), and noting that proofS(pPrS(pφq)q,M)
holds.

We will do this in a general model of PA, which means we need to be careful, because
in arbitrary models of PA, PrS(pψq) does not necessarily entail S ⊢ φ.

Suppose that N is a model of PA, and that N � PrS(pφq).
Then there exist m, l ∈ N such that N � proof∗S(pφq, m, l). In the argument that

follows we need to bear in mind that N may not be N, and that m and l may not be actual
natural numbers; they just have, in N, some of the first-order properties that natural
numbers possess.

We argue using induction on l (this can be formalised in PA, using the induction
scheme). We examine the inductive step; the base case is similar, but easier.

Suppose then that in N, l > 1, and that N � proof∗S(i,m, l). Suppose, using the
inductive hypothesis, that if, in N, j is the Gödel number other than the last one of an
element of the sequence whose Gödel number is m, then there exists Mj in N such that

N � proofS(pPrS(i)q,Mj).
If in N, i is the Gödel number of a member of S, that is to say, if N � ψS(i), then we

let Mj be the Gödel number of a proof of ψS(i).
To justify this step further, recall that in N, ψS(n) is provable if n is the Gödel number

of a member of S, and ¬ψS(n) is provable if not. It follows that there is an algorithm
which, when presented with input n, outputs the Gödel number of a proof of ψS(n) if
n ∈ S, and outputs the Gödel number of a proof of ¬ψS(n) if not. The algorithm goes like
this. Examine all formal proofs in S, one by one. (They can be listed in a recursive way
that permits us to do this). We will eventually encounter either a proof of ψS(n), in which
case we output its Gödel number; or we encounter a proof of ¬ψS(n), in which case we
output the Gödel number of that. The existence of this algorithm means that there is a
Σ1-definable function fS inputting n and outputting the Gödel number of the appropriate
proof. Suppose that χ(x, y) expresses “y = fS(x)”. Then if we are in the situation of
the previous paragraph, and N � ψS(i), then there exists Mi ∈ N such that N � χ(i, Ni).
Construct Mi by appending Ni and a proof of ψlast.

In a similar way, if in N, i is the Gödel number of a logical axiom, then let Mi be the
Gödel number of a proof of ψax(i).

If i is, in N, the Gödel number of a formula obtained using an application of a rule to
formulae earlier in the sequence coded by n whose Gödel numbers are j and k, then by the
inductive hypothesis there exist elements Mj and Mk of N such that N � proofS(j,Mj)
andN � proofS(k,Mk). Then we generateMi by combiningMj andMk, deleting repeated
#’s as necessary. �

Theorem 5.1.4. Suppose that S is a set of sentences of L, definable from P.
For all φ, φ is provable in S if and only if PrS(pφq) is true in the standard model N.

Proof: If φ is provable from S, then Pr(pφq) is provable in PA, so Pr(pφq) is true in N

(since true in all models of PA).
Now suppose that Pr(pφq) is true in N.
Now Pr(pφq) is an existential statement saying that there is an n such that n is the

Gödel number of a proof whose last line is φ. Since it is true in N, there must be a natural

19

number n about which the formula proof(pφq, n) is true. Then n is indeed the Gödel
number of a proof in S whose last line is φ, and so that proof witnesses that φ is provable
in S. �

5.2. A limit on the power of proof

Theorem 5.2.1. (Weak form of the First Incompleteness Theorem) Suppose that S is a
definable set of sentences that is true in N and includes PA.

Then there exists a formula G such that G is true in N, but is not provable from S.

Proof: Using the Diagonal Lemma, find a formula G such that G ↔ ¬PrS(pGq) is
provable from PA.

Suppose that G is provable from S. Then G is true in N, by assumption and by
soundness. Also PrS(pGq) is true by Theorem 5.1.4. But then G is false, contradiction.

So G is not provable from S.
Now suppose that G is false. Then PrS(pGq) is true, so G is provable from S by

Theorem 5.1.4. But S is true in N, so G is true in N also by soundness, contradiction.
So G is true in N. �

5.3. Grades of completeness

Definition 5.3.1. A set of axioms S is n-inconsistent if and only if there exists a Σn
formula ∃xφ(x) such that ⊢S ∃xφ(x), but for all m, ⊢S ¬φ(n).

S is n-consistent if and only if it is not n-inconsistent.
S is ω-consistent if and only if it is n-consistent for all n.

Definition 5.3.2. A set S of statements is Σi-complete if and only if all true Σi-
sentences are provable from S.

We will say it is Σi-sound if and only if all Σi-sentences provable from S are true.

Definition 5.3.3. The axiom scheme Q is the following list of axioms:
∀v1∀v2 v1

+ = v2
+ → v1 = v2.

∀v1 ¬v1
+ = 0.

∀v1 v1 + 0 = v1.
∀v1∀v2 v1 + v2

+ = (v1 + v2)
+.

∀v1 v1.0 = 0.
∀v1∀v2 v1.v2

+ = v1.v2 + v1.
∀v1 v1 ≤ 0 ↔ v1 = 0.
∀v1∀v2 v1 ≤ v2

+ ↔ (v1 ≤ v2 ∨ v1 = v2
+).

∀v1∀v2 v1 ≤ v2 ∨ v2 ≤ v1.

This has no induction.

Definition 5.3.4. The following list of axioms is known as R.
All sentences m+ n = k, for which m+ n = k.
All sentences m.n = k, for which m.n = k.
All sentences m 6= n, where m 6= n.
All sentences ∀v1 v1 ≤ n↔ (v1 = 0 ∨ · · · ∨ x = n).
All sentences ∀v1 v1 ≤ n ∨ n ≤ v1.

20

Proposition 5.3.5. Q extends R.

Theorem 5.3.6. R is Σ0-complete.

Proof: The second-to-last schema gives a method of eliminating bounded quantifiers.
The other axioms allow us to compute the diagrams of +, . and ≤. �

Corollary 5.3.7. Q and PA are Σ0-complete.

Theorem 5.3.8. Any system S that is Σ0-complete is also Σ1-complete.

Proof: Suppose that ∃v1 F (v1) is true. Then F (n) is true for some n. Then S ⊢ F (n)
by Σ0-completeness. So S ⊢ ∃v1 F (v1) as required. �

Corollary 5.3.9. R, Q, and PA are Σ1-complete.

Presburger arithmetic is PA with all mention of multiplication erased.

Definition 5.3.10. The following list of statements, in the sublanguage LP of L
containing no uses of the multiplication symbol f ′, are known as Presburger arithmetic:

1. ¬∀vi vi
+ = 0; ∀vi∀vj (vi

+ = vj
+ → vi = vj).

(n 7→ n+ is an injection from N ↔ N \ {0}).
2. ∀vi vi + 0 = vi.
3. ∀vi∀vj vi + vj

+ = (m+ n)+.
4. ∀vi 0 ≤ vi; ∀vi∀vj (vi ≤ vj ↔ (vi = vj ∨ vi

+ ≤ vj)); ∀vi vi ≤ vi; ∀vi∀vj (vi ≤
vj ∨ vj ≤ vi); ∀vi∀vj∀vk ((vi ≤ vj ∧ vj ≤ vk) → (vi ≤ vk)); ∀vi∀vj (vi ≤ vj ∨ vj ≤ vi).

(≤ is a total order, with initial element 0, and n+ is the immediate successor of n).
5. (Induction Schema): For any formula φ(v1) of LP , the following is an axiom: if

φ(0), and if for all n, φ(n) implies φ(n+), then ∀nφ(n).
Formally:

((φ(0) ∧ (∀v1 φ(v1) → φ(v1
+))) → ∀v1 φ(v1)).

The following theorem is not examinable for part C or OMMS.

Theorem 5.3.11. Presburger arithmetic is consistent and complete, and the set of
consequences of it is decidable.

Proof: Rather long, very ingenious, and involving quantifier elimination and modular
arithmetic. �

5.4. The first incompleteness theorem

Theorem 5.4.1. (First Incompleteness Theorem) There exists a Π1-sentence G such
that if PA is consistent, then PA 6⊢ G, and if in addition PA is 1-consistent, then PA 6⊢ ¬G.

Proof: Let a be the Gödel number of “d(x) is not provable”. (This is Π1.)
More formally, a = p¬PrPA(pd(x)q)q.
Let G be Ea[a] (which is also Π1).
Now Ea(x) is ¬PrPA(pd(x)q), so G = Ea[a] is provably equivalent to ¬PrPA(pd(a)q),

that is, to ¬PrPA(pEa[a]q), that is, to ¬PrPA(pGq).
Suppose that PA ⊢ G.
Then PA ⊢ PrPA(pGq), by Theorem 5.1.1.

21

So since PA ⊢ G, PA ⊢ ¬PrPA(pGq).
Thus PA is inconsistent, giving a contradiction.
Now suppose that PA ⊢ ¬G, and that PA is 1-consistent.
Then PA ⊢ PrPA(pGq), because G is provably equivalent to ¬PrPA(pGq).
Now PrPA(pGq) is the same thing as ∃x proofPA(pGq, x), and proofPA(pGq, x) is Σ1.
Write proofPA(pGq, x) as ∃y φ(x, y), where φ(x, y) is Σ0.
Then ∃x ∃y φ(x, y) may be rewritten ∃z ∃x ≤ z ∃y ≤ z φ(x, y), which is Σ1 in the strict

sense.
Now PA ⊢ ∃z ∃x ≤ z ∃y ≤ zφ(x, y), so because PA is 1-consistent, there must exist n

such that PA 6⊢ ¬∃x ≤ n∃y ≤ nφ(x, y).
But PA is Σ0-complete by Lemma 5.3.6., so PA ⊢ ∃x ≤ n ∃y ≤ nφ(x, y).
So this statement is true in N. Let m be such that N � ∃y ≤ nφ(m, y).
Then N � proofPA(pGq, m).
Hence m is the Gödel number of a proof of G in PA.
So we can read off a proof of G in PA from m, and see that PA ⊢ G.
Hence PA is inconsistent, giving a contradiction. �

Corollary 5.4.2. Assume N is a model of PA. Then G is true in N and not provable.

Proof: If N is a model of PA, then PA is consistent and 1-consistent.
Hence PA proves neither G nor ¬G.
Since PA does not prove G, there is no natural number coding a proof of G, so then

¬PrPA(G) is true in N, so G is true. �

Theorem 5.4.3. (Rosser’s Theorem) Let S be any definable consistent set of sentences
including PA. Then there is a sentence G such that S neither proves nor disproves G.

Proof: Let H(x) be the statement ∃y (proofS(p¬q
ax, y) ∧ ∀z ≤ y ¬ proofS(x, z)).

(Informally, H(pφq) says “there is a y coding a refutation of φ, and no z ≤ y codes a
proof of φ”.)

Using the Diagonal Lemma, let G be such that G↔ H(pGq) is provable from PA.
We argue that S neither proves nor refutes G.
Suppose first that S ⊢ G.
Then there is a proof of G from S. Let n be its Gödel number.
Then PA ⊢ proofS(pGq, n), and so S ⊢ proofS(pGq, n).
Now S is consistent, so given that S ⊢ G, then it is not the case that S ⊢ ¬G; and so

no disproof of G exists.
So no natural number m is the Gödel number of a proof from S of ¬G; in particular

no natural number m < n is the Gödel number of a proof from S of ¬G.
So if m < n, PA ⊢ ¬ proofS(p¬Gq, m), so that PA ⊢ ∀m < n¬ proofS(p¬Gq, m).
Now n is the Gödel number of a proof of G from S, so PA ⊢ ∀m ≥ n ∃x ≤

mproofS(pGq, x) (the value of x that witnesses this is of course n itself).
Putting these two sentences together, PA ⊢ ∀y¬(proofS(p¬Gq, y)∧∀z ≤ y ¬ proofS(pGq, z)).
That is, PA ⊢ ¬H(pGq). Hence S ⊢ ¬H(pGq).
But S ⊢ G, so S ⊢ H(pGq), giving a contradiction.
Now suppose that S ⊢ ¬G.

22

Then there is a proof of ¬G from S. Let n be the Gödel number of that proof.
Since S is consistent, it is not possible that S ⊢ G. So there is no proof of G from S.

So for all m ≤ n, m is not the Gödel number of a proof of G from S.
Hence PA ⊢ (proof(p¬Gq, n) ∧ ∀m ≤ n¬ proofS(G,m)).
So S proves the same thing.
Hence S ⊢ H(pGq). From this it follows that S ⊢ G, giving a contradiction. �

5.5. The Second Incompleteness Theorem and Löb’s Theorem

Theorem 5.5.1. (Second Incompleteness Theorem) If S is a provably definable set of
sentences including PA, and if a sentence G has the property that S ⊢ G ↔ ¬PrS(pGq),
then S ⊢ ¬PrS(pXq) → ¬PrS(pGq).

Proof: (G→ (¬G→ X)) is a tautology and so a theorem of S.
By hypothesis, S ⊢ (PrS(pGq) → G).
Hence S ⊢ (G→ (PrS(pGq) → G)).
From Theorem 5.1.1, and the assumption that S extends PA, it follows that S ⊢

PrS(p(G→ (PrS(pGq) → X))q).

From Theorem 5.1.2, we have S ⊢ (PrS(p(G→ (PrS(pGq) → X))q) → (PrS(pGq) →

PrS(p(PrS(pGq) → X)q))).

Hence S ⊢ (PrS(pGq) → PrS(p(PrS(pGq) → X)q)).

Also from Theorem 5.1.2, we have S ⊢ (PrS(p(PrS(pGq) → X)q) → (PrS(pPrS(pGq)q) →
PrS(pXq))).

Thus S ⊢ (PrS(pGq) → (PrS(pPrS(pGq)q) → PrS(pXq))).

Now by Theorem 5.1.3, we have that S ⊢ (PrS(pGq) → PrS(pPrS(pGq)q)).
Thus S ⊢ (PrS(pGq) → PrS(pXq)).
Hence S ⊢ (¬PrS(pXq) → ¬PrS(pGq)), as required. �

Corollary 5.5.2. If X is a sentence, and S is consistent, then S 6⊢ ¬Pr(pXq).

Proof: If G exists, and S ⊢ ¬Pr(pXq), then S ⊢ ¬Pr(pGq), so S ⊢ G. But then
S ⊢ Pr(pGq). So S is inconsistent. �

Definition 5.5.3. Suppose that S is a definable set of sentences. We define ConS to be

the formula ¬PrS(p¬0 = 0q). We read this as “S is consistent”.

Corollary 5.5.4. If S is consistent, then it is not the case that S ⊢ ConS.

Proof: In fact, S does not prove the statement ¬PrS(pXq) for any formula X . �

Theorem 5.5.5. (Löb’s Theorem) Suppose that S is a provably definable set of sentences
extending PA. Then from S ⊢ (P (pφq) → φ) we can deduce S ⊢ φ.

Proof: Let L be diagonal for PrS(·) → φ, ie S ⊢ (L↔ (PrS(pLq) → φ)).

Then by Theorem 5.1.1, S ⊢ PrS(pL→ (PrS(pLq) → φ)q).
By Theorem 5.1.2, S ⊢ PrS(pLq) → PrS(PrS(pLq) → φ).

By Theorem 5.1.2, S ⊢ PrS(pPrS(pLq)q) → (PrS(pPrS(pLq)q) → PrS(pφq), so S ⊢

PrS(pLq) → (PrS(pPrS(pLq)q) → PrS(pφq)) by HS, so S ⊢ ((PrS(pLq) → PrS(pPrS(pLq)q)) →

23

(PrS(pLq) → PrS(pφq))) by (A2), so S ⊢ (PrS(pLq) → PrS(pφq)) by Theorem 5.1.3 and
MP.

Using HS, S ⊢ PrS(pLq) → φ.

But this is equivalent to L, so S ⊢ L.
By Theorem 5.1.1, S ⊢ PrS(pLq).

Now by MP, S ⊢ φ as required. �

5.6. A stronger version of Σ1-completeness
We proved earlier that if φ is Σ1 and true, then it is provable.

In this section we strengthen this result.

Theorem 5.6.1. If φ is Σ1, then PA ⊢ (φ→ PrPA(pφq)).

Sketch proof: Messy induction on φ, of which the messiest part is when φ is atomic
or negated atomic.

The following special cases can be done algorithmically using induction:

1. n = n is a logical axiom.

2. ¬m = n where m 6= n.
3. m+ n = m+ n and m.n = m.n.

Bounded quantifiers can be coped with as follows.

If φ = ∀m ≤ nψ(m), then the following procedure can be expressed in L: for each
m ≤ n, write down a proof of ψ(m), deduce

∨

m≤n ψ(m), and then by induction on n
deduce ∀m ≤ nψ(m); the result is a proof of φ.

We treat bounded existential quantifiers in a similar way.

Now m ≤ n is provably equivalent to ∃k ≤ nm+ k = n.
Now any Σ0 formula is provably equivalent, by standard proofs that can be generated

by an algorithms, to a disjunction of conjunctions of statements of the above forms.

So it is possible to see that there is an algorithm which inputs true Σ0 formulae and
outputs proofs for them (and recall that truth for Σ0 formulae is definable).

Now suppose φ is a Σ1 formula ∃xψ(x).

The process that inputs true formulae ψ(n) and outputs their proofs can be described
by an algorithm, and so is Σ1-definable. So in effect we have the following statement as a
theorem of PA: ∀x (ψ(x) → PrS(pψ(x)q)); and ∃x PrS(pψ(x)q) entails PrS(p∃xψ(x)q).

The statement ∃xψ(x) → PrS(p∃xψ(x)q) now follows. �

Theorem 5.6.2. If φ(x) is Σ1, then the statement ∀x (φ(x) → PrPA(pφ(x)q)) is a
theorem of PA.

Sketch proof: This is proved by the same techniques as the previous theorem. �

6. Strengthenings of PA

Given that PA is incomplete, we look around for reasonable strengthenings of it. We
could use PA∪ConPA, PA∪ConPA ∪ConPA∪ConPA

, etc. The next section provides a more
systematic possible approach.

24

6.1. The ω-rule

Definition 6.1.1. Suppose that S is a set of formulae of L.
We define Sω to be the logical system whose axioms are S together with all logical

axioms, and whose rules are MP, Gen, and the ω-rule which allows one to deduce ∀xφ(x)
from the entire set of assumptions {φ(n) : n ∈ N}.

A proof in Sω is a sequence (φα : α < β), where β is an ordinal, such that each φα
is an element of S or a logical axiom, or else is obtained from previous members of the
sequence using a rule.

φ is a theorem of Sω, and we write Sω ⊢ φ, iff there is a proof in Sα of which φ is
the last element.

We could, if we wished, insist that all proofs have length < ω1.
The ω-rule looks reasonable-ish. However there is a big problem with it.

Theorem 6.1.2. Rω is complete.

Proof: We can prove by induction on the complexity of a formula φ that Rω ⊢ φ or
Rω ⊢ ¬φ.

The ω-rule allows us to eliminate quantifiers.
The case where φ is Σ0 is already done since R is Σ0-complete.
Now suppose that φ is Πn+1; say φ = ∃xψ(x).
There are two cases. If there exists n such that Rω ⊢ ψ(n), then it is certainly true

that Rω ⊢ ∃x, ψ(x), so Rω ⊢ φ. The alternative is (appealing to the inductive hypotheis)
that for all n, Rω ⊢ ¬ψ(n). Then by the ω-rule, Rω ⊢ ∀x¬ψ(x), so Rω ⊢ ¬φ.

This argument of course also does the case when φ is Σn+1. �

Corollary 6.1.3. PAω is complete.

Corollary 6.1.4. Assuming that Rω and PAω are sound with respect to truth in N,
then the set of theorems of Rω or of PAω is undefinable and so a fortiori not recursively
enumerable.

Proof: Using Tarski’s Theorem, and the statement that a set is recursively enumerable
iff it is Σ1-definable. �

The upshot is that since, as human beings, we are limited to what is recursively
enumerable, Rω and PAω are of no practical use.

In the next section we look at an adaptation of the ω-rule which may be more useful.

6.2. The uniform reflection principle
The uniform reflection principle is an arithmetised version of the ω-rule, and says “if

φ(n) is provable for all n, then ∀xφ(x) is true” (which can be said in the language).

Definition 6.2.1. The uniform reflection principle URP is the set of axioms got by
adding to PA all instances of the following, where formula F (v1) is a formula of L:

∀n PrPA(p∀v1 (v1 =qapnqap→ F (v1))q) → ∀nF (n).

We write this as ∀n PrPA(pF [ṅ]q) → ∀nF (n), and refer to it as the reflection principle
for F .

25

This is better—we have a definable set of axioms here—so less powerful. How power-
ful?

Theorem 6.2.2. Suppose that G is a sentence such that PA ⊢ G↔ ¬PrPA(pGq).

Then PA ⊢ ∀n PrPA(p¬ proofPA(pGq, ṅ)q).

Proof: Recall that proofPA is ∆1.
Suppose that N is a model of PA, and that n ∈ N.
Then either proofPA(pGq, n) is true in N, or ¬ proofPA(pGq, n) is true.
If N � ¬ proofPA(pGq, n) is true, then because ¬ proofPA(pGq, n) is Σ1, we can deduce

by Theorem 5.6.1. that PrPA(¬ proofPA(pGq, n)).
If on the other hand proofPA(pGq, n), then PrPA(pGq), and so PrPA(pXq) for all X

by the Second Incompleteness Theorem, and so PrPA(pproofPA(pGq, n)q) in particular. �

Corollary 6.2.3. URP ⊢ G.

Proof: Using the previous theorem and URP, we have URP ⊢ ∀n¬ proofPA(pGq, n),
that is, URP ⊢ ¬Pr(pGq), from which we deduce URP ⊢ G. �

So URP is stronger than PA. By how much?

Theorem 6.2.4. Writing URPΠ1
for the axiom system got by adding to PA only instances

of the reflection principle for Π1 formulae, PA ∪URPΠ1
is equivalent to PA ∪ {ConPA}.

Proof: Assume PA ∪URPΠ1
. We set out to prove ConPA.

Recall that ConPA is ¬PrPA(p¬0 = 0q), which is ∀x¬ proofPA(p¬0 = 0q, x).

Recalling that proofPA is ∆1, express ¬ proofPA(p¬0 = 0q, x) as ∀y ψ(x, y).
So, ConPA can be written as ∀z ∀x ≤ z, ∀y ≤ z ψ(x, y).
Now ¬0 = 0 → ∀x ≤ z ∀y ≤ z ψ(x, y) is an instance of a tautology.
It follows that if for some z, ¬PrPA(∀x ≤ z, ∀y ≤ z ψ(x, y)) is true in a particular

model of PA, then so is ¬Pr(p¬0 = 0q); that is, ConPA is true, as desired.
If, on the other hand, ∀z PrPA(∀x ≤ z, ∀y ≤ z ψ(x, y)) holds in the model, then by

URPΠ1
, we have ∀z ∀x ≤ z ∀y ≤ z ψ(x, y), and thus we again have ConPA.

Now assume that PA ∪ {ConPA} is true in a particular structure N.
Suppose that F (x) is Π1, and that in N, ∀x PrPA(pF (x)q) is true.

Suppose that N � PrPA(p¬F (ẋ)q).
Then using 5.1.1. and 5.1.3., and the fact that (F (x) → (¬F (x) → ¬0 = 0)) is

a tautology, we conclude that N � PrPA(p¬0 = 0q), contradicting the assumption that
ConPA is true in N.

Hence N � ∀x¬PrPA(p¬F (ẋ)q).

Now ¬F (x) is provably Σ1, so PA ⊢ ∀n (¬F (n) → PrPA(p¬F (ṅ)q)).
So we deduce that in N, ∀nF (n) holds, as required. �

7. Gödel-Löb logic

Here we abstract out some of the features of the logic of provability we’ve been deriv-
ing, finding that a surprisingly small part of it is sufficient to give us the Incompleteness
Theorems.

26

7.1. Definitions and basic results

Definition 7.1.1. Gödel-Löb logic is a system of modal propositional logic.

The symbols are: a countably infinite number of propositional variables p, q, r etc; a
logical constant ⊥, a binary connective →, and a unary operator �.

The formulae are: all propositional variable letters; the symbol ⊥; and all strings
(φ→ ψ) and �φ where φ and ψ are formulae.

The logical axioms are all propositional tautologies (with ⊥ interpreted as a contradic-
tion), together with all instances of �(φ → ψ) → (�φ → �ψ), and �(�φ → φ) → �φ.
The rules of inference are modus ponens and necessitation, by which we mean the rule “if
⊢ φ, then ⊢ �φ”.

�φ is to be interpreted “φ is provable”.
The following theorem (whose proof is not examinable) shows that the abstraction

process is very successful.

Theorem 7.1.2. Suppose that Σ is a set of formulae of GL logic and φ is a formula of
GL logic.

Then Σ ⊢ φ if and only if whenever ψ 7→ ψ∗ is a map from formulae of GL logic to
formulae of L having the properties that (¬ψ)∗ = ¬ψ∗, that (ψ → χ)∗ = (ψ∗ → χ∗), and
that (�ψ)∗ = PrPA(pψ∗q), PA ∪ {σ∗ : σ ∈ Σ} ⊢ φ∗.

Proof: The forward direction is relatively easy. The reverse direction involves clever
use of what is known as Kripke frames, which are not on the syllabus of this course
(unfortunately). �

The following feature of propositional logic carries over.

Proposition 7.1.3. (Substitution) Suppose that φ, χ, ψ and θ are formulae of Gödel-
Löb logic, and that θ′ is obtained from θ by replacing one or more subformulae of θ that
are copies of χ, by copies of ψ.

Then ⊢ ((φ→ (χ↔ ψ)) → (φ→ (θ ↔ θ′))).

Proof: Induction on the complexity of θ. �

Proposition 7.1.4. (Modalised substitution) Suppose that X = X(p) is a formula in
which p only occurs within the scope of � operators, and let X(q) be the result of replacing
all instances of p in X by q.

Then ⊢ (�(p↔ q) → (X(p) ↔ X(q)).

Proof: Induction on the complexity of X . �

7.2. The fixed-point theorem for GL logic
Fixed point theorem; more abstract proof of incompleteness.

Theorem 7.2.1. Fixed point theorem: if A(p) is a formula in which p only occurs in
the scope of a �, then there exists a formula X, in which p does not occur and containing
only letters from A(·), such that X ↔ A(X) is provable.

Moreover, X is unique in the sense that ⊢ ((�(p ↔ A(p)) ∧�(q ↔ A(q))) → �(p ↔
q)).

27

Lemma 7.2.2. If B(p) is a formula, then there exists a formula X, in which p does not
occur and containing only letters from A(·), such that X ↔ �B(X) is provable.

Proof: Then the appropriateX is: �B(⊤), where ⊤ is some tautology (such as ⊥ → ⊥).
Proof: �B(⊤) → (⊤ ↔ �B(⊤)) is a tautology.
Thus, using substitution, so is �B(⊤) → (�B(⊤) ↔ �B(�B(⊤))).
So we get �B(⊤) → �B(�B(⊤)).
As for the other way round, given �B(⊤) → (⊤ ↔ �B(⊤)), we use substitution

again to get �B(⊤) → (B(⊤) ↔ B(�B(⊤))).
It follows by propositional logic that B(�B(⊤)) → (�B(⊤) → B(⊤)).
By necessitation, �(B(�B(⊤)) → (�B(⊤) → B(⊤))).
Using the first axiom and MP, �B(�B(⊤)) → �(�B(⊤) → B(⊤)).
The second axiom scheme gives us �(�B(⊤) → B(⊤)) → �B(⊤).
Now by propositional logic, �B(�B(⊤)) → �B(⊤) as required. �

Lemma 7.2.3. Given a set of formulae Ci(D(p1, . . . , pn)) (i ≤ n), there exist formulae
Fi for i ≤ n such that ⊢ (Fi ↔ �Ci(D(F1, . . . , Fn))).

Proof: We do induction on n.
The base case was done above. Suppose that any such family of equivalences of

size n can be solved, and suppose that we have a family of formulae Ci(D(p1, . . . , pn+1))
(i ≤ n+ 1).

Then we set Cn+1 aside for a moment. Let q be some propositional letter we have not
yet used. Using the inductive hypothesis, let Gi(q) (for i ≤ n) be formulae such that

⊢ Gi(q) ↔ �Ci(D(G1(q), . . . , Gn(q), q))

(i ≤ n).
Now use the preceding lemma to find Fn+1 such that

⊢ Gn+1 ↔ �Cn+1(D(G1(Fn+1), . . . , Gn(Fn+1), Fn+1)).

Now, for i ≤ n, let Fi = Gi(Fn+1). �

[I’ve edited the above lemma to introduce the letter D. I believe that the previous
version was correct, bar a missing � which I’ve also introduced, but confusing in context.]

Lemma 7.2.4. (Existence of the fixed point) If A(p) is a formula in which p only occurs in
the scope of a �, then there exists a formula X, in which p does not occur and containing
only letters from A(·), such that X ↔ A(X) is provable.

Proof: Suppose that A(p) has the form D(�C1(p), . . . ,�Cn(p)). Use the preceding
lemma to find Fi equivalent to �Ci(D(F1, . . . , Fn)) for i ≤ n; then D(F1, . . . , Fn) is equiv-
alent to D(�C1(D(F1, . . . , Fn)), . . . ,�Cn(D(F1, . . . , Fn))), that is, to A(D(F1, . . . , Fn)),
which is what we want. �

Lemma 7.2.5. (Uniqueness of the fixed point) Suppose that A(p) is a formula in which
p only occurs in the scope of a �, and that X is a formula in which p does not occur and
containing only letters from A(·), such that X ↔ A(X) is provable.

28

Then X is unique in the sense that ⊢ ((�(p↔ A(p)) ∧�(q ↔ A(q))) → �(p↔ q)).

Proof: We prove, using modalised substitution, that ⊢ �(p↔ q) → (A(p) ↔ A(q)).
By propositional logic, ⊢ (((p↔ A(p)) ∧ (q ↔ A(q))) → (�(p↔ q) → (p↔ q))).
Doing stuff with �, we get ⊢ ((�(p ↔ A(p)) ∧�(q ↔ A(q))) → �(�(p ↔ q) → (p↔

q))).
Then, using an axiom, ⊢ (�(p↔ A(p)) ∧�(q ↔ A(q))) → �(p↔ q). �

As an example of silly things happen if p is not boxed, let A be the identity.

7.3. The incompleteness theorems in GL logic

Theorem 7.3.1. (GL version of the First Incompleteness Theorem). There exists a
formula G such that ⊢ (G↔ ¬�G).

Proof: Define G to be a/the fixed point of ¬� p; that is, ⊢ G↔ ¬�G. �

Theorem 7.3.2. (GL version of the Second Incompleteness Theorem). For any formulae
A and B, ⊢ �¬�A→ �B.

Proof: Now ⊢ (¬�A→ (�A→ A)), so ⊢ (�¬�A→ �(�A→ A)), so ⊢ (�¬�A→
�A). So since, by Theorem 7.1.2., ⊢ (�A→ ��A), ⊢ (�¬�A→ ��A).

Now (¬�A→ (�A→ B)) by propositional calculus.
Hence, using Necessitation, the scheme (�(φ→ ψ) → (�φ→ �ψ)), and MP,

⊢ (�¬�A→ (��A→ �B)).

Then using propositional calculus,

⊢ (�¬�A→ �B)

as required. �

The formula �¬�A → �B expresses the idea that if anything is provably unprov-
able, then the system is inconsistent.

8. Constructing models of PA inside other models of PA

8.1. Revision of Henkin’s proof of the Completeness Theorem
Recall how the now standard proof of the Completeness Theorem goes. Given a

countable language L of first-order predicate calculus, we close the language under the
addition of constant symbols cφ for formulae φ, and add to PA (or whatever other theory
we may be interested in) extra axioms (∃v1 φ → φ(cφ)). We then extend our theory to a
complete consistent set of sentences, and a new model for the theory is then constructed
from the closed terms (sc. terms containing no variable letters), in such a way that if
φ(σ1, . . . , σn) is a member of the complete consistent set, then φ(σ1, . . . , σn) is true in that
model.

So, once we have a process for deciding which sentences are members of our complete
consistent set, the construction of the model is routine.

We focus on this process of identifying members of the complete consistent set.

29

First, we add the constant symbols to our language L. We can do this in any number
of ways. The method in the following definition relies on the fact that the string 0

′
never

occurs in formulae of L.

Definition 8.1.1. We define a language L∗ with the same alphabet as L, with its set of
terms and its set of formulae being the smallest sets which have the following properties.

(1) Every term of L is a term of L∗, and every formula of L is a formula of L∗.

(2) If φ is a formula of L∗, then 0
′
(φ) is a term of L∗ (which we will write as cφ).

(3) If σ and τ are terms of L∗, then so are σ+, f(στ) and f ′(στ).
(4) If σ and τ are terms of L∗, then σ = τ and σ ≤ τ are formulae of L∗.
(5) If φ and ψ are formulae of L∗, then so are ¬φ, (φ→ ψ), and ∀viφ.

We now add witnesses to existential statements to any theory of L.

Definition 8.1.2. If T is any set of sentences of L, then we define T ∗ to be the result
of adding to T all formulae (∃v1 φ(v1) → φ[cφ]).

Theorem 8.1.3. If T is Σn-definable for n ≥ 1, then T ∗ is also Σn-definable. Similarly
if T is Πn-definable for n ≥ 1, then T ∗ is also Πn-definable.

Proof: The set of Gödel numbers of the extra axioms in T ∗ is ∆1-definable. �

We now take a closer look at the process of deriving the complete consistent set.

Theorem 8.1.4. Suppose that T has a ∆n-definable proof predicate PrT . Then there is
a ∆n-definable function HT (n) such that if n is the Gödel number of a sentence φ of L∗,
then in a model N of PA, HT (φ) = 1 if, defining θn to be the formula

θn =
∧

{ψ : pψq < n ∧ HT (pψq) = 1} ∧
∧

{¬ψ : pψq < n ∧ HT (pψq) = 0},

PrT (p(θn → φ)q) is true, and HT (n) = 0 otherwise.
We describe HT as successful if there exists n such that HT (n) = 0.
Note that HT is successful in a model N of PA if and only if N � ConT .

Proof: To see that HT is ∆n-definable, note that the definition of HT is a definition by
recursion using a ∆n-formula. �

If HT is successful in a model N, then we think of HT as describing a model of T
inside N. It is certainly the case that from a successful function HT , we can construct a
model of T .

8.2. Comparing a model and a model inside that model
When we start to talk about models of arithmetic sitting inside models of arithmetic,

questions about language and metalanguage, and problems posed by non-standard ele-
ments coding formulae and proofs, become complicated. For some results in this section,
we restrict our attention to models of arithmetic sitting inside N.

Theorem 8.2.1. If N is a model of PA defined in N by a formula HT , where T extends
PA, then N is not elementarily equivalent to N (that is, there is a sentence which is true
in N and false in N).

Proof: This follows from Tarski’s Theorem. If N and N were elementarily equivalent,
then HT would define truth in N, which is impossible. �

30

This theorem can be extended, with extreme caution, to other models of PA.

Theorem 8.2.2. If φ is a sentence of L, and N is a model of PA, then there is a model
N′ of PA inside N satisfying φ if and only if N � ¬PrPA(p¬φq), and every model N′ of
PA inside N satisfies φ if and only if N � PrPA(pφq).

Restricting our attention to HPA, we have the following.

Theorem 8.2.3. There is a ∆2-sentence K such that if N is a model of PA and N′ is
constructed inside N′ using HPA, then K is true in N if and only if it is false in N′.

Proof: Use the Diagonal Lemma to find K such that PA ⊢ (K ↔ ¬HPA(pKq)).
We can regard K as being ∆2 because HPA is. �

Corollary 8.2.4. Any chain Ni of models of PA, where Ni+1 is constructed inside Ni

using HPA, is finite.

Proof: We order functions from N to {0, 1} lexicographically, that is, so that f ≤ g iff
either f = g, or there exists n such that for all m < n, f(m) = g(m), and f(n) < g(n).

We define fi so that for all n ∈ N, fi(n) = 1 if and only if n is the Gödel number of a
sentence φ such that Ni � φ.

Let k = pKq. Then for all i, fi(k) 6= fi+1(k).
We now note that if i > 1, then fi ≤ fi+1. For, suppose that n is least such that

fi(n) 6= fi+1(n). Then in one of Ni−1 and Ni but not the other, PrPA(p(θn → φ)q), where
φ is the formula whose Gödel number is n.

Then if m = pPrPA(p(θn → φ)q)q, then Ni−1 � PrPA(p(θm → PrPA(p(θn → φ)q))q),

so that Ni−1 � HPA(pPrPA(p(θn → φ)q)q), so that Ni � PrPA(p(θn → φ)q), and then it
follows that Ni � HPA(p(θn → φ)q), giving a contradiction.

So it must be the case thatNi−1 � ¬PrPA(p(θn → φ)q) whileNi � PrPA(p(θn → φ)q),
so that fi(n) = 0 and fi+1(n) = 1.

We also note two other facts. Firstly, we must have n ≤ k, since fi(k) 6= fi+1(k).
Also, we must have that for all j ≥ i, fj(n) = 1.

So, 1 < i < j implies that fi < fj. Moreover, there exists n ≤ k such that fi(n) = 0
and fj(n) = 1. So the functions fi↾{n : n ≤ k} are all different, for i > 1, so there are only
finitely many of them. �

9. Stuff off the end of the course

9.1. Kripke semantics
Write L for the axiom scheme (�(�φ → φ) → �φ).

Proposition 9.1.1. L gives that the accessibility relation is transitive.

Proof: Suppose w R w′ R w′′, but w 6 R w′′.
Declare p to be false at these three worlds and true at all others.
Then w′ � ¬� p, so w′ � (� p→ p).
Then w � ¬� p, and w � �(� p → p) (since at all other worlds accessible from w, p

is true, so (� p→ p) is true). Also, w � ¬� p. �

Proposition 9.1.2. L gives that the accessibility relation is reverse-well-founded.

31

Proof: Suppose for all i ∈ N, wi R wi+1.
Declare p to be false at all wi, and true at all other worlds.
Then for all i, wi � ¬� p.
Thus at every world, (� p → p) is true, either because p is true, or because � p is

false.
Thus w0 � �(� p→ p), and w0 � ¬� p. �

Proposition 9.1.3. If the accessibility relation is transitive and reverse-well-founded,
then L is true.

Proof: Easy induction on the rank of a world. �

Proposition 9.1.4. ⊢GL (�X → ��X).

Proof: ⊢ (X → ((��X ∧�X) → (�X ∧X))): propositional tautology.
⊢ (X → (�(�X ∧X) → (�X ∧X))): standard stuff.
⊢ (�X → �(�(�X ∧X) → (�X ∧X))): necessitation plus standard stuff.
(�(�(�X ∧X) → (�X ∧X)) → �(�X ∧X)): instance of L.
�(�X → �(�X ∧X)).
(�X → ��X). �

32

