Gödel Incompleteness Theorems: Problem sheet 3

1. Show that if a system S is Σ_0 -complete and ω -consistent, then it is Σ_2 -sound.

2. Show that consistency is strictly weaker than 1-consistency.

3. (i) Show how to construct a sentence, using the Diagonal Lemma, that "says", "this sentence, when added to PA, results in a system that is ω -inconsistent".

Hint: We will use a notation (due to Feferman) of putting a dot over a free variable in a formula that occurs within $\neg \neg$ to signify that the Gödel number is of a formula that varies with the values of that variable, rather than being the Gödel number of the formula in which that variable occurs as a part (for example, $\forall v' \operatorname{Pr}_{PA}(\neg 0 = \dot{v}'^+ \neg)$ says that for each number n, $\operatorname{Pr}_{PA} \neg 0 = \overline{n}^+ \neg$ holds, while $\operatorname{Pr}_{PA}(\neg 0 = v'^+ \neg)$, with no dot, says that a particular formula $\neg v'^+$ is provable, and says it by referring to its Gödel number; since $\neg v'^+ \neg$ is just a number, $\operatorname{Pr}_{PA}(\neg 0 = v'^+ \neg)$ does not contain v' as a free variable, and so $\forall v' \operatorname{Pr}_{PA}(\neg 0 = v'^+ \neg)$ (still with no dot) has exactly the same meaning).

With this notation, show that there is a formula of \mathscr{L} which expresses the following, where m P n is the relation "m is a part of n in base 13":

$$\exists v_2 \left(\left(\overline{ v_4 } \overline{ P v_2} \right) \land \neg \left(\overline{ \left(\overline{ v_4 } \overline{ P v_2} \right) \land \Pr \left(\overline{ \left(E_{\dot{v}_1} \to \exists v_4 E_{\dot{v}_2} \right) \overline{ } \right)} \land \forall v_3 \operatorname{Pr} \left(\overline{ \left(E_{\dot{v}_1} \to \neg E_{\dot{v}_2} \left[\overline{ \left(\dot{v}_3 \overline{ } \right] \right) \overline{ } \right)} \right) \land \forall v_3 \operatorname{Pr} \left(\overline{ \left(E_{\dot{v}_1} \to \neg E_{\dot{v}_2} \left[\overline{ \left(\dot{v}_3 \overline{ } \right] \right) \overline{ } \right)} \right) \land \forall v_3 \operatorname{Pr} \left(\overline{ \left(E_{\dot{v}_1} \to \neg E_{\dot{v}_2} \left[\overline{ \left(\dot{v}_3 \overline{ } \right] \right) \overline{ } \right)} \right) \land \forall v_3 \operatorname{Pr} \left(\overline{ \left(E_{\dot{v}_1} \to \neg E_{\dot{v}_2} \left[\overline{ \left(\dot{v}_3 \overline{ } \right) \right] \overline{ \left(v_3 \overline{ } \right) } \right]} \right) \right) \land \forall v_3 \operatorname{Pr} \left(\overline{ \left(E_{\dot{v}_1} \to \neg E_{\dot{v}_2} \left[\overline{ \left(\dot{v}_3 \overline{ } \right) \right] } \right) \right) \right) \land \forall v_3 \operatorname{Pr} \left(\overline{ \left(E_{\dot{v}_1} \to \neg E_{\dot{v}_2} \left[\overline{ \left(v_3 \overline{ } \right) \right] } \right) \right) \right)$$

Note that v_1 is free in this expression.

(ii) Prove that the result in the last problem but one is the best possible, in the sense that there exists a system S that is ω -consistent and which proves a false Σ_3 -sentence. (Assume that PA is true in \mathbb{N} .)

- **4.** (i) Show that every finite subset of the axioms of *R* has a finite model. *Hint: consider modular arithmetic.*
 - (ii) Show that R is not finitely axiomatisable.
 - (iii) Show that Q is a proper extension of R.
 - (iv) Show that PA is a proper extension of Q.

5. (i) Show that if a theory S is ω -consistent, then at least one of $S \cup \{X\}$ and $S \cup \{\neg X\}$ is ω -consistent.

(ii) Show that there is one and only one complete ω -consistent extension of PA. Take as given that PA is sound.

(This extension will be the theory of \mathbb{N} , which we know not to be definable.)

(iii) Explain why the following complete extension S of PA is not ω -consistent. Let $\{X_n : n \in \mathbb{N}\}$ be a listing of all sentences of \mathscr{L} . Let K be a sentence such that K is false and $\mathrm{PA} \cup \{K\}$ is ω -consistent, and let S_0 be $\mathrm{PA} \cup \{K\}$. Let S_{n+1} be $S_n \cup \{X_n\}$ if $S_n \cup \{X_n\}$ is ω -consistent, otherwise let S_{n+1} be $S_n \cup \{\neg X_n\}$. For each i, S_i is ω -consistent by part (i). Let $S = \bigcup_{n \in \mathbb{N}} S_n$.