Foundations of Stochastic Analysis

Exercise Sheet

1. An adapted stochastic process (X;)t>o on a filtered probability space (2, F, F:, P)
taking values in R? is called a Lévy process, if for any t, X, — X, in probability as
s — t, and for any t > s the increment X; — X is independent of F.

(a) Show that for any 0 <ty <t; < --- < t, random variables
Xto ) th _Xto sy T th _th,1

are mutually independent. That is, (X;) possesses independent increments.
(b) Let ¢s+ be the characteristic function of X; — X (for t > s > 0):

0t (&) = E{exp (i(&, X, — X,))}  for € € R

Show that, as a function of (s,t,&), ps.(§) is continuous. For any &, ¢.(§) =1,
and

Sos,t (6)90t,u(6) = st,u(g)a

(c) Prove that for any £ € R? and t > s, ¢, 4(£) # 0.
Hint: Setty = inf{t > s : ¢; s(§) = 0} and show that ty = 400 by contradiction.

(d) For £ € RY, define

Z exp (i(&, Xy — Xo)) for ¢t > 0.

1
©o,t(§)
Show that Z = (Z;);>0 is a martingale.

2. . Let {B, :t > 0} be a standard Brownian motion in R on (€2, F,P). Fix a constant
C > 0, and define

A, = {w € Q: ds €[0,1] so that |By(w) — Bs(w)| < C|t — s| if |t — s| < §},
n

define
Yk,n = max{‘Bm - Bk+]’—1

:j=0,1,2} Ck=1,-,n—2

and set

5C
K, = {w € 0: at least one Y, < —} )
n

(a) Explain why Y}, are random variables, and why the sets A4,,, K,, are measurable.
(b) Prove that n — A, is increasing, and A, C K, for any n > 3.
(c¢) Show that, for every n > 3,

p () <o ({1521 )’
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(d)

(e)

Show that
5C 1 10C
P{|Bi| < —p < ——r.
(=} v
Prove that P{A,} = 0 for every n, hence conclude that, with probability one,
Brownian motion paths are not Lipschitz continuous (and hence not differen-
tiable) at any point.

3. Let D,, = {0 = to,t1,t2,...,t, = t} denote a deterministic partition of the time
interval [0,¢]. A monotone sequence of partitions is one in which D,, C D, ;. The
p-variation of a stochastic process X up to time ¢ along the partition D, is given by

4.

(a)

(a)

n

VDpn (X)t = Z |Xti - th‘ﬂ |p.

=1

Recall that for a Brownian motion B, the quadratic variation V3 (B), — ¢ in
L? for any monotone sequence of partitions with m(D,,) = max{|t; — t;_1|;t; €
D, } — 0. Show that the convergence is almost sure if m(D,,) goes to 0 suffi-
ciently fast, that is when > >~ m(D,,) < cc.

Show that X,, = V3 (B):,n € N is a reverse time discrete martingale (that is
E(X,-1]G,) = X,) with respect to the filtration G, = o(X,, : m > n). Now
show that in fact, for any monotone sequence of partitions, the convergence
is almost sure by using the martingale convergence theorem for this reverse
martingale.

A real-valued process is centred Gaussian, if its finite-dimensional distributions
are normal distributions with mean zero. A centred Gaussian process X =
(X¢)i>0 is called a fractional Brownian motion (FBM) with Hurst parameter
h e (0,1) if P(X, =0) =1 and its co-variance function

1
E(X,X;) = 3 (t2h +g2h It — S|2h) ‘
i. Show that for any t > s, and p > 0
E|X, — X,|P = G|t — s|™

for some constant ), depending only on p.

1i. Show that the fractional Brownian motion X has a continuous modification
and determine its Holder exponent.

iii. Determine for which p it has finite p-variation along a monotone sequence
of partitions.

Let M; = max,<; W, be the maximum of Brownian motion up to time ¢. Using
the reflection principle show that the joint distribution of the maximum and the
position of the Brownian motion at time ¢ is given by

]P)(Mt Z Y, Wt S x €—u2/2tdu7

=L,



for y > 0 and = < y. Hence write down the density P(M; > y, W, € dz) for
y=20,z<y.

(b) Consider W} = W, + ut, the Brownian motion with constant drift u, and write
M}" = maxg<; WF for its maximum process. Using an appropriate change of
measure show that, for y > 0,z <y,

1,20 (9. )2
eht sut—(2y—x) /2tdﬂf.

1
]P)(Mtu > Y, Wtu € dilj’) =
V2t

(c) Write down the corresponding result in the case where y > 0 and x > y. Hence
show that if u < 0, for y > 0,

lim P(M}' > y) = e*".

t—00

5. (a) Let Xy = B; —tBy for 0 <t <1 be the Brownian bridge from 0 to 0 in time 1.
Explain why the process X = (X;):ej0,1) is a Gaussian process and compute its
mean and covariance function Cov(Xy, X;) for 0 < s,¢ < 1.

(b) Show that the process Y defined by setting Y; = (1 — ¢)Byq—y for 0 <t <1
has the same law as X.

(c) Let Z = (Zi)1ej0,1) be the solution to the stochastic differential equation

— S

t
Zs
Zt:ZO_/]_ dS+Bt.
0

By considering the process U, = Z;/(1 — t) write Z; as a stochastic integral of
a suitable function against Brownian motion.

(d) By using a version of Lévy’s characterisation of Brownian motion, or otherwise,
show that, if Z; = 0, then Z has the same law as X.

(e) Show, using the previous question, that

P(sup Z; > x) = exp(—22?).
0<t<1

6. Let B= (B}, -, B")i>0 be a standard BM in R". Let

X, = /(B2 +-- + (By)2.

Find the SDE for X. By using Levy’s characterization show that

X x+xf”‘R1+w
= S
ETE0T 2, b

where W is a Brownian motion in R (You may assume Ito can be applied).
Let n = 3 and let By be a random variable in R*\{0}, independent of (B; — By)io-



(a) Show that 1/||B;|| is a local martingale, where
(21, 22, 23)|| = (27 + 23 + 23)"/2,

(b) Suppose By = y. Let M; = ||Byy1—yl|| ™!, for t > 0. Show by a direct calculation

that E(M?) = =5. Deduce that M is bounded in L? and uniformly integrable.

You may assume that PNt > 0, B;11 = y] = 0.
(c) Show that M is both a local martingale and a supermartingale.
(d) Use the martingale convergence theorem to show that M is not a martingale.

7. Let (W3)t>0 be a standard Brownian motion in R on a probability space (2, F, (F);, P).
Consider the stochastic differential equation (SDE) given by

dY, = 3Y2dt — 2V, 2dw,, Y, = 1. (1)
(a) Show that this SDE satisfies a local Lipschitz condition but does not satisfy the

linear growth condition.

(b) If 7 =inf{t > 0 :Y; = oo} denotes the explosion time of Y, find P(r > t) and
hence show that 7 < oo almost surely but E7 = oo. [You may find it helpful to
apply Ito’s formula to processes of the form (a + W;)*.]

8. Let o4(x) = |2|* A1 for z € R? and let X € R? satisfy
dX! = oo (X)dW], Xt =0, i=1,2
where W is a Brownian motion in R?.
(a) Find a (trivial) solution to the SDE for all @ > 0. Show that if a > 1, this is

the unique strong solution.

(b) If @ < 1, we show that we can time change Brownian motion to give another
solution:

i. Show that (X*) does not depend on i and hence that if 7, = inf{u : (X?), >
t}, then we can write

¢
Tt:/ o2 (W,)ds.
0

ii. By computing E(7;), show that this time change is finite almost surely for
a < 1 and hence we can obtain another solution X via the Dubins-Schwarz
Theorem.



