
Foundations of Stochastic Analysis

Exercise Sheet

1. An adapted stochastic process (Xt)t≥0 on a filtered probability space (Ω,F ,Ft,P)
taking values in Rd is called a Lévy process, if for any t, Xs → Xt in probability as
s→ t, and for any t > s the increment Xt −Xs is independent of Fs.

(a) Show that for any 0 ≤ t0 < t1 < · · · < tn random variables

Xt0 , Xt1 −Xt0 , · · · , Xtn −Xtn−1

are mutually independent. That is, (Xt) possesses independent increments.

(b) Let ϕs,t be the characteristic function of Xt −Xs (for t ≥ s ≥ 0):

ϕs,t(ξ) = E {exp (i〈ξ,Xt −Xs〉)} for ξ ∈ Rd.

Show that, as a function of (s, t, ξ), ϕs,t(ξ) is continuous. For any ξ, ϕt,t(ξ) = 1,
and

ϕs,t(ξ)ϕt,u(ξ) = ϕs,u(ξ),

(c) Prove that for any ξ ∈ Rd and t ≥ s, ϕt,s(ξ) 6= 0.
Hint: Set t0 = inf{t ≥ s : ϕt,s(ξ) = 0} and show that t0 = +∞ by contradiction.

(d) For ξ ∈ Rd, define

Zt =
1

ϕ0,t(ξ)
exp (i〈ξ,Xt −X0〉) for t ≥ 0.

Show that Z = (Zt)t≥0 is a martingale.

2. . Let {Bt : t ≥ 0} be a standard Brownian motion in R on (Ω,F ,P). Fix a constant
C > 0, and define

An =

{
ω ∈ Ω: ∃s ∈ [0, 1] so that |Bt(ω)−Bs(ω)| ≤ C|t− s| if |t− s| ≤ 3

n

}
;

define

Yk,n = max
{∣∣∣B k+j

n
−B k+j−1

n

∣∣∣ : j = 0, 1, 2
}

, k = 1, · · · , n− 2,

and set

Kn =

{
ω ∈ Ω: at least one Yk,n ≤

5C

n

}
.

(a) Explain why Yk,n are random variables, and why the sets An, Kn are measurable.

(b) Prove that n→ An is increasing, and An ⊂ Kn for any n ≥ 3.

(c) Show that, for every n ≥ 3,

P {Kn} ≤ n

(
P
{
|B 1

n
| ≤ 5C

n

})3

.
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(d) Show that

P
{
|B 1

n
| ≤ 5C

n

}
≤ 1√

2π

10C√
n
.

(e) Prove that P {An} = 0 for every n, hence conclude that, with probability one,
Brownian motion paths are not Lipschitz continuous (and hence not differen-
tiable) at any point.

3. Let Dn = {0 = t0, t1, t2, . . . , tn = t} denote a deterministic partition of the time
interval [0, t]. A monotone sequence of partitions is one in which Dn ⊂ Dn+1. The
p-variation of a stochastic process X up to time t along the partition Dn is given by

V p
Dn

(X)t =
n∑
i=1

|Xti −Xti−1
|p.

(a) Recall that for a Brownian motion B, the quadratic variation V 2
Dn

(B)t → t in
L2 for any monotone sequence of partitions with m(Dn) = max{|ti − ti−1|; ti ∈
Dn} → 0. Show that the convergence is almost sure if m(Dn) goes to 0 suffi-
ciently fast, that is when

∑∞
n=1m(Dn) <∞.

(b) Show that Xn = V 2
Dn

(B)t, n ∈ N is a reverse time discrete martingale (that is
E(Xn−1|Gn) = Xn) with respect to the filtration Gn = σ(Xm : m ≥ n). Now
show that in fact, for any monotone sequence of partitions, the convergence
is almost sure by using the martingale convergence theorem for this reverse
martingale.

(c) A real-valued process is centred Gaussian, if its finite-dimensional distributions
are normal distributions with mean zero. A centred Gaussian process X =
(Xt)t≥0 is called a fractional Brownian motion (FBM) with Hurst parameter
h ∈ (0, 1) if P(X0 = 0) = 1 and its co-variance function

E(XtXs) =
1

2

(
t2h + s2h − |t− s|2h

)
.

i. Show that for any t > s, and p > 0

E|Xt −Xs|p = Cp|t− s|hp

for some constant Cp depending only on p.

ii. Show that the fractional Brownian motion X has a continuous modification
and determine its Hölder exponent.

iii. Determine for which p it has finite p-variation along a monotone sequence
of partitions.

4. (a) Let Mt = maxs≤tWs be the maximum of Brownian motion up to time t. Using
the reflection principle show that the joint distribution of the maximum and the
position of the Brownian motion at time t is given by

P(Mt ≥ y,Wt ≤ x) =

∫ ∞
2y−x

1√
2πt

e−u
2/2tdu,
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for y ≥ 0 and x ≤ y. Hence write down the density P(Mt ≥ y,Wt ∈ dx) for
y ≥ 0, x ≤ y.

(b) Consider W µ
t = Wt + µt, the Brownian motion with constant drift µ, and write

Mµ
t = maxs≤tW

µ
s for its maximum process. Using an appropriate change of

measure show that, for y ≥ 0, x ≤ y,

P(Mµ
t ≥ y,W µ

t ∈ dx) =
1√
2πt

eµx−
1
2
µ2t−(2y−x)2/2tdx.

(c) Write down the corresponding result in the case where y ≥ 0 and x > y. Hence
show that if µ < 0, for y ≥ 0,

lim
t→∞

P(Mµ
t ≥ y) = e2µy.

5. (a) Let Xt = Bt − tB1 for 0 ≤ t ≤ 1 be the Brownian bridge from 0 to 0 in time 1.
Explain why the process X = (Xt)t∈[0,1] is a Gaussian process and compute its
mean and covariance function Cov(Xt, Xs) for 0 ≤ s, t ≤ 1.

(b) Show that the process Y defined by setting Yt = (1 − t)Bt/(1−t) for 0 ≤ t ≤ 1
has the same law as X.

(c) Let Z = (Zt)t∈[0,1] be the solution to the stochastic differential equation

Zt = Z0 −
∫ t

0

Zs
1− s

ds+Bt.

By considering the process Ut = Zt/(1 − t) write Zt as a stochastic integral of
a suitable function against Brownian motion.

(d) By using a version of Lévy’s characterisation of Brownian motion, or otherwise,
show that, if Z0 = 0, then Z has the same law as X.

(e) Show, using the previous question, that

P ( sup
0≤t≤1

Zt > x) = exp(−2x2).

6. Let B = (B1
t , · · · , Bn

t )t≥0 be a standard BM in Rn. Let

Xt =
√

(B1
t )

2 + · · ·+ (Bn
t )2.

Find the SDE for X. By using Levy’s characterization show that

Xt = X0 +

∫ t

0

n− 1

2Xs

ds+Wt,

where W is a Brownian motion in R (You may assume Ito can be applied).

Let n = 3 and let B0 be a random variable in R3\{0}, independent of (Bt −B0)t>0.
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(a) Show that 1/||Bt|| is a local martingale, where

||(x1, x2, x3)|| = (x21 + x22 + x23)
1/2.

(b) Suppose B0 = y. Let Mt = ||Bt+1−y||−1, for t ≥ 0. Show by a direct calculation
that E(M2

t ) = 1
t+1

. Deduce that M is bounded in L2 and uniformly integrable.

You may assume that P [∀t > 0, Bt+1 = y] = 0.

(c) Show that M is both a local martingale and a supermartingale.

(d) Use the martingale convergence theorem to show that M is not a martingale.

7. Let (Wt)t≥0 be a standard Brownian motion in R on a probability space (Ω,F , (F)t,P).
Consider the stochastic differential equation (SDE) given by

dYt = 3Y 2
t dt− 2Y

3/2
t dWt, Y0 = 1. (1)

(a) Show that this SDE satisfies a local Lipschitz condition but does not satisfy the
linear growth condition.

(b) If τ = inf{t > 0 : Yt = ∞} denotes the explosion time of Y , find P (τ > t) and
hence show that τ <∞ almost surely but Eτ =∞. [You may find it helpful to
apply Ito’s formula to processes of the form (a+Wt)

α.]

8. Let σα(x) = |x|α ∧ 1 for x ∈ R2 and let X ∈ R2 satisfy

dX i
t = σα(Xt)dW

i
t , X i

0 = 0, i = 1, 2

where W is a Brownian motion in R2.

(a) Find a (trivial) solution to the SDE for all α > 0. Show that if α ≥ 1, this is
the unique strong solution.

(b) If α < 1, we show that we can time change Brownian motion to give another
solution:

i. Show that 〈X i〉 does not depend on i and hence that if τt = inf{u : 〈X i〉u >
t}, then we can write

τt =

∫ t

0

σ−2α (Ws)ds.

ii. By computing E(τt), show that this time change is finite almost surely for
α < 1 and hence we can obtain another solution X via the Dubins-Schwarz
Theorem.
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