Foundations of Stochastic Analysis

Exercise Sheet

- 1. An adapted stochastic process $(X_t)_{t\geq 0}$ on a filtered probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ taking values in \mathbb{R}^d is called a *Lévy process*, if for any $t, X_s \to X_t$ in probability as $s \to t$, and for any t > s the increment $X_t - X_s$ is independent of \mathcal{F}_s .
 - (a) Show that for any $0 \le t_0 < t_1 < \cdots < t_n$ random variables

$$X_{t_0}$$
, $X_{t_1} - X_{t_0}$, \cdots , $X_{t_n} - X_{t_{n-1}}$

are mutually independent. That is, (X_t) possesses independent increments.

(b) Let $\varphi_{s,t}$ be the characteristic function of $X_t - X_s$ (for $t \ge s \ge 0$):

$$\varphi_{s,t}(\xi) = \mathbb{E} \left\{ \exp\left(i\langle\xi, X_t - X_s\rangle\right) \right\} \text{ for } \xi \in \mathbb{R}^d.$$

Show that, as a function of (s, t, ξ) , $\varphi_{s,t}(\xi)$ is continuous. For any ξ , $\varphi_{t,t}(\xi) = 1$, and

$$\varphi_{s,t}(\xi)\varphi_{t,u}(\xi)=\varphi_{s,u}(\xi),$$

- (c) Prove that for any $\xi \in \mathbb{R}^d$ and $t \geq s$, $\varphi_{t,s}(\xi) \neq 0$. *Hint:* Set $t_0 = \inf\{t \geq s : \varphi_{t,s}(\xi) = 0\}$ and show that $t_0 = +\infty$ by contradiction.
- (d) For $\xi \in \mathbb{R}^d$, define

$$Z_t = \frac{1}{\varphi_{0,t}(\xi)} \exp\left(i\langle\xi, X_t - X_0\rangle\right) \quad \text{for } t \ge 0.$$

Show that $Z = (Z_t)_{t \ge 0}$ is a martingale.

2. Let $\{B_t : t \ge 0\}$ be a standard Brownian motion in \mathbb{R} on $(\Omega, \mathcal{F}, \mathbb{P})$. Fix a constant C > 0, and define

$$A_n = \left\{ \omega \in \Omega: \ \exists s \in [0,1] \text{ so that } |B_t(\omega) - B_s(\omega)| \le C|t-s| \text{ if } |t-s| \le \frac{3}{n} \right\};$$

define

$$Y_{k,n} = \max\left\{ \left| B_{\frac{k+j}{n}} - B_{\frac{k+j-1}{n}} \right| : j = 0, 1, 2 \right\}, \quad k = 1, \cdots, n-2,$$

and set

$$K_n = \left\{ \omega \in \Omega: \text{ at least one } Y_{k,n} \le \frac{5C}{n} \right\}.$$

- (a) Explain why $Y_{k,n}$ are random variables, and why the sets A_n , K_n are measurable.
- (b) Prove that $n \to A_n$ is increasing, and $A_n \subset K_n$ for any $n \ge 3$.
- (c) Show that, for every $n \ge 3$,

$$\mathbb{P}\left\{K_n\right\} \le n\left(\mathbb{P}\left\{|B_{\frac{1}{n}}| \le \frac{5C}{n}\right\}\right)^3.$$

(d) Show that

$$\mathbb{P}\left\{|B_{\frac{1}{n}}| \leq \frac{5C}{n}\right\} \leq \frac{1}{\sqrt{2\pi}} \frac{10C}{\sqrt{n}}$$

- (e) Prove that $\mathbb{P}\{A_n\} = 0$ for every *n*, hence conclude that, with probability one, Brownian motion paths are not Lipschitz continuous (and hence not differentiable) at any point.
- 3. Let $D_n = \{0 = t_0, t_1, t_2, \dots, t_n = t\}$ denote a deterministic partition of the time interval [0, t]. A monotone sequence of partitions is one in which $D_n \subset D_{n+1}$. The *p*-variation of a stochastic process X up to time t along the partition D_n is given by

$$V_{D_n}^p(X)_t = \sum_{i=1}^n |X_{t_i} - X_{t_{i-1}}|^p.$$

- (a) Recall that for a Brownian motion B, the quadratic variation $V_{D_n}^2(B)_t \to t$ in L^2 for any monotone sequence of partitions with $m(D_n) = \max\{|t_i t_{i-1}|; t_i \in D_n\} \to 0$. Show that the convergence is almost sure if $m(D_n)$ goes to 0 sufficiently fast, that is when $\sum_{n=1}^{\infty} m(D_n) < \infty$.
- (b) Show that $X_n = V_{D_n}^2(B)_t$, $n \in \mathbb{N}$ is a reverse time discrete martingale (that is $\mathbb{E}(X_{n-1}|\mathcal{G}_n) = X_n$) with respect to the filtration $\mathcal{G}_n = \sigma(X_m : m \ge n)$. Now show that in fact, for any monotone sequence of partitions, the convergence is almost sure by using the martingale convergence theorem for this reverse martingale.
- (c) A real-valued process is centred Gaussian, if its finite-dimensional distributions are normal distributions with mean zero. A centred Gaussian process $X = (X_t)_{t\geq 0}$ is called a fractional Brownian motion (FBM) with Hurst parameter $h \in (0, 1)$ if $\mathbb{P}(X_0 = 0) = 1$ and its co-variance function

$$\mathbb{E}(X_t X_s) = \frac{1}{2} \left(t^{2h} + s^{2h} - |t - s|^{2h} \right).$$

i. Show that for any t > s, and p > 0

$$\mathbb{E}|X_t - X_s|^p = C_p|t - s|^{hp}$$

for some constant C_p depending only on p.

- ii. Show that the fractional Brownian motion X has a continuous modification and determine its Hölder exponent.
- iii. Determine for which p it has finite p-variation along a monotone sequence of partitions.
- 4. (a) Let $M_t = \max_{s \le t} W_s$ be the maximum of Brownian motion up to time t. Using the reflection principle show that the joint distribution of the maximum and the position of the Brownian motion at time t is given by

$$\mathbb{P}(M_t \ge y, W_t \le x) = \int_{2y-x}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-u^2/2t} du,$$

for $y \ge 0$ and $x \le y$. Hence write down the density $\mathbb{P}(M_t \ge y, W_t \in dx)$ for $y \ge 0, x \le y$.

(b) Consider $W_t^{\mu} = W_t + \mu t$, the Brownian motion with constant drift μ , and write $M_t^{\mu} = \max_{s \leq t} W_s^{\mu}$ for its maximum process. Using an appropriate change of measure show that, for $y \geq 0, x \leq y$,

$$\mathbb{P}(M_t^{\mu} \ge y, W_t^{\mu} \in dx) = \frac{1}{\sqrt{2\pi t}} e^{\mu x - \frac{1}{2}\mu^2 t - (2y-x)^2/2t} dx.$$

(c) Write down the corresponding result in the case where $y \ge 0$ and x > y. Hence show that if $\mu < 0$, for $y \ge 0$,

$$\lim_{t\to\infty}\mathbb{P}(M^{\mu}_t\geq y)=e^{2\mu y}.$$

- 5. (a) Let $X_t = B_t tB_1$ for $0 \le t \le 1$ be the Brownian bridge from 0 to 0 in time 1. Explain why the process $X = (X_t)_{t \in [0,1]}$ is a Gaussian process and compute its mean and covariance function $Cov(X_t, X_s)$ for $0 \le s, t \le 1$.
 - (b) Show that the process Y defined by setting $Y_t = (1-t)B_{t/(1-t)}$ for $0 \le t \le 1$ has the same law as X.
 - (c) Let $Z = (Z_t)_{t \in [0,1]}$ be the solution to the stochastic differential equation

$$Z_t = Z_0 - \int_0^t \frac{Z_s}{1-s} ds + B_t.$$

By considering the process $U_t = Z_t/(1-t)$ write Z_t as a stochastic integral of a suitable function against Brownian motion.

- (d) By using a version of Lévy's characterisation of Brownian motion, or otherwise, show that, if $Z_0 = 0$, then Z has the same law as X.
- (e) Show, using the previous question, that

$$P(\sup_{0 \le t \le 1} Z_t > x) = \exp(-2x^2).$$

6. Let $B = (B_t^1, \dots, B_t^n)_{t>0}$ be a standard BM in \mathbb{R}^n . Let

$$X_t = \sqrt{(B_t^1)^2 + \dots + (B_t^n)^2}.$$

Find the SDE for X. By using Levy's characterization show that

$$X_{t} = X_{0} + \int_{0}^{t} \frac{n-1}{2X_{s}} ds + W_{t},$$

where W is a Brownian motion in \mathbb{R} (You may assume Ito can be applied). Let n = 3 and let B_0 be a random variable in $\mathbb{R}^3 \setminus \{0\}$, independent of $(B_t - B_0)_{t>0}$. (a) Show that $1/||B_t||$ is a local martingale, where

$$||(x_1, x_2, x_3)|| = (x_1^2 + x_2^2 + x_3^2)^{1/2}.$$

- (b) Suppose $B_0 = y$. Let $M_t = ||B_{t+1} y||^{-1}$, for $t \ge 0$. Show by a direct calculation that $E(M_t^2) = \frac{1}{t+1}$. Deduce that M is bounded in L^2 and uniformly integrable. You may assume that $P[\forall t > 0, B_{t+1} = y] = 0$.
- (c) Show that M is both a local martingale and a supermartingale.
- (d) Use the martingale convergence theorem to show that M is not a martingale.
- 7. Let $(W_t)_{t\geq 0}$ be a standard Brownian motion in \mathbb{R} on a probability space $(\Omega, \mathcal{F}, (\mathcal{F})_t, \mathbb{P})$. Consider the stochastic differential equation (SDE) given by

$$dY_t = 3Y_t^2 dt - 2Y_t^{3/2} dW_t, \quad Y_0 = 1.$$
(1)

- (a) Show that this SDE satisfies a local Lipschitz condition but does not satisfy the linear growth condition.
- (b) If $\tau = \inf\{t > 0 : Y_t = \infty\}$ denotes the explosion time of Y, find $P(\tau > t)$ and hence show that $\tau < \infty$ almost surely but $\mathbb{E}\tau = \infty$. [You may find it helpful to apply Ito's formula to processes of the form $(a + W_t)^{\alpha}$.]
- 8. Let $\sigma_{\alpha}(x) = |x|^{\alpha} \wedge 1$ for $x \in \mathbb{R}^2$ and let $X \in \mathbb{R}^2$ satisfy

$$dX_t^i = \sigma_\alpha(X_t) dW_t^i, \ X_0^i = 0, \ i = 1, 2$$

where W is a Brownian motion in \mathbb{R}^2 .

- (a) Find a (trivial) solution to the SDE for all $\alpha > 0$. Show that if $\alpha \ge 1$, this is the unique strong solution.
- (b) If $\alpha < 1$, we show that we can time change Brownian motion to give another solution:
 - i. Show that $\langle X^i \rangle$ does not depend on *i* and hence that if $\tau_t = \inf\{u : \langle X^i \rangle_u > t\}$, then we can write

$$\tau_t = \int_0^t \sigma_\alpha^{-2}(W_s) ds.$$

ii. By computing $\mathbb{E}(\tau_t)$, show that this time change is finite almost surely for $\alpha < 1$ and hence we can obtain another solution X via the Dubins-Schwarz Theorem.