
Lecture 6, Sci. Comp. for DPhil Students

Nick Trefethen, Thursday 31.10.19

Today

• II.3 QR factorization
• II.4 Computation of the QR factorization
• II.5 Linear least-squares

Handouts

• Quiz 4
• Householder’s 4-page paper from 1958 on QR factorization
• m09_colorquiz.m, m10_QRfact.m, m11_leastsquares3.m

Announcements

• Assignment 2 is due on Tuesday.

• Read: Trefethen & Bau, chapters 7 & 11

• Please do Quiz 4

Just for fun, let’s look at a game I had fun writing in MATLAB: m09_colorquiz.m

In MATLAB, colour images are processed beautifully via linear algebra. There’s an Image Processing
Toolbox.

II.3 QR factorisation

Recall from Tuesday: we often work with a matrix Q with ON columns. In the rectangular case
there is no name for such matrices. Note that if Q is m× n with m > n then

QT Q = In but QQT 6= Im

(illustrate with figures).

Let A be an matrix with n columns. A (reduced) QR factorization of A is a factorisation

| | | | | | | | | | |r r .. r |
| | | | | | | | | | | 11 12 1n|
| | | | | | | | | | | |
| | | | | | | | | | | r |
| | | | | | | | | | | 22 : |
| | | | | | | | | | | . |
| | | | | | | | | | | . |
|a |a |...|a | = |q |q |...|q | | r |
| 1| 2| | n| | 1| 2| | n| | nn|
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| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

A = Q R

where the columns of Q are ON. We say that R is upper-triangular. In MATLAB, [Q,R] =
qr(A,0). (We’ll talk about algorithms shortly.)

Note that we have
a1 = r11q1,

a2 = r12q1 + r22q2,

a3 = r13q1 + r23q2 + r33q3,

...

Thus the QR factorisation exhibits an expansion of the successive columns of A in the ON columns
of Q. In notation of Lecture 2,

span{a1, . . . , ak} = span{q1, . . . , qk}, 1 ≤ k ≤ n

in the case where A has full rank. (In the rank-deficient case you get ⊆, and some zero entries on
the main diagonal of R.)

Alternatively we could multiply by QT on the left to obtain

----------------------------- | | | | | |r r .. r |
T | | | | | | 11 12 1n|

q | | | | | | |
1 | | | | | | r |

----------------------------- | | | | | | 22 : |
: | | | | | | . |

----------------------------- | | | | | | . |
T |a |a |...|a | = | r |

q | 1| 2| | n| | nn|
n | | | | |

----------------------------- | | | | |
| | | | |
| | | | |
| | | | |
| | | | |

T
Q A = R

Thus rij = qT
i aj .

Suppose x is an n-vector. Then
b = Ax
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is a linear combination of the columns of A. If A = QR, then

b = QRx = Q(Rx)

or by multiplying on the left by QT , Rx = QT b.

Thus multiplying on the left by R takes us from a vector of coefficients for an expansion in columns
of A to a vector of coefficients for an expansion in columns of Q. We talked about such things last
lecture in the square case.

II.4 Computation of the QR factorisation

Given A, there are two approaches to computing Q and R such that A = QR.

(1) Gram-Schmidt orthogonalisation: triangular orthogonalisation

Construct vectors q1, q2, . . . in succession.

This amounts to multiplying A on the right by successive upper-triangular matrices until it has
orthonormal columns:

AR1R2R3 · · · = Q

“triangular orthogonalisation” : aim for Q and get R as a by-product.

Gram-Schmidt is a classical idea of great importance. On the other hand, as a linear algebra
algorithm it is often not as good as the more accurate alternative:

(2) Householder triangularisation: orthogonal triangularisation

[Householder 1958 paper]

Construct columns r1, r2, . . . of R in succession.

This amounts to multiplying A on the left by successive orthogonal matrices until it has upper-
triangular structure:

· · ·Q3Q2Q1A = R expand on this a bit

“orthogonal triangularisation” : aim for R and get Q as a by-product.

With rounding errors, this algorithm produces matrices Q whose columns are much more nearly
orthogonal than with Gram-Schmidt.

For a one-off application like least-squares, this often does not matter.

It sometimes matters a good deal, however, for applications involving repeated calculation of QR
factorisations, such as computing eigenvalues or singular values.

[m10_QRfact.m]
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II.5 Linear least-squares

Let’s return to the least-squares problem These ideas were invented independently by Gauss and
Legendre before 1800, leading to a big fight.

An expert in this subject is Åke Björck – see his book in our list.

Suppose A is m× n with m > n. A least-squares solution to Ax = b is a vector x with minimal
residual norm, i.e.,

‖Ax− b‖ = minimum (∗)

b
*

. /
. /

. /
* Ax

/
/

/
/ m

/ R
___________________/______________________

/
/ 0

/
/

/ range(A)

It’s clear geometrically, and easily proved, that (∗) is equivalent to the condition that the residual
b−Ax is orthogonal to range(A).

That is, for each column aj of A, aT
j (b−Ax) = 0. Equivalently,

AT (b−Ax) = 0, i.e., AT Ax = AT b.

These are the normal equations.

Theorem. rank(A) = n ⇔ AT A is SPD ⇔ solution to (∗) is unique

The normal equations are invaluable theoretically. They are also useful computationally. However,
there is a more accurate “standard” method for least-squares problems of moderate size:

Least-squares via QR factorisation

Suppose A = QR and we want to solve Ax ≈ b.

b
*

. /
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. /
. /

* Ax
/

/
/

/ m
/ R

___________________/______________________
/

/ 0
/

/
/ range(A)

Now Ax is the orthogonal projection of b onto range(A). Thus it can be written

T
Ax = Q Q b .

/ \
orthogonal expansion

basis coeffs

(QQT is called a projection matrix.)

Multiplying on the left by QT gives QT QRx = QT b, i.e.,

Rx = QT b.

You can solve this system to get the least-squares solution vector x.

It’s a triangular system – easily solved by back-substitution successively for xn, xn−1, . . . , x1.

[m11_leastsquares3.m]
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