
Lecture 7, Sci. Comp. for DPhil Students

Nick Trefethen, Tuesday 5.11.19

Today

• II.6 Floating point arithmetic
• II.7 Stability, conditioning, and backward error analysis

Handouts

• Assignment 2 solutions
• “Discrete or continuous?” essay from SIAM News, 2012
• m12_floating.m, m13_stability.m, m14_conditioning.m, m15_backwardstab.m

Announcements

• Read: Trefethen & Bau chapter 13 (pp. 97–101).
• Assignment 2 due now. Assignment 3 will be due in two weeks.
• Pass around copies of three great books:

Overton, Numerical Computing with IEEE Floating Point Arithmetic
Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Muller et al.: Handbook of Floating-Point Arithmetic, 2nd ed.

II.6 Floating point arithmetic

The physical world

The laws of classical physics describe the motion and deformation of fluids and solids. They involve
quantities such as density, pressure, and temperature, and they are typically written as PDEs.

Of course this is an approximation, for the world is not continuous but is made of discrete atoms
and molecules. Density is an average, pressure is an average, temperature is an average. . . . But
this is certainly the “right” thing to do for most applications in science and engineering: to ignore
the atoms and molecules and regard the physical world as continuous.

Of course physicists well understand how the continuum is built up from discrete particles. Maxwell
and Boltzmann in the 19th century were key developers of statistical mechanics. For example:

• If you halve the volume of a box, keeping temperature constant, the pressure of a gas inside
doubles. Reason: twice as many impacts of molecules per unit cross-section per unit time.
[Boyle’s Law – 1662, here on the High Street in Oxford, with help from Towneley and Power]

• If you double the temperature of a box, keeping volume constant, the pressure doubles.
Reason: the momentum of each particle increases by a factor of

√
2, and the number of

impacts per unit cross-section per unit time also goes up by
√

2.

1

These are, as it were, “implementation details” for the laws of physics.

How fine is the physical continuum? Avogadro’s number is the number of molecules in a mole
of a substance; it is about 6× 1023. There are about 50 moles of gas in a cubic meter at ordinary
conditions, so this comes to about 3×1025 molecules per cubic meter in a gas at ordinary conditions
[Loschmidt’s constant].

The cube root of 3× 1025 is about 3× 108. Thus there are about 3× 108 molecules per linear meter
in an ordinary gas. For a solid, the figure is about ten times higher: 3× 109.

Thus, roughly speaking,

A gas or solid has around 109 particles per meter.

That’s 107 per centimeter; or 1011 across a football pitch. This is how fine the “discretisation” is in
our physical world.

It is with these facts in mind that I’d like us to think about floating point arithmetic.

Computers represent the real line by a discrete approximation. The numbers are evenly spaced in
[1, 2), where we find exactly 252 ≈ 4.5× 1016 floating point numbers.

Everything is scale-invariant, so we find the same picture, rescaled, in [1/2, 1) or in [8, 16), etc.:

...XXXXX-X-X-X-X---X---X---X---X-------X-------X-------X-------x...

1/2 1 2 4
\ /

-52
2

This picture persists far out to the underflow and overflow limits, around 2−1024 ≈ 10−308 and
21024 ≈ 10308. Thus:

Computer arithmetic is a million times finer than physics.

If we gave floating point arithmetic coordinates to this room or to this podium, we’d find there were
about a million coordinate points between each adjacent pair of molecules. In fact, 1016 is more or
less the number of molecules in a line from one point on earth through to its antipodal point.

Computers came on the scene around 1950, and for decades it was not so simple. Different
manufacturers had different number systems, including bases 2,3,8,10, and 16. In the 1980s,
however, thanks to the driving force of Prof. William Kahan of Berkeley, the IEEE floating point
arithmetic standard was adopted. Nowadays virtually all machines have almost exactly the
same arithmetic (though new hardware with lower precision to save time and power are an exciting
topic of current research, including at Oxford with Tim Palmer and colleagues in Physics).

To be precise, we’re talking of IEEE double precision arithmetic, which is the standard for
numerical computation. The picture above is implemented by:

1 flt-pt real number = 2 words = 8 bytes = 64 bits:

2

1 bit for sign
11 bits for base-2 exponent
52 bits for fraction

For the details, you can’t do better than Overton’s marvelous SIAM book Numerical Computing
with IEEE Floating Point Arithmetic (see Books & Journals at our Web site). For a fuller treatment
see Muller et al., Handbook of Floating-Point Arithmetic, 2nd ed.

All this is just how we represent real numbers.

Of course in addition we have to compute with them.

IEEE arithmetic follows a simple principle:

--
| |
| If x and y are floating point numbers and |
| |
| x+y, x-y, x*y, or x/y is computed on the machine, |
| |
| the result is the exact answer, correctly rounded. |

(There are different rounding modes, e.g. round-to-nearest, which we won’t discuss.)

Corollary

--
| |
| Each operation yields |
| |
| computed(x op y) = (x op y) (1+eps) |
| |
| for some eps with |eps| <= machine-eps |
| |
| = 2^(-53) ~= 1.1e-16 . |

This is a very powerful statement and worth mulling over. At every step along the way, whether
you do ten operations or ten trillion, a small rounding error is introduced down at the 16th
decimal place.

Assuming you avoid underflow and overflow, which usually isn’t hard, that’s all that you usually
need to know of the underlying processes of floating-point arithmetic.

In the past, machines have not always lived up to this clean behaviour! For example, Cray machine
subtraction used to have machine-eps = 1. And the 1994 Pentium bug that some of you may have
heard of led to division with machine-eps ≈ 6× 10−5.

[m12_floating.m]

3

II.7 Stability, conditioning and backward error analysis

OK, now we know what computers are doing at a low level. What effect does this have on the
correctness of our computations at a high level?

Analogously we might ask, when does a physicist notice macroscopic effects of the underlying
atomic and molecular structure?

There are certainly cases where such effects appear. Superconductivity, superfluidity, and Bose-
Einstein condensation are examples of microscopic quantum effects scaling up to macroscopic
surprises. Quantum computing?

For the numerical analyst, microscopic effects cause trouble rather more often. This is called
instability of a numerical algorithm.

Classic example of an unstable algorithm: computing exp(−40) via Taylor series. (Demonstration
in a moment.) The cause here is cancellation error, which is at fault often but not always!

The following idea of backward stability, perhaps introduced by Turing and certainly made
famous by Wilkinson, turns out to be a crucial notion.

A stable algorithm is one that delivers the
exact answer to a slightly perturbed problem.

Perturbations are relative. “Slight” might mean, say, factor of 1 + ε with ε = 1000×machine-eps.
That number 1000 grows with problem size, but slowly.

Backward stability is a powerful idea all across numerical analysis. In numerical linear algebra it is
indispensable.

In general it is not reasonable to ask for more than backward stability. Thus sin(1020π) = −0.3941
is a perfectly respectable answer! — for it’s exactly right for data perturbed relatively by around
10−16.

In particular, it is not reasonable to expect accuracy for a problem that is highly ill-conditioned –
sensitive to perturbations. E.G., if cond(A) = 1010, solutions to Ax = b will be inaccurate.

ill-conditioned problem vs. unstable algorithm

Conversely, it is reasonable to ask for stability, and all across scientific computing, fast stable
algorithms have been developed for all kinds of problems.

[m13_stability.m, m14_conditioning.m, m15_backwardstab.m]

4

	Lecture 7, Sci. Comp. for DPhil Students
	Today
	Handouts
	Announcements

	II.6 Floating point arithmetic
	The physical world

	II.7 Stability, conditioning and backward error analysis

