Lecture 11, Sci. Comp. for DPhil Students

Nick Trefethen, Tuesday 19.11.19

Today

e II1.3 Newton’s method for minimizing a function of one variable
e III.4 Newton’s method for minimizing a function of several variables
e IIL.5 From Newton’s method to practical optimization

Handouts

e m22_pureNewtonmin.m and m23_fminunc.m, m23b.m, m23c.m, m23d.m

e Table of contents of Nocedal and Wright, Numerical Optimization

e Bring Griewank and Walther to pass around

e Solns. to Assmt. 3. Note that we have just written a paper on this called “Vandermonde
with Arnoldi”, posted under Papers at my web page.

Announcements

e Assmt. 3 is due now

Recall last lecture, where we began optimization

III. OPTIMIZATION
III.1 Newton's method for a single equation
III.2 Newton's method for a system of equations

F(z) - vector function to be zeroed

I11.3 Newton’s method for minimising a function of one variable

Given: function f(z).
Goal: find a minimum z* s.t. f(z*) = minimum .

Global minimum: typically hard or impossible to be sure.
So instead we usually seek a local minimum:

f(z) > f(x*) for all z in a neighbourhood of z*.

Obvious idea: use Newton’s method to solve f'(z) = 0.

Newton’s method (pure and impractical in this form!)

Given initial guess x

For Xk = 0, 1,

s = —-f'(x) / f"(x)
k k k

Equivalent formulation:
(1) Approximate f(x) near xj, by a parabola

(2) Set xx+1 = minimum of this parabola (or maximum?!)

[Draw a sketch.]

I11.4 Newton’s method for minimizing a function of several variables
Consider now f: R" — R. Seek z* € R" s.t. f(z*) = local minimum, i.e.,

f(z1,...,2,) = local minimum.

Of course there’s an analogous Newton method to what we had for a system of equations. But now
we’ll need second derivatives.

Given f: R™ — R, the gradient of f at x € R™ is the n-vector

ox1

Viz) =

of
Oxp

The Hessian of f at x € R™ is the symmetric n X n matrix

of .. 9%
Ox? 010z,
Af(x) = [Vfl'(z) =
0% f af
0,011 ox2

Note that the Hessian is the Jacobian of the gradient.

Newton’s method

Given initial guess x
For k = 0, 1,

|

|

|

|

|

|

|

| Evaluate GRAD f(x) and DELTA f(x)

| k k

|

| Solve DELTA f(x)s = - GRAD f(x) for s
| k k k k
|

|

|

|

Note how this relates to last lecture’s Newton method for zerofinding for a system:
Given F : R™ — R", seek z* € R" s.t. F(x*) =0.
Note also that the linear algebra at each step involves a symmetric matrix.

| For k = 0, 1, |
| |
| Evaluate F(x) and F'(x) | F' = Jacobian matrix
| k k |
| |
| Solve F'(x)s = -F(x) for s |
| k k k k|
| |
| X =X + s |
| |

In MATLAB: the far more robust codes than these pure Newton ideas are fminbnd for a scalar
problem, fminunc for a system.

With pure Newton, at points where the objective function is not convex, the Newton step isn’t
even a descent direction.

[m22_pureNewtonmin.m] starting from e.g. (2,1), (2,2), (2,—-2)

IT1.5 From Newton’s method to practical optimization

Look at Nocedal & Wright table of contents, e.g. chaps. 3,4, 7, 8,9

A fundamental observation

Newton’s method is 2nd-order accurate, and this may seem somewhat arbitrary. It sounds better
than 1st-order, worse than 3rd-order,. ...

The reality is different. All algorithms of order > 1 are equivalent up to constant factors.
(E.G., 2 steps of Newton has 4th order.) Thus Newton really is special: the simplest superlinear
method.

Limitations to Newton’s method

1. Speed
(a) How to compute all the necessary derivatives? These days, often with automatic differen-
tiation: see book by Griewank and Walther and also www.autodiff.org.

(b) How to solve the large linear algebra problems repeatedly? These days, often with CG and
related iterative methods.

Practical algorithms settle for inexact derivatives: inexact Newton
Also, for both (a) and (b), sparsity is invaluable (and common).

2. Robustness
Pure Newton iteration is nearly useless in practice, and a long way from software. For making
algorithms more robust here are some big ideas:

(a) Modified Newton

Instead of the true Hessian H, use e.g. H + al for some a. This is the flavor of a true citation
classis: a 1963 SIAM paper by Marquardt for which Google Scholar lists 32,255 citations! (The
details are more complicated.)

(b) Line searches
Instead of xy1 = xx + sk, use xx4+1 = T + ar sk, where the step length ay is chosen small enough
to guarantee monotonic descent towards solution.

(c) Trust regions
A different concept, but similar efficacy to line searches in practice.

We now demonstrate fminunc with a code to illustrate how it estimates derivatives and takes more
cautious steps than a pure Newton method.

[m23_ fminunc.m |

Here is a harder example, which has been a test example for decades: the Rosenbrock function,
Flz,y) = (1= 2)* +100(y — 27)*.
We also modify the call to fminunc to use gradients as well as function values.

[m23b.m]

Here is a harder variant of the Rosenbrock function, which we show in more of a movie mode:

f(z,y) = (1 —2)? + 100(y + cos(mz))?.

[m23c.m] (starting e.g. from (—2.5,2))

Chebfun2 does well at this problem, using its methods of global optimization (which are however
restricted to 1D/2D/3D).

[m23d.m]

If time permits, tell the story of cheb.gallery2('challenge') and cheb.gallery3('wagon').
The first was invented as a difficult global minimization problem in 2D, and the second as a far
harder problem in 3D. Chebfun finds both surprisingly easy because of low rank structure.

	Lecture 11, Sci. Comp. for DPhil Students
	Today
	Handouts
	Announcements

	III.3 Newton's method for minimising a function of one variable
	III.4 Newton's method for minimizing a function of several variables
	III.5 From Newton's method to practical optimization
	1. Speed
	2. Robustness

