
Scientific Computing for DPhil Students I
Assignment 3

Due at lecture at 10:00 on Tues. 19 Nov. 2019. This is the third of four assignments this term.

1 A well-conditioned problem: interpolation in Chebyshev points

Suppose f is a continuous function on [−1, 1], and given n ≥ 1, let xj = cos(jπ/n) for 0 ≤ j ≤ n
be the set of n+1 Chebyshev points in [−1, 1]. There is a unique degree n polynomial interpolant
p(x) =

∑n

k=0
ckx

k to f in these points, which we call the Chebyshev interpolant. Moreover, p
is a well-conditioned function of f : if f is perturbed by a function ∆f and ∆p is the resulting
perturbation in p, then it can be shown that ‖∆p‖/‖∆f‖ < 1 + (2/π) log(n + 1), where ‖ · ‖
is the ∞-norm on [−1, 1]. See Trefethen, Approximation Theory and Approximation Practice,
Theorem 15.2.

What is the smallest integer n for which this bound does not ensure ‖∆p‖/‖∆f‖ < 10?

2 An unstable algorithm: polyval(polyfit)

There is an obvious method for computing p(x): set up a system of linear equations Ac = f
for the coefficient vector c = (c0, . . . , cn)

T , solve it, and use these coefficients to evaluate p(x).
This method is awful, a perfect example of an unstable algorithm for a well-conditioned problem.
Unfortunately, the method is used all too often, not least because it is offered in Matlab with
the commands polyfit and polyval.

(a) Look up polyfit and polyval and use them to compute Chebyshev interpolants of f(x) = |x|
on [−1, 1] for n = 40 and 80. What is the ∞-norm of the vector c? Use polyval to compute
p(xx) for xx = linspace(-1,1,500)' and plot xx against p(xx).

(b) Comment on how the norms you just calculated relate to the plots you just plotted in light of
the value of machine epsilon of around 10−16.

A is called a Vandermonde matrix: it has dimensions (n + 1) × (n + 1), and its columns are
the n + 1 functions 1, x, x2, . . . , xn sampled at the n + 1 Chebyshev points. In Matlab you can
construct A with the command vander(x), where x is a vector of Chebyshev points. (This will
put the columns in reverse order, but you can rearrange them that if you wish with fliplr.)

(c) Calculate the condition numbers of A for n = 40 and 80. Comment on their significance in
the light of machine epsilon.

3 A stable algorithm: polyval(polyfit) + Arnoldi

Although this is not very well known, there is a simple modification to the algorithm above
that makes it stable, going by the name of the Arnoldi process. The idea here is to find an
(n+ 1) × (n+ 1) matrix V with orthogonal columns that span the same spaces as the columns
of A. If we do this simply by constructing a QR factorization of A, that’s not good enough; the
instability is baked in when those high powers xk are computed. Instead, Arnoldi computes V
by orthogonalising column by column. Column v1 is the vector of all 1’s. (The columns will be
orthogonal, not orthonormal.) Column v2 is obtained by multiplying v1 by x, then subtracting
off the component in the direction of v1. Column v3 is obtained by multiplying v2 by x and
subtracting off the components in the directions of v1 and v2. And so on. Here is an Arnoldi
version of polyfit. As output, it produces not just a vector of coefficients c, but also a Hessenberg
matrix H that stores the coefficients of the orthogonalization process.



function [c,H] = polyfitA(x,y,n)

M = length(x); V = ones(M,1); H = zeros(n+1,n);

for k = 1:n

v = x.*V(:,k);

for j = 1:k

H(j,k) = V(:,j)'*v/M;

v = v - H(j,k)*V(:,j);

end

H(k+1,k) = norm(v)/sqrt(M);

V = [V v/H(k+1,k)];

end

c = V'*y/M;

Once you’ve got c and H , you can call this Arnoldi version of polyval to evaluate the polynomial
at a vector of points xx:

function yy = polyvalA(c,H,xx)

M = length(xx); n = size(H,2); V = ones(M,1);

for k = 1:n

v = xx.*V(:,k);

for j = 1:k

v = v - H(j,k)*V(:,j);

end

V = [V v/H(k+1,k)];

end

yy = V*c;

Use these codes to compute the same interpolants for n = 40 and n = 80 as in problem 2. Plot
the results as before and give the ∞-norm of c. Comment on what you see.

4 Least-squares

The method we have just explored is extremely general: it works on arbitrary real or complex
domains, not just [−1, 1], and it stabilizes least-squares fits as well as interpolants. To illustrate,
we will find a polynomial of degree n that is a good approximation to sign(x) on the domain
X = [−4,−1] ∪ [1, 8].

(a) Discretize X by a vector x with 300 equispaced points on the left and 700 on the right. Use
polyfit and polyval to compute least-squares fits to sign(x) on x of degrees n = 40 and 80, and
plot the error function in each case.

(b) Likewise with polyfitA and polyvalA. Comment on the difference.


