ASSIGNMENT 3 SOLUTIONS

1. A well-conditioned problem: interpolation in Chebyshev points
What is the smallest integer n for which this bound does not ensure ||Ap|| < 10[|Af|?
The equation to solve is 1+ (2/7)log(n + 1) = 10, i.e., n = exp(97/2) — 1, whose solution is

format short
n_real = exp(9*pi/2) - 1

n_real = 1.3794e+06

So the answer is

n ceil(n_real)

1379410

=]
I

2. An unstable algorithm: polyval(polyfit)

(a) Look up Matlab polyfit and polyval and use them to compute Chebyshev interpolants of
f(z) = |z| on [-1,1] for n = 40 and 80. What is the co-norm of the vector c¢? Use polyval to
compute p(xx) for xx = linspace(-1,1,500)’ and plot xx against p(xx).

Note the Matlab warnings. This not very helpful message goes back decades.

xx = linspace(-1,1,500)"';
for k = 1:2
n = 40%k; subplot(1,2,k)
x = cos((0:n) '*pi/n);
¢ = polyfit(x,abs(x),n); normc = norm(c,inf)

plot(xx,polyval(c,xx)), grid on
end

Warning: Polynomial is badly conditioned. Add points with distinct X values,
reduce the degree of the polynomial, or try centering and scaling as described
in HELP POLYFIT.

normc = 2.9374e+11

Warning: Polynomial is badly conditioned. Add points with distinct X values,
reduce the degree of the polynomial, or try centering and scaling as described
in HELP POLYFIT.

normc = 1.2884e+23

1 8 x107
0.8 6
0.6 4
0.4 2
0.2 O
0 -2

(b) Comment on how the norms you just calculated relate to the plots you just plotted in light of
the value of machine epsilon of around 10~C.

For n = 60 the coefficients ¢ are of order 1023, so in 16-digit arithmetic, computations involving
them can be expected to introduce rounding errors on the order of 107. This is just what we

Saw.

(¢) Calculate the condition numbers of A for n = 40 and 80. Comment on their significance in

the light of machine epsilon.

The condition numbers come out as O(10**) and O(10'®), respectively. Presumably the first
number is mathematically accurate, but the second is surely an underestimate of the mathemati-
cal truth; there is no trusting anything bigger than O(10%¢). But in any case its size much bigger
than 10'% confirms that solutions to Ac = f must be expected to have no useful accuracy.

n = 40; x = cos((0:n)*pi/n); cond40
n = 80; x = cos((0:n)*pi/n); cond80

cond40
cond80

7.7166e+14
5.0763e+18

cond (vander (x))
cond (vander (x))

3. A stable algorithm: polyval(polyfit) + Arnoldi

Use these codes to compute the same interpolants for n = 40 and n = 80 as in problem 2. Plot
the results as before and give the co-norm of c. Comment on what you see.

Now the norms of ¢ are O(1) and the computation is successful.

for k = 1:2

n = 40%k; subplot(1,2,k)
x = cos((0:n) '*pi/n);

[c,H] = polyfitA(x,abs(x),n); normc = norm(c,inf)
plot(xx,polyvalA(c,H,xx)), grid on

end

normc = 0.6452
normc = 0.6410

1.2 1.2

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0 0

4. Least-squares on a more general domain

(a) Discretize X by a vector xx with 300 equispaced points on the left and 700 on the right. Use polyfit
and polyval to compute least-squares fits of degrees n = 40 and 80, and plot the error function in each
case.

Again, terribly unstable.

xx = [linspace(-4,-1,300) linspace(1,8,700)]';
for k = 1:2

n = 40x%k; subplot(1,2,k)

¢ = polyfit(xx,sign(xx),n);

plot(xx,sign(xx) - polyval(c,xx),'.'), grid on
end

Warning: Polynomial is badly conditioned. Add points with distinct X values,
reduce the degree of the polynomial, or try centering and scaling as described
in HELP POLYFIT.

Warning: Polynomial is badly conditioned. Add points with distinct X values,
reduce the degree of the polynomial, or try centering and scaling as described
in HELP POLYFIT.

-3

3 x10 0.015
2 ' : 0.01 ,
1 P ¥ 10.005 :

HI § § . .
A _ -0.005 | * :
2 -0.01
-3 -0.015
5 0 5 10 5 0 5 10

(b) Likewise with polyfitA and polyvalA. Comment on the difference

Again, much better.

for k = 1:2

n = 40x%k; subplot(1,2,k)

[c,H] = polyfitA(xx,sign(xx),n);

plot(xx,sign(xx) - polyvalA(c,H,xx),'.'), grid on
end

x1073 %107

0.5

i

