
ASSIGNMENT 3 SOLUTIONS

1. A well-conditioned problem: interpolation in Chebyshev points

What is the smallest integer n for which this bound does not ensure ‖∆p‖ ≤ 10‖∆f‖?

The equation to solve is 1 + (2/π) log(n+ 1) = 10, i.e., n = exp(9π/2)− 1, whose solution is

format short

n_real = exp(9*pi/2) - 1

n_real = 1.3794e+06

So the answer is

n = ceil(n_real)

n = 1379410

2. An unstable algorithm: polyval(polyfit)

(a) Look up Matlab polyfit and polyval and use them to compute Chebyshev interpolants of
f(x) = |x| on [−1, 1] for n = 40 and 80. What is the ∞-norm of the vector c? Use polyval to
compute p(xx) for xx = linspace(-1,1,500)’ and plot xx against p(xx).

Note the Matlab warnings. This not very helpful message goes back decades.

xx = linspace(-1,1,500)';

for k = 1:2

n = 40*k; subplot(1,2,k)

x = cos((0:n)'*pi/n);

c = polyfit(x,abs(x),n); normc = norm(c,inf)

plot(xx,polyval(c,xx)), grid on

end

Warning: Polynomial is badly conditioned. Add points with distinct X values,

reduce the degree of the polynomial, or try centering and scaling as described

in HELP POLYFIT.

normc = 2.9374e+11

Warning: Polynomial is badly conditioned. Add points with distinct X values,

reduce the degree of the polynomial, or try centering and scaling as described

in HELP POLYFIT.

normc = 1.2884e+23

-1 0 1
0

0.2

0.4

0.6

0.8

1

-1 0 1
-2

0

2

4

6

8
10

7

1

(b) Comment on how the norms you just calculated relate to the plots you just plotted in light of
the value of machine epsilon of around 10−16.

For n = 60 the coefficients ck are of order 1023, so in 16-digit arithmetic, computations involving
them can be expected to introduce rounding errors on the order of 107. This is just what we
saw.

(c) Calculate the condition numbers of A for n = 40 and 80. Comment on their significance in
the light of machine epsilon.

The condition numbers come out as O(1014) and O(1018), respectively. Presumably the first
number is mathematically accurate, but the second is surely an underestimate of the mathemati-
cal truth; there is no trusting anything bigger than O(1016). But in any case its size much bigger
than 1016 confirms that solutions to Ac = f must be expected to have no useful accuracy.

n = 40; x = cos((0:n)*pi/n); cond40 = cond(vander(x))

n = 80; x = cos((0:n)*pi/n); cond80 = cond(vander(x))

cond40 = 7.7166e+14

cond80 = 5.0763e+18

3. A stable algorithm: polyval(polyfit) + Arnoldi

Use these codes to compute the same interpolants for n = 40 and n = 80 as in problem 2. Plot
the results as before and give the ∞-norm of c. Comment on what you see.

Now the norms of c are O(1) and the computation is successful.

for k = 1:2

n = 40*k; subplot(1,2,k)

x = cos((0:n)'*pi/n);

[c,H] = polyfitA(x,abs(x),n); normc = norm(c,inf)

plot(xx,polyvalA(c,H,xx)), grid on

end

normc = 0.6452

normc = 0.6410

-1 0 1
0

0.2

0.4

0.6

0.8

1

1.2

-1 0 1
0

0.2

0.4

0.6

0.8

1

1.2

2

4. Least-squares on a more general domain

(a) Discretize X by a vector xx with 300 equispaced points on the left and 700 on the right. Use polyfit

and polyval to compute least-squares fits of degrees n = 40 and 80, and plot the error function in each
case.

Again, terribly unstable.

xx = [linspace(-4,-1,300) linspace(1,8,700)]';

for k = 1:2

n = 40*k; subplot(1,2,k)

c = polyfit(xx,sign(xx),n);

plot(xx,sign(xx) - polyval(c,xx),'.'), grid on

end

Warning: Polynomial is badly conditioned. Add points with distinct X values,

reduce the degree of the polynomial, or try centering and scaling as described

in HELP POLYFIT.

Warning: Polynomial is badly conditioned. Add points with distinct X values,

reduce the degree of the polynomial, or try centering and scaling as described

in HELP POLYFIT.

-5 0 5 10
-3

-2

-1

0

1

2

3
10

-3

-5 0 5 10
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(b) Likewise with polyfitA and polyvalA. Comment on the difference

Again, much better.

for k = 1:2

n = 40*k; subplot(1,2,k)

[c,H] = polyfitA(xx,sign(xx),n);

plot(xx,sign(xx) - polyvalA(c,H,xx),'.'), grid on

end

-5 0 5 10
-1

-0.5

0

0.5

1
10

-3

-5 0 5 10
-5

0

5
10

-7

3

