
Lecture 4, Sci. Comp. for DPhil Students II

Nick Trefethen, Thursday 30.01.20

Last lecture

• IV.8 Planetary motions
• IV.9 Chaos and Lyapunov exponents
• IV.10 The Lorenz equations
• IV.11 Sinai billiards and the SIAM 100-digit challenge

Today

• IV.12 Time scales and stability regions
• IV.13 Stiffness
• IV.14 BVPs in Chebfun

Handouts

• m31_instability.m - instability
• m32_regions.m - stability regions, using Chebfun
• m33_stiffness.m - stiffness for a scalar linear example
• m34_stiffVDP.m - stiffness for van der Pol equation
• m35_ChebfunBVP.m - Chebfun solution of BVPs (“chebop”)
• Assignment 2

Return Assignment 1

Assignment 2 is due Tuesday 10 February.

Last lecture we talked about planetary orbits (systems of ODEs) and about chaos and Lyapunov
exponents.

Here’s another chaotic system simulated in MATLAB – a double pendulum from Moler’s online
textbook: swinger.m. It’s all done with ode23.

Linear growth up to scale O(1) – reminds me of milk in the refrigerator going bad. (Corona virus?)

IV.12 Time scales and stability regions

Consider the scalar, linear, autonomous equation

u′ = au, u = Ceat.

We sketch behavior for various choices of a:

a > 0
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a < 0

a� 0

a imaginary

a complex

These different behaviours will have important effects on behaviour of a discretization. Note that
the nondimensionalized quantity is ka, where k is as always the time step:

|ka| = O(1)

|ka| � 1

A system of equations may mix many different values of a. This is analyzed normally via linearization
and looking at eigenvalues of a Jacobian matrix. With these observation on the table we can turn to
today’s main subjects: stability regions and stiffness, which are key ideas at the heart of numerical
methods for ODEs.

ODE IVP: u′ = f(t, u)

Some ODE formulas are unstable: solutions blow up to infinity as n→∞, no matter how small k
is. We gave a “Brand X” example earlier:

vn+1 = −4vn + 5vn−1 + k(4fn + 2fn−1) (X)

Even for a stable formula, solutions may blow up when k is not small enough. Recall for example
2nd-order Adams-Bashforth:

vn+1 = vn + k

2 (3fn − fn−1) (AB2)

Let us demonstrate these effects. We’ll keep it simple and consider the IVP

u′ = −u, 0 ≤ t ≤ 10, u(0) = 1.

Solution: u(t) = exp(−t)
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[m31_instability.m - both as written and with % character switched, m31u]

To analyze these phenomena, we apply the time-stepping formula to the model u′ = au. This gives
fn = avn, and the ODE formula becomes a recurrence relation. E.G. for AB2:

vn+1 = vn + k

2 (3avn − avn−1),

that is,

vn+1 =
(

1 + 3ka

2

)
vn −

ka

2 vn−1.

k and a always appear together like this as the dimensionless product ka.

We analyze a recurrence relation by looking at roots of its characteristic polynomial. E.G. for
AB2,

p(x) = x2 −
(

1 + 3ka

2

)
x + ka

2 .

If r is a root of p, i.e., p(r) = 0, then the recurrence has a solution

vn = rn

Blow-up: |r| > 1 for some root r of p, or |r| = 1 for some double or multiple root.

Here’s what we find:

For (X), there’s a root |r| ≥ C > 1 for all ka, even as ka→ 0. This formula is unstable. Indeed,
consider ka = 0. Then (X) has characteristic polynomial

x2 + 4x− 5 = (x + 5)(x− 1)

and obviously one root has |r| > 1.

For (AB2), there’s a root |r| > 1 for ka < −1. For −1 < ka < 0, however, both roots have |r| < 1.
And as ka→ 0 we get

x2 − x = x(x− 1)

with |r| ≤ 1 for both roots. This formula is stable.

Given an ODE formula, we define:

Stability region: set of points in the complex ka-plane for which the recurrence relation has all
roots |r| ≤ 1 and any roots with |r| = 1 are simple.

A scheme is stable if 0 is in its stability region (necessarily on the boundary if the formula is
consistent).

It tends to behave well for an ODE and step size k if ka is in the stability region for all values
of a “present in the ODE”. (As mentioned before this is typically defined via linearization,
eigenvalues . . . .)

Example: Euler formula
vn+1 = vn + kfn.
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Apply this to the model problem u′ = au. You get

vn+1 = (1 + ka)vn

with characteristic polynomial p(x) = x− (1 + ka).

Stability region = set of ka such that |1 + ka| ≤ 1, i.e., disk of radius 1 centred at ka = −1.

[ m32_regions.m - sketches of stability regions ]

IV.13 Stiffness

The classical stability/convergence theory for ODEs was established by Dahlquist in 1956.

Just a few years later it began to be widely appreciated that a major phenomenon was missing
from this theory. The key mathematical paper was published by Dahlquist in 1963. With hindsight
another key paper was by chemists Curtiss & Hirschfelder in 1952, who used the term “stiff”, which
may actually have originated with the statistician John Tukey (who also invented “FFT” and “bit”
and was one of the first to speak of “software”).

A stiff ODE is one with widely varying time scales.

More precisely, an ODE with solution of interest u(t) is stiff when there are time scales present in
the equation that are much shorter than that of u(t) itself.

Why it matters. Regardless of stiffness, you’ll get convergence in theory as k → 0 (Dahlquist). For
a stiff problem and an ordinary ODE formula, however, the result might be garbage except when k
is very small, because of modes ka that aren’t in the stability region.

Example:
u′ = −100(u− cos(t))− sin(t), u(0) = 1

Solution: u(t) = cos(t).

But what if we linearize about this solution, considering u(t) = cos(t) + w(t)? We find

− sin(t) + w′ = −100w′ − sin(t), i.e., w′ = −100w.

So there’s a time scale present in the equations that’s 100 times shorter than that of the solution.

Cure for stiffness: backward-differentiation formulas. (At least, this is the starting point for a
cure.) These are implicit, involving fn+1 and hence requiring a equation solve at each step.

For example, here’s the 2nd-order BD formula:

vn+1 −
4
3vn + 1

3vn−1 = 2k

3 fn+1.

Illustration of stiffness for this example ODE: m33_stiffness.m

Illustration of stiffness for the van der Pol equation: m34_stiffVDP.m
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Section 10.3 of the Chebfun Guide describes how to invoke stiff solvers in Chebfun.

IV.14 BVPs in Chebfun

We’ve been talking about IVPs, not BVPs., i.e., initial- rather than boundary-value problems. But
BVPs are important too, and they appear in the assignment (Exercise 5.9)..

In ending this lecture let us briefly take a look at the “Chebop” part of Chebfun system, which
solves BVPs using a A\b type syntax.

Reference: chapters 7 and 10 of the Chebfun Guide and maybe best of all Appendix A of Exploring
ODEs, “Chebfun and its ODE algorithms”. We won’t talk now about how this works. Some of
the underlying methods will appear in the later lectures of the course in the context of Chebyshev
spectral methods.

Chebfun is the only software system I am aware of that solves IVPs and BVPs with the same
syntax, namely backslash.

[ m35_ChebfunBVP.m ]

L = chebop(-1,1); % domain [-1,1]
L.op = @(x,u) .001*diff(u,2)+2*x*diff(u); % u -> ep*u" + 2xu'
L.lbc = -1; L.rbc = 1; % left and right BCs
u = L\0; % solve Lu = 0 for u
plot(u), grid on
length(u) % For smaller ep, set domain with chebop([-1 0 1])
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