
Lecture 6, Sci. Comp. for DPhil Students II

Nick Trefethen, Tuesday 11.02.20

Last lecture

• V.1 PDEs in science and engineering
• V.2 Explicit 1D finite differences

Today

• V.3 Dispersion relations and numerical instability
• V.4 Implicit 1D finite differences

Assignment 2 due now

Please do the quiz.

Handouts:

• Solutions to Assmt. 2
• PDE quiz
• m40_fourthorderdiffusion.m & m41_implicit.m - 4th-order diffusion, explicit & implicit
• Kuramoto-Sivashinsky equation from the PDE Coffee Table Book
• m42_kuramotosivashinsky.m and m42chebfun.m — Kuramoto-Sivashinsky eq.

Pass around Iserles and LeVeque books (again)

V.3 Dispersion relations and numerical instability

Last lecture we looked at the heat equation, ut = uxx.

Now let’s consider a 4th-order diffusion equation:

ut = −uxxxx, u(−1) = u(1) = u′(−1) = u′(1) = 0.

The minus sign is appropriate to ensure positive diffusion, as one can show by Fourier analysis.
We ask, what if at time t we have a sine wave u(x, t) = exp(iξx) for some wave number ξ? (I use
the term “sine” loosely.) Then uxx = −ξ2u and uxxxx = ξ4u. In other words, for the 2nd and 4th
order diffusion equations we will have solutions u(x, t) = exp(iξx+ σt) with σ = −ξ2 and σ = ξ4,
repectively. Such a relation between σ and ξ is called a dispersion relation. (More commonly,
instead of σ, one would work with the frequency iσ.)

The simplest finite difference approximation to a 4th derivative looks like this:

uxxxx = (uxx)xx ≈
(
vj+2 − 2vj+1 + vj

h2 − 2vj+1 − 2vj + vj−1

h2 + vj − 2vj−1 + vj−2

h2

)/
h2,
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which simplifies to
vj+2 − 4vj+1 + 6vj − 4vj−1 + vj−2

h4 .

This suggests the simple explicit finite difference formula

vn+1
j = vnj −

k

h4 (vnj+2 − 4vnj+1 + 6vnj − 4vnj−1 + vnj−2).

At a linear algebra level, this takes the form

vn+1 = Avn

where A is a pentadiagonal Toeplitz matrix (i.e., constant along diagonals).

Here’s a program like m36_heat.m, but modified for this 4th-order eq.:

[ m40_fourthorderdiffusion.m ]

We try different time steps and discover it’s unstable unless k is extremely small — less than around
4.8× 10−8.

How can we explain the need for such a small time step?

The trick is von Neumann analysis of the finite difference formula, also known as discrete
Fourier analysis, developed in the late 1940s.

We ask, what if at step n we have a sine wave

vnj = exp(iξxj) = exp(iξjh)

for some wave number ξ? At the next time step, it will have been multiplied by some constant g,
the amplification factor for this ξ. We compute g = g(ξ) by plugging into the formula:

g = g(ξ) = 1− k

h4

(
e2iξh − 4eiξh + 6− 4e−iξh + e−2iξh)

which can be simplified to
g(ξ) = 1− k

h4

(
eiξh/2 − e−iξh/2

)4
,

that is,
g(ξ) = 1− k

h4 (2i sin(ξh/2))4 = 1− 16k
h4 (sin(ξh/2))4

.

As ξ ranges over all possible values, the fourth power ranges over [0, 1]. So we have

1− 16k/h4 ≤ g(ξ) ≤ 1.

A mode will blow up if |g(ξ)| > 1. Thus for stability we want to ensure |g(ξ)| ≤ 1 for all ξ, i.e.

1− 16k
h4 ≥ −1, i.e., 2 ≥ 16k

h4 ,
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or in other words
k ≤ h4

8 .

That’s a very tight stability restriction! For h = 0.025, as in m39_fourthorderdiffusion.m, it gives

k ≤ 4.883× 10−8.

This matches our experiment convincingly, but confirms that this finite difference formula will be
expensive in practice.

This PDE is stiff — widely different time scales are present. That’s why forward differencing is no
good. We’ll say more about this ODE/stiffness point of view next lecture.

V.4 Implicit 1D finite differences

It’s surprisingly easy to cure the instability, at least for this PDE. We need an implicit formula,
coupling adjacent values with respect to x at time step n+ 1:

vn+1
j = vnj −

k

h4 (vn+1
j+2 − 4vn+1

j+1 + 6vn+1
j − 4vn+1

j−1 + vn+1
j−2 )

almost exactly as before, but with the crucial difference n→ n+ 1. Now the amplification factor
becomes

g = g(ξ) = 1
1 + (16k/h4)(sin(ξh/2))4 ,

which is ≤ 1 for all ξ.

At the linear algebra level, we now have

Bvn+1 = vn, i.e., vn+1 = B−1vn.

The modification of the program is easy:

[ m41_implicit.m ]

Now any time step will work! (Of course, if k is too big the accuracy will suffer.)

Nonlinear example: Kuramoto-Sivashinsky equation

[ page from PDE Coffee Table Book ]

ut = −uxx − uxxxx − (u2/2)x.

This physics/mathematics of this equation is fascinating. Consider the linear part of the equation,

ut = −uxx − uxxxx
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and insert the ansatz u(x, t) = exp(iξx+ σt), You get the dispersion relation

σ = ξ2 − ξ4.

For |ξ| < 1, σ > 0: exponential growth as t increases.

For |ξ| > 1, σ < 0: exponential decay.

The fascinating thing is that the nonlinear term moves energy from small ξ to large ξ. So we have
an engine: energy is amplified at low wave numbers, converted nonlinearly to high wave numbers,
and then absorbed. The result is chaotic evolution dominated by structures with ξ = O(1).

To solve the equation numerically we try discretizing the linear terms by backward Euler and the
nonlinear term by Euler. It works! — and is chaotic.

[ m42_kuramotosivashinsky.m ]

We can also use the spin command in Chebfun: m42chebfun.m

Chebfun makes this available via a built-in demo. Try

spin('ks')

or to run the same demo on your own,

S = spinop('ks')
spin(S,256,.01)
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