
Lecture 10, Sci. Comp. for DPhil Students II

Nick Trefethen, Tuesday 25.02.20

Last lecture

• V.9 Fourier spectral discretisation
• V.10 Fourier spectral discretisation via FFT

Today

• V.11 Fourier, Laurent, and Chebyshev
• V.12 Chebyshev series and interpolants

Handouts

• Assignment 3 solutions
• p 1 of Salzer, barycentric interpolation, 1972
• p 1 of Berrut & T, same topic, 2004
• m53_series.m
• m54_bernstein.m

Assignment 3 due today

Pass around a copy of Approximation Theory and Approximation Practice (“ATAP”)

V.11 Fourier, Laurent, and Chebyshev

These are three parallel worlds that are the basis of all kinds of practical mathematics, including
spectral methods for ODEs and PDEs.

Fourier is identical to Laurent via z = eit.

Chebyshev is almost identical to these via x = (z+ z−1)/2 = cos(t), but not quite identical, because
it entails an assumption of t↔ −t or z ↔ z−1 symmetry.

FOURIER

Periodic function F (t), t ∈ [0, 2π]

2n+ 1 equispaced points: tk = 2πk/(2n+ 1), 0 ≤ k ≤ 2n

Complex exponential eikt

Trigonometric interpolant Pn(t) =
∑n
k=−n cke

ikt

Quadrature: trapezoidal rule ⇔ integrating Pn
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Limit n→∞: Fourier series F (t) =
∑∞
k=−∞ ake

ikt

Fourier coefficient: ak = (1/2π)
∫ 2π

0 f(t)e−iktdt

F analytic in a strip ⇒ ak = O(C−|k|)

LAURENT

Function F(z), z ∈ unit circle

2n+ 1 roots of unity: zk = exp(itk), 0 ≤ k ≤ 2n

Monomial zk

Laurent polynomial interpolant Pn(z) =
∑n
k=−n ckz

k

Quadrature: trapezoidal rule ⇔ integrating Pn
Limit n→∞: Laurent series F(z) =

∑∞
k=−∞ akz

k

Laurent coefficient: ak = (1/2πi)
∫
F(z)z−k−1dz over unit circle

F analytic in an annulus ⇒ ak = O(C−|k|)

CHEBYSHEV

Function f(x), x ∈ [−1, 1]

n+ 1 Chebyshev points: xk = cos(kπ/n), 0 ≤ k ≤ n

Chebyshev polynomial Tk(x) = (zk + z−k)/2 = cos(k cos−1 x)

Polynomial interpolant pn(x) =
∑n
k=0 ckTk(x)

Quadrature: Clenshaw-Curtis formula ⇔ integrating pn
Limit n→∞: Chebyshev series f(x) =

∑∞
k=0 akTk(x)

Chebyshev coefficient: ak = (2/π)
∫ 1
−1 f(x)Tk(x)dx/

√
1− x2

f analytic in an ellipse ⇒ ak = O(C−k)

[m53_series.m]

V.12 Chebyshev series and interpolants

This material is so fundamental, and so often unfamiliar even to those who need it, that we’re
going to be a little more academic than usual and state five theorems.

The reference for all of this material is Approximation Theory and Approximation Practice. (Pass
it around.)
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Chebyshev polynomials

First, a reminder about Chebyshev polynomials. If x = cos t, we have Tk(x) = cos(kt) =
cos(k cos−1(x)). In particular, one finds

T0(x) = cos(0t) = 1, T1(x) = cos(1t) = x,

T2(x) = cos(2t) = 2x2 − 1 T3(x) = cos(3t) = 4x2 − 3x

and in general
Tk+1(x) = 2xTk(x)− Tk−1(x).

Chebyshev series

Theorem 1. Let f be Lipschitz continuous on [−1, 1]. Then if the Chebyshev coefficients of f are
defined by

ak = 2
π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx,

except with 1/π instead of 2/π for a0, then the series

f(x) =
∞∑
k=0

akTk(x)

converges absolutely and uniformly.

Absolute and uniform convergence imply that you can reorder the terms however you like and get
the same result; also the series still converges if you take absolute values.

Bernstein ellipse

How fast does the Chebyshev series converge? This depends on how smooth f is. Let’s suppose f
is analytic on [−1, 1], i.e., has a convergent Taylor series at each point of [−1, 1]. Then it can be
analytically continued some distance into the complex x-plane. Specifically, it can be extended to a
function satisfying

|f(x)| ≤M, x ∈ Eρ
for some constant M in the Bernstein ρ- ellipse for some ρ > 1, defined as the ellipse in the
x-plane with foci ±1 whose semimajor and semiminor axis lengths sum to ρ. Equivalently, it is the
ellipse that is the image of the circle |z| = ρ under the Joukowski transformation x = (z + z−1)/2.

(sketch)
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Decay rate of coefficients

This theorem is due to Bernstein in 1912. The standard proof makes use of contour integrals.

Theorem 2. Let f be analytic with |f(x)| ≤M in the Bernstein ρ -ellipse for some ρ > 1. Then
for each k ≥ 0,

|ak| ≤ 2Mρ−k

Convergence rate of Chebyshev series

This theorem is a corollary of Theorem 2, also due to Bernstein in 1912.

Theorem 3. Let fn(x) be the truncation of the Chebyshev series for f at term n. Then under the
assumption of Theorem 2, for each n ≥ 0,

‖f − fn‖∞ ≤
2Mρ−n

ρ− 1

Chebyshev interpolants

Given f , there is a unique polynomial interpolant pn of degree at most n through f at the n+ 1
Chebyshev points. We call this the degree n Chebyshev interpolant of f .

Convergence rate of Chebyshev interpolants

The proof of the next theorem is pretty straightforward, based on Theorem 2 combined with
principles of aliasing, but we won’t go into this.

Theorem 4. Under the assumption of Theorem 2, for each n ≥ 0,

‖f − pn‖∞ ≤
4Mρ−n

ρ− 1
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Computation by the barycentric formula

To compute a Chebyshev interpolant, one can find its Chebyshev coefficients via the FFT and then
just evaluate the series.

But there is also a beautiful, numerically stable formula for doing this “by values” rather than
“by coefficients”. It is called the barycentric formula, and it is due to Salzer in 1972. (The ±1
coefficients in the formula were derived earlier by Marcel Riesz in 1916.)

Throughout the 20th century there were widespread misconceptions about polynomial interpolation.
Many books tell you it can’t be done very reliably numerically, or that you need to use the Newton
form of the interpolant. This is incorrect. In fact the Lagrange form is better for most purposes,
and the barycentric formula is of Lagrange form.

Theorem 5. The following formula gives the Chebyshev interpolant pn to f .

pn(x) =
n∑
j=0

′ (−1)jf(xj)
x− xj

/
n∑
j=0

′ (−1)j

x− xj

The prime means that terms j = 0 and j = n are multiplied by 1/2. If x = xj , we set pn(x) = f(xj).

See Salzer 1972 and Berrut and Trefethen 2004 handouts.

For x = xj , the formula has a 0/0 division. Surely it must be numerically unstable in floating-point
arithmetic for x ≈ xj , because of cancellation error? No! It is perfectly stable, essentially because
cancellation errors in the numerator match cancellation errors in the denominator). This was
proved by N. J. Higham, IMA J. Numer. Anal., 2004.

[m54_bernstein.m]
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