
Lecture 11, Sci. Comp. for DPhil Students II

Nick Trefethen, Thursday 27.02.20

Last lecture

• V.11 Fourier, Laurent, and Chebyshev
• V.12 Chebyshev series and interpolants

Today

• V.13 Chebyshev spectral discretization

Handouts

• Assignment 4
• m55_grayscott.m - Gray-Scott movie
• cheb.m, from Spectral Methods in MATLAB
• m56_waveeqcheb.m - wave equation in 1D, Chebyshev spectral
• m57_leapfrog2Dcheb.m - 2D wave eq. via Chebyshev spectral method
• m58_allencahn.m - Allen-Cahn equation and metastability
• Allen-Cahn equation page from PDE Coffee Table Book
• “Ten-digit algorithms”, Trefethen 2005

Katherine Johnson, 1918-2020

Next Tuesday’s lecture, open to all: a talk on “Who invented the great algorithms?”

First, “Ten digit algorithms”. This may look casual but it’s very serious and it applies to YOU. Please
read it once, then read it again. In particular, the “five seconds” rule is not just for other people
less serious than yourself; it is for you.

The 58 codes of this course, while not all exactly TDAs, illustrate this spirit: if you work with
codes that do a lot quickly and compactly, this is the best way to encourage exploration that helps
ensure results are correct.

More fun with the Gray-Scott equations from Assignment 3. Here’s a MATLAB movie version
(Just Euler time-stepping with finite differences in space, so not quantitatively correct).

[m55_grayscott.m - Gray-Scott equations movie]

1

V.13 Chebyshev spectral discretization

Chebyshev spectral differentiation:

Given: data v0, . . . , vN at Chebyshev points

Want: “derivative” (w0, . . . , wN) at these points

Method:

(1) p = unique polynomial of degree ≤ N with p(xj) = vj for all j

(2) wj = p′(xj) [and similarly for higher derivatives]

The process is linear, and we can write it in matrix form: w0
...

wN

 = D

 v0
...

vN

 .

Example: N = 2
x0 = 1, x1 = 0, x2 = −1.

p(x) = .5x(1 + x)v0 + (1 + x)(1 − x)v1 + .5x(x − 1)v2

p′(x) = (.5 + x)v0 − 2xv1 + (x − .5)v2

In these three coefficients we see the three columns of D:

D =

1.5 −2 .5
.5 0 −.5

−.5 2 −1.5

For the general case there are formulas, whose derivation we won’t go into (see Spectral Methods in
MATLAB).

Strangely, nobody wrote down a formula for these Chebyshev differentiation matrices until Gottlieb,
Hussaini and Orszag in 1984.

[cheb.m, from Spectral Methods in MATLAB]

In Chebfun, you can get these matrices with diffmat. To be precise, diffmat(N+1) corresponds
to cheb(N), except with some sign changes since Chebfun numbers Chebyshev grids from left to
right whereas we’ve defined them from right to left.

Here’s an example of using these matrices to solve a PDE.

utt = uxx on [−1, 1] with u(±1) = 0.

Leap frog:
vn+1 − 2vn + vn−1

k2 = D2vn

where D is the first-order spectral differentiation matrix.

2

[m56_waveeqcheb.m]

It’s kind of amazing to watch the wave propagating so smoothly through a grid that’s irregular.

What if we had a different BC? Here’s an example:

u(−1) = 0, u′(1) = 0.

We can approximate this by enforcing the first row of the system of equations

Dvn = 0

at each step n. That is, dvn = 0, where d = D0:N
0 , or equivalently, in MATLAB notation,

v(1) = -D(1,2:end) v(2:end) / D(1,1) .

(Draw sketch.)

[m56neumann.m = m55_waveeqcheb.m again with this line commented in]

Closely related techniques are at the heart of Chebfun. See Aurentz & T, “Block operators and
spectral discretizations” (handout).

The next example code does much the same, but in 2D:

utt = uxx + uyy.

Here’s the new wrinkle here. We store the grid data in a matrix, not a vector. Then we compute

uyy by multiplying this matrix on the left by D2

and
uxx by multiplying this matrix on the right by (D2)T

[m57_leapfrog2Dcheb.m]

Like Fourier spectral differentiation, Chebyshev spectral differentiation can be carried out with the
FFT. The details are a bit tricky and we won’t go into this here.

In practice, one often mixes both. For example, one can discretize flow in a pipe like this:

r : Chebyshev (since bounded)

theta : Fourier (since periodic)

z : Fourier (assuming periodicity)

3

Now the point of all these spectral methods is high accuracy. Our simple wave equation examples
aren’t the best to illustrate this, since the accuracy is corrupted by merely 2nd-order time-stepping.
For more complicated time-dependent problems, such as reaction-diffusion equations, one can use
fourth-order time-stepping instead. With fairly small time steps, one can then get e.g. 10 digits of
accuracy for a nonlinear PDE.

Here’s a final example that uses only Euler time-stepping, and is qualitatively but not quantitatively
accurate, the Allen-Cahn equation,

ut = uxx + u − u3, u(−1) = −1, u(1) = 1.

(Cf. earlier Fisher-KPP eq., with u − u2: m39_FisherKPP.m)

[Allen-Cahn page from PDE Coffee Table Book]

[m58_allencahn.m - Allen-Cahn equation]

In Chebfun, you can explore the Allen-Cahn equation through the scalar PDE Chebgui demo by
that name, and also via spin('ac').

With the Allen-Cahn equation — as indeed also with the Gray-Scott equations we began with —
you can see the effect of metastability: structures that have finite but very long lifetimes, often
depending exponentially or super-exponentially on a parameter. See the table of chemical elements
from Nature in January 2019. Half-lives differ in the table from more than one year to less than
one millisecond.

4

	Lecture 11, Sci. Comp. for DPhil Students II
	Last lecture
	Today
	Handouts

	V.13 Chebyshev spectral discretization

