
Scientific Computing for DPhil Students II

Assignment 3 Solutions

1. Here is my code, adapted from m44_CrankNicolson.m. Plots are shown for t = 0 and t = 0.125.

% a3_1.m - modification of m44_CrankNicolson.m to solve advection-diffusion

% problem u_t = u_xx + 10u_x, u(-1)=u(1)=0

% Solve PDE for various step sizes:

uuvec = [];

for logh = 5:9

h = 2^(-logh);

x = (-1+h:h:1-h)’; k = .25*h;

u = exp(-10*x.^4./(1-x.^2));

L = length(x);

% sparse matrix for implicit terms:

a = (1+k/h^2); b = -.5*k/h^2+10*.25*k/h; c = -.5*k/h^2-10*.25*k/h;

main = a*sparse(ones(L,1));

subdiag = b*sparse(ones(L-1,1));

superdiag = c*sparse(ones(L-1,1));

B = diag(main) + diag(superdiag,1) + diag(subdiag,-1);

% sparse matrix for explicit terms:

a = (1-k/h^2); b = .5*k/h^2-10*.25*k/h; c = .5*k/h^2+10*.25*k/h;

main = a*sparse(ones(L,1));

subdiag = b*sparse(ones(L-1,1));

superdiag = c*sparse(ones(L-1,1));

A = diag(main) + diag(superdiag,1) + diag(subdiag,-1);

tmax = 1/8; nsteps = tmax/k;

hold off, shg

plt = plot(x,u,’linewidth’,2); title(’t = 0’,’fontsize’,14)

axis([-1 1 -.01 1.01]), grid, pause

for step = 1:nsteps

u = B\(A*u); % Crank-Nicolson

set(plt,’ydata’,u), drawnow

end

uu = u(2^logh/4), uuvec = [uuvec; uu];

title(’t = 1/8’,’fontsize’,14), pause

end

% Richardson extrapolation to find value U(x=-.75,t=0.125):

% (the correct value seems to be about 0.395655846)

a = uuvec;

b = a(2:end) + (a(2:end)-a(1:end-1))/3; b = [NaN; b];

c = b(2:end) + (b(2:end)-b(1:end-1))/15; c = [NaN; c]; disp([a b c])

The assignment asked for u(x = −0.75, t = 0.125) to at least four digits of accuracy. This is easily
found to be 0.3957. One can get many more digits of accuracy with Richardson extrpolation (not
required in this assignment), as carried out by the final lines of the code. The result printed is

0.3988985511 NaN NaN

0.3964554067 0.3956410252 NaN

0.3958550496 0.3956549305 0.3956558576

0.3957056041 0.3956557890 0.3956558462

0.3956682828 0.3956558423 0.3956558458

It would seem that we have u(x = −0.75, t = 0.1250) ≈ 0.395655846.
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This problem can also be solved in Chebfun with PDE15S or CHEBGUI.
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2. We can use a code like this, adapted from m44_CrankNicolson2D.m, to get an idea of the solution:

J = 32; h = 1/J; s = (h:h:1)’; k = .0001;

[xx,yy] = meshgrid(s,s);

x = xx(:); y = yy(:);

u = double(abs(x-.5)<.25 & abs(y-.5)<.25);

I = speye(J); II = speye(J^2);

D = h^(-2)*toeplitz([-2 1 zeros(1,J-2)]);

L = kron(I,D) + kron(D,I);

A = II + k*L/2; B = II - k*L/2;

t = 0;

while max(u) > .5

t = t+k; u = B\(A*u);

end

t

On taking J = 4, 8, 16, 32, . . . and halving the time step for extra confidence, we find apparent linear

convergence to a critical time of t = 0.0281. The details are not shown here.

Actually this problem can perhaps better be solved by Fourier analysis. Any heat distribution can be
reduced to a linear combination of eigenfunctions, of which the lowest component is A sin(πx) sin(πy)
with A = 8/π2. This component will decay in time at the rate C(t) = exp(−2π2t)A, and if this were
the only component of the problem, we could solve exp(−2π2t)A = 0.5 to find t = log(2A)/(2π2) =
log(16/π2)/(2π2) = 0.0245. Bringing in the next few terms of the series involving sin(2πx) sin(πy),
sin(πx) sin(2πy) etc. would give quick convergence to the correct result.

3. The Gray-Scott equations. Here again is the code:

function u00 = gs(N);

tic, S = spinop2(’gs’);

for i = 1:3

dt = 2^(3-i);

u = spin2(S,N,dt,’plot’,’off’);

subplot(1,3,i)

plot(u{1}-.5,’zebra’), axis square off

u00 = u{1}(0,0);

s = sprintf(’u(0,0) = %8.6f\n’,u00);

title(s,’fontsize’,12), drawnow

end

toc

(a) Running gs(32), gs(64), and gs(128) gives these results. On my desktop these runs take 3, 8,
and 21 seconds.
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(b) The code is running Chebfun’s spin2 code to solve the Gray-Scott equations by the ETDRK4
exponential integrator method. We can see some of the details like this:

S = spinop2(’gs’)

S = spinop2 with properties:

domain: [0 1 0 1]

init: [2InfInf chebfun2v]

lin: @(u,v)[2e-5*lap(u);1e-5*lap(v)]

nonlin: @(u,v)[F*(1-u)-u.*v.^2;-(F+K)*v+u.*v.^2]

tspan: [0 5000]

numVars: 2

So the equation is

ut = 0.00002∆u+ F (1− u)− uv2, vt = 0.00001∆v− (F +K)v + uv2.

This display, however, doesn’t tell us the values of the parameters F and K. To find these numbers,
we can look in the spinop2 code: they are F = 0.030 and K = 0.057. The “zebra” output shows the
u component, white where u > 0.5 and black where u < 0.5.

(c) In this array of plots, k = ∆t is halved as you move right, and the ETDRK4 algorithm should
have temporal errors O(k4). This is consistent with the numbers in the third row. It will be
interesting to see if some students explore more carefully.

The spatial errors we expect to be exponential: O(C−N ) for some C > 1. Here again I will be
interested to see what people find. In any case to three digits the answer looks like 0.517 and we get
this with N = 128 and k = 2. A somewhat smaller value like N = 100 is also good enough.

(d) Now the values are F = 0.027 and K = 0.059.
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(e) Here is a code and the output, a pretty mix of spots and rolls.

function u00 = gs(N);

S = spinop2(’gs’);

F1 = .030; F2 = .027; K1 = .057; K2 = .059;

F = .25*F1 + .75*F2; K = .25*K1 + .75*K2;

S.nonlin = @(u,v) [F*(1-u)-u.*v.^2; -(F+K)*v+u.*v.^2];

for i = 1:3

dt = 2^(3-i);

u = spin2(S,N,dt,’plot’,’off’);

subplot(1,3,i)

plot(u{1}-.5,’zebra’), axis square off

u00 = u{1}(0,0);

s = sprintf(’u(0,0) = %8.6f\n’,u00);

title(s,’fontsize’,12), drawnow

end
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