
SOLUTIONS TO ASSIGNMENT 4

Nick Trefethen, 11 March 2020

The six numbers are about about 2.98142, 2.70830, 1.06036, 3437.5, 6.0589, and 0.45809. In the
solutions below, please excuse the extensive use of Chebfun. I reached for the tool I know best,
but there is no expectation that you had to use Chebfun too.

This was big assignment. The whole course through two terms was a major effort, and congratu-
lations on reaching the end! I have been most impressed with people’s hard work and creativity,
and I am sorry it hasn’t been possible to get to know most of you in person.

1. Quartic Van der Pol period

Here’s a simple Chebfun solution. The period appears to be around 2.9814245188, quite possibly
to all these digits of accuracy.

tic, format long

N = chebop(0,15);

N.op = @(u) .05*diff(u,2) - (1-u^4)*diff(u) + u;

N.lbc = [1; 0]; u = N\0; plot(u);

[a,b] = max(u,’local’);

Tvec = diff(b), T = Tvec(end-1);

title(sprintf(’Period = %14.10f’,T))

Tvec =

1.773383121623003

2.981424518806906

2.981424518801831

2.981424518795361

2.981424518794645
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2. Ill-conditioned BVP

I had intended to use coefficients 0.050 and 0.051 on this problem, but accidently wrote 0.50 and
0.51, making it less interesting. Too bad. Again, a simple Chebfun solution. The answer appears
to be 2.70830.

L = chebop(-1,1);

L.lbc = 2; L.rbc = 1;

L.op = @(x,u) .50*diff(u,2) + x*diff(u) + 2*u; u1 = L\0;

L.op = @(x,u) .51*diff(u,2) + x*diff(u) + 2*u; u2 = L\0;
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plot([u1 u2]), legend(’u1’,’u2’), normdiff = norm(u2-u1,inf);

title(sprintf(’Norm of difference = %10.6f’,normdiff))
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3. Quartic Schrodinger equation

This problem is readily solved with Chebyshev spectral methods. We can modify the M-files
given in the course or do it with Chebfun, like this:

L = chebop(-5,5);

L.op = @(x,u) -diff(u,2) + x^4*u; L.lbc = 0; L.rbc = 0;

e = eigs(L)

e =

1.060362090483852

3.799673029801288

7.455697937986480

11.644745511377639

16.261826018850012

21.238372918235811

This suggests that the answer is 1.06036.... Is that accurate, and is it the right eigenvalue? Well
it’s probably the right eigenvalue, since the quadratic Schrodinger operator is well known to
have eigenvalues 1, 3, 5, 7, . . . on the infinite interval. On [−5, 5] the quadratic operator gives via
Chebfun

L.op = @(x,u) -diff(u,2) + x^2*u; e = eigs(L)

e =

1.000000000153330

3.000000007343337

5.000000168037789

7.000002442912308

9.000025274501047

11.000197435820450

Since x4 looks roughly like x2 — both potential wells will confine this low eigenvalue to a region
approximately [−1, 1] — it looks as if 1.06036 . . . should indeed be the right eigenvalue. The
fact that the quadratic analogue matches 1 to 9 digits suggests it’s very likely that 1.06036 . . . is
accurate to a number of digits. We could compute the residual like this:

[v,lam] = eigs(L,1); norm(L*v-lam*v)

ans = 4.613876682515136e-12

which further suggests that there are quite a few digits of accuracy.
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4. Allen-Cahn equation

Using codes from the lectures, I would probably adapt m58_allencahn.m for this problem. In
Chebfun, there’s a code called pde15s which you can find out about through chebgui if you
don’t already know about it. The critical time emerges as about 3437.5, as this computation
shows.

t = 0:34.375:3437.6;

pdefun = @(t,x,u) .015*diff(u,2)+u-u.^3;

bc.left = @(t,u) u+1; bc.right = @(t,u) u+1;

x = chebfun(@(x) x); u0 = 1-2.*x.^2;

opts = pdeset(’Eps’, 1e-6, ’Ylim’, [-1,1.1]);

[t, u] = pde15s(pdefun, t, u0, bc, opts);

waterfall(u,t), view(110,0), zlim([-1 1.2])

5. Blowup problem

I used pde15s again for this one, again running bisection by hand. I think the critical time is
about 6.0589. This is based on the following kind of computation. I varied the value of Eps and
the number of time steps and got consistent results.

t = linspace(0,6.058,100);

pdefun = @(t,x,u) diff(u,2)+diff(u)+exp(u);

bc.left = ’dirichlet’; bc.right = ’dirichlet’;

x = chebfun(@(x) x); u0 = chebfun(0);

opts = pdeset(’Eps’, 1e-7);

[t, u] = pde15s(pdefun, t, u0, bc, opts);

waterfall(u, t), xlabel(’x’), ylabel(’t’)

max(u(:,end)), axis([-1 1 0 6.1 0 8])

ans = 7.124181944341990
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6. Heat equation on a cube

The mathematically right method for this problem is separation of variables, which gives a
series that converges exponentially. Duncan Martinson did this and found the solution to be
0.45806814580673.

The method I used, on the other hand, was crude numerics — simply discretize by the stan-
dard 7-point stencil implemented via kron, somewhat as in our codes m49_leapfrog2D and
m55_grayscott but in 3D. I think the final number is around 0.45809. From the raw data, I get
this to 3 digits, and then one round of Richardson extrapolation gives two more digits.

a = [];

for logJ = 2:6

J = 2^logJ;

h = 2/J; s = (h:h:1)’;

I = speye(J-1); D = h^(-2)*toeplitz([-2 1 zeros(1,J-3)]);

L = kron(I,kron(I,D)) + kron(I,kron(D,I)) + kron(D,kron(I,I));

rhs = -h^(-2)*[ones((J-1)^2,1); zeros((J-1)^3-(J-1)^2,1)];

u = L\rhs;

JJ = (J-1)^2*(J/4 - 1);

slice = u(JJ+1:JJ+(J-1)^2); % 1/4 of the way from the hot face

val = max(slice) % value at middle of this slice

a = [a; val];

end

b = a(2:end) + diff(a)/3 % Richardson extrapolation

val = 0.435574229691877

val = 0.450454154658691

val = 0.455989943700141

val = 0.457549816063755

val = 0.457951759981428

b =

0.455414129647629

0.457835206713957

0.458069773518293

0.458085741287319

Most of the following number comes from the case J = 64 in the very last calculation.

Total_time_for_this_solution_sheet = toc

Total_time_for_this_solution_sheet = 21.071973000000000

4


