% m29b_planets.m Orbits of three planets going off to infinity % % Here we use one of MATLAB's adaptive ODE solvers to track the orbits % of three planets attracting each other with pairwise 1/r^2 forces % initially at rest at the corners of a 3-4-5 right triangle. The % system is transiently chaotic: at around t=86, it "self-ionizes". % Complex arithmetic is used for brevity. % % For a discussion of this problem, and an equivalent Chebfun code, % see www.chebfun.org/examples/ode-non/ThreePlanets.html. % Set the mood by plotting some "stars": function m29() fill(20*[-1 1 1 -1 -1],20*[-1 -1 1 1 -1],'k') hold on, grid on, axis([1.27*[-6.3 4.7] -3.5 7.5]) x = 15*rand(250,1)-8; y = 11*rand(250,1)-3.5; plot(x,y,'.w','markersize',4) % Initial conditions: x = 0; y = 3.001; z = 4i; u0 = [x y z 0 0 0].'; xh = plot(real(x),imag(x),'.r','markersize',50); yh = plot(real(y),imag(y),'.y','markersize',50); zh = plot(real(z),imag(z),'.g','markersize',50); tol = 3e-14; opts = odeset('reltol',tol,'abstol',tol); axis off, title('t = 0','fontsize',18), drawnow, shg, pause, shg % Time-stepping: dt = .4; tmax = 200; tspan = 0:dt:tmax; [t,u] = ode113(@m29fun,tspan,u0,opts); for nt = 2:length(t); tnext = nt*dt; x = u(nt,1); y = u(nt,2); z = u(nt,3); set(xh,'xdata',real(x),'ydata',imag(x)) set(yh,'xdata',real(y),'ydata',imag(y)) set(zh,'xdata',real(z),'ydata',imag(z)) errest = tol*10^(1+tnext/12); title(sprintf('t = %3.0f estimated error = %5.0e',... tnext,errest),'fontsize',18), shg, pause(.06), shg, drawnow end function v = m29fun(t,u) x = u(1); y = u(2); z = u(3); yx = (y-x)/abs(y-x)^3; zx = (z-x)/abs(z-x)^3; zy = (z-y)/abs(z-y)^3; v = [u(4:6); yx+zx; -yx+zy; -zx-zy];