Scientific Computing Lecture 1:
MATLAB fundamentals

InFOMM CDT
Mathematical Institute
University of Oxford

Andrew Thompson
(slides by Stuart Murray)

e

Lecture I: MATLAB fundamentals

What is MATLAB?

MATLAB combines many things:

command line based interaction;

suite of quality solvers/functions;

programming language;

interactive development environment (IDE);

debugger and code analyzer.

Designed for numerical problem solving
Differs from Maple and Mathematica in this respect

Some symbolic manipulation possible, but will not be covered

: |

History and aims

Invented by Cleve Moler in 1970s
Interface to Fortran packages
LINPACK and EISPACK

Removes some of the pain from
numerical programming

Prevents reinvention of the wheel:
routines for performing many tasks
are included

Now very evolved: range of
toolboxes, support for parallel
computing, object oriented
Industry standard in many fields
Fast if used correctly

The command window is
the means by which we will
interact with MATLAB
Prompt looks like this: i —

MATLAB fundamentals

Getting started in the command window

' Applications Places System

59

File Ecit Debug Deskiop Window Help

NG| % MBI ¢ & o B | @ curen Foder[/romersossesar

Shortcuts (2] How to Add (2] What's New
Current Folder wO A x

/ » home » s0346847 » P L

[\

admin
case_notes
data
Desktop

There are 3 main windows:

letterheads
mail
mathematics
matlaboop
ny_backup
personal
physics

teaching
umc

Command window Qroapes

() fibonacci.m~

[} matlab_crash_dump.31126-1
L1 meolf.m~

) startup.m

Workspace window =

Command history ——— |

Details v

Select a file to view details

MATLAB R2011lb

el &

> |

Workspace E=-TE

& o % W |stack |EPselect gatato

Name Value Min

W

|
[T

Command History “gax

plot(real (£))
plot(x)
plot(real (x))

% = 0:0.001:2%pi
x

x = exp(i*x)

x

close

explci14);

x
plot(real (x),inag(x))
= x.A2
plot(real(f),inag(f))
= sqre(x)

plot(real (£),inag(f))
f = tan(x)

plot(real (f),imag(f))
Tinspace(2,1,5)
sqre(sin(1/7))
sqre(sin(ans/7))
sqre(cos(ans/7))
sqre(cos(ans/3))
sqre(cos(3*ans))
sqrt(cos(ans/2))

%-- 13/10/11 12:44:47 pn BST

5%

>>

Efe

NP |

Simple calculations

Arithemetic in the command window

>> 1 + 1
ans =
2

>> 0.3 * 0.2
ans =
0.06
>> (1/3 + 1/2)/(1/3 - 1/2)
ans =
-5.0000
>> 2764
ans =
1.8447e+19

B B N

Number forms

integer

double precision
scientific notation
complex

other

Setting variables

>> X = 2

X =

‘hello’

>>Y

y=
hello

N.B.

0 2 -3458
0.3475 -0.1121

1.2E-8 9E-10

i] 21 1-3j
pl inf NaN nan

no variable declarations are required

u1
=

Variables and workspace

Display a variable value by typing its name
All variables in use are stored in the workspace
Saving the workspace:

>> save mywork

Clear workspace:
>> clear
Clear command window:
>> clc
Reload data into the workspace:

>> load mywork

Mathematical functions

MATLAB contains hundreds of basic mathematical functions

We call a function using its name:

>> rand
ans =
0.3458

Include any arguments between brackets:
>> sin(pi/2)
ans =
1.0000

Some functions can return more than one result;
>> [theta,r] = cart2pol(0.5,0.5);

Notice the semicolon suppressed the output.

Mathematical functions

trigonometric:

sin, CoS, tan, cosec, sec, cot,
asin, acos, atan, acosec, asec, acot
hyperbolic:

sinh, cosh, tanh, cosech, sech, coth,

asinh, acosh, atanh, acosech, asech, acoth
exponential:

sqrt, realsqrt, exp, expmlm, log,
loglO, 1log2, 1loglp, nthroot

complex:

real, 1imag, abs, angle, conj

integer:

mod(a,b), rem(a,b),

iscrete:
cm(a,b), gcd(a,b),

actorial,

isprime,

nchoosek(n, k)

ind information on any function using help:

>> help factorial

or documentation using doc:

>> doc factorial

find a function using thefx button

© Appications Paces System [

el]

primes,

round, fix, ceil, floor

factors,

12:00 Q)
x

MATLAB R2011b o

File Edit Debug Desktop Window
Nalsma9c|ag

Shortcuts (2] How to Add (2] What's New

Current Folder
(5 « matlab » quasimodes

[T

7 basic_state_error_fun.m

#disturbance_schecter.m
) field_disp.m
) gaussian_fields.eps
) hyberbolic_fields.eps
mode_map.m
() mode_map.m~
) pseudomom.m~
) quasifun.m
() quasifun.m~
#) quasimode.m
[quasimode.m~
#) quasimode_test.m
) qvh_error.m
) qvh_error.
7 qvh_schecter.m
() qvh_schecter.m~
Hrthsm
ths.m~
Hths_testm
) sayYo.m

Select a file to view

indexed AVI movies. M must be no greater than 256 (236 if using Indeo
conpression). There is no default colornap.

VIDEONAME - A descriptive name for the video strean. This paraneter
nust be no greater than 64 characters long. The default name is the
Filenane.

See also avifile, aviread, aviinfo, movie.

Reference page in Help browser
doc_novieZavi

>> movie2avi(nov,' /dara/s0346847/radiation_results_pse
>> movieavi(nov,'/data/s0346847/radiation_results_ps:
> 1+

1+

|

Error: The input character is not valid in MATLAB statements or expressions.

>> 14l
ans =
2
>> (1/3+41/2)/(1/3-1/2)
ans =
-5.0000
>> 1/3+1/2/1/3-1/2
ans =
0
>> 2064
ans =
1.8447e+19
>
>> 2064

ans

1.8447e+19

> 'hello’

ans =

hello

fx >> help fac

Help
2) | @ | current Folder| HH ®
oo x
MR KEYFRAME - For compressors that support temporal compression, this I
| is the number of key frames per second. The default is 2 key franes per
second.
COLORMAP - An M-by-3 natrix defining the colornap to be used for

Workspace “oax

) o % 8 B [stack |09 Select dmatop. -

Name [vaiue [min]
h_2 <2200xIdouble> 0 ||

EH h_new <2200x1 comple... -L.5.

EH hbar <2200x1double> 0.35,

[alics ‘random’

[l input “basicstate’

Hk 501 501

Hm 2 2

mov <1x500 struct>

Hou 1.0000e-03 1.00.

H omega <2200x1 double> 0

EH plotmod 1000 1000

HH pseudo <2200x1 double> -3.7... [

EH pseudo_int -2.6211e+05 -2.6.

H <2200x1 comple... 6.13.

<1x2200 double> 0.01,
<2200x1 double> 0.01,
<500000x5 doub... <To,

1 1
2200 2200
b |

500 5t
<2200x1 double> 0
100

<500000x1 doub.

and(10000) ;
(250.95).%a;

a - sparse(a);
72

%-- 13/10/11
5E5/100
5E5/1000
disturbance_schecter
movie(nov)

help novie

whos nov

movie(nov)

novie2avi (nov, ' /data/
novie2avi(nov, '/
1+

1+1
(1/3+1/2)/(1/3-1/2)
1/341/2/1/3-1/2

54 pn BST -

2164
'hell a
[D

[#) (@ Terminal

4 wariae mzore [canor-

csearch..| Bl Fgure 1

0
O

»,
20
A

a
O
O
»
3

Basics

MATLAB is very good at dealing with arrays
A vector is a 1d array; a matrix a 2d array

Arrays with more dimensions are allowed, but uncommon

A B N

il

Construct a row vector like so:

>> a = [1 2 3 4]
a =
1 2 3 4

Enter a 2-by-2 matrix like this

>> A = [1 2; 3 4]

1 2
3 4

N.B. MATLAB is case sensitive, S0 a and A are different variables.

Concatenation

Note that the semicolon was used to separate two rows of the matrix
The semicolon works as a concatenation operator

It can be used to concatenate two arrays in the up-down direction:

>> a
a =
1 2 3 4
>> [a;a]
ans =
1 2 3 4
1 2 3 4
The space concatenates in the left-right direction:

>> [A A]

ans =

Ranges

Often we require a vector of equally spaced numbers
MATLAB has ranges to deal with this
Declare a range with startvalue:stopvalue
> r = 1:10
r o=
1 2 3 4 5 6 7 8 9 10

Ranges need not have integral spacing: use startvalue:step:stopvalue

>> r = 1:0.2:2
r‘ =

1.0000 1.2000 1.4000 1.6000 1.8000 2.0000
r=2:-0.2:1
2.0000 1.8000 1.6000 1.4000 1.2000 1.0000

Array manipulation

Matrix transpose: transpose(a) ora.’
Complex conjugate: conj(a)

Hermitian transpose: a'

Inverse: inv(a)

Left matrix division (solve Ax=b) A\b

Right matrix division (solve xA=b) b/A
Determinant: det(a)
Left and right matrix division are much more efficient than using inv

Array arithmetic

For matrices * is interpreted as matrix multiplication
+ and - work for matrices
Addition of a matrix and a scalar is interpreted sensibly:
> [1 2 3] +1
ans =
2 3 4

Elementwise operations

There are occasions when we wish operations to act on each element of a
matrix, rather than the whole matrix.

Example: computing the square of every element of a matrix squareMat:
squareMat”2 is not what is required.

To make an operator act elementwise, prefix it with a dot:
squareMat.”2

Another example: consider vectors x and vy:
X./y + y.72 -2*%y.*X
Most of the mathematical functions covered work with arrays elementwise:
>> sin([0 pi/4 pi/3 pi/2 pi])
ans =
0.0000 0.7071 0.8660 1.0000 0.0000

exp works elementwise: use expm for matrix exponentials

Array construction functions

MATLAB has many functions to construct common matrices:

eye(n)
zeros(m,n)
ones(m,n)
rand(m,n)
randn(m,n)

diag(x)

n-by-n identity matrix

m-by-n zero matrix

m-by-n matrix of ones

uniformly distributed m-by-n matrix
N(0,1) distributed m-by-n matrix

diagonal matrix formed using vector x

and some that are less common:;

topeliz
hadamard
vander
hilb

magic

Topelitz matrix
Hadamard matrix
Vandermonde matrix
Hilbert matrix

magic square

Array access

Vectors are accessed using a single subscript between brackets:
>> v =[1 3 5];
>> v(3)

ans =

Matrix elements are accesed using the row and column number:
> A = [1 2;3 4];

>> A(2,2)

ans =

4

Array access continued

The word end can be used to refer to the last element along a dimension:
>> x = 1:100;
>> X(end)
ans =
100
Ranges can be used to access arrays:
>> X(1:5)
ans =
1 2 3 4 5
A more complicated example:
> A =112 3;45 6;7 8 9];
>> A(2,1:end)
ans =
4 5 6

Functions for array manipulation

repmat(A,m,n)
reshape(A,m,n)
sort(A,dim)
flipud(A)
fliplr(A)
circshift(A,n)

concatenate A m times vertically, n times horizontally
reshape the elements of A into an m-by-n matrix
sort A along the dimension dim

flip A in the up-down direction

flip A left-to-right

circularly shift elements of A down by an amount n

Functions that interrogate arrays

sum(A,dim)
prod(A,dim)
size
length
numel

nnz

max

sum elements of A along dimension dim

form product of elements of A along dimension dim
return vector of dimensions of A

return length of vector

return number of elements of an array

return number of elements not equal to

return maximum of each column

The plot command

MATLAB has many features for producing high quality plots
Plot the values of a vector using plot:

>> X = 0:0.01:2%p1i;

>> y = sin(x);

>> plot(y);

By default, elements are plotted against their indices.

Plot one data set against another using plot(x,y):
>> plot(x,y)

Create a new figure window with figure

Close all figure windows with close all

1

200 400

600

800

More plot tools

The axis([xmin xmax ymin ymax]) sets the axis limits

Use hold on to plot multiple lines on the same figure:

>> hold on 1

>> plot(x,cos(x),’'r");
0.5;

Note we added an optional string for the line style 0

String controls colour, line type, and markers 0.5t
Colours:

r red o
g green

b Dblue

C cyan

m magenta

y yellow

b Dblack

Line types:

- solid (default)

- - dashed
dotted

- . dash-dotted

none no line; handy for markers

Markers:
+ Cross
0 circle
* star
dot
X X
S star
d diamond
P pentagram

0.5}

Add a title using title(‘yourTitle’)
Similarly with xlabel and ylabel

Saving plots

The default MATLAB figure format is a .fig file

Simply go to Figure: File > Save As

For LaTeX reports save as encapsulated postscript: .eps
Alternatively in the command window use

>> print -depsc myFigureName

T W

1] . T
.
.M‘h -

[\ y;/ia(\""z)//I'7 3i
W)

»
\

[: ;
{

u1
=

i

e

Writing your own function

x

Suppose we wish to study the function f(z) = je%‘
MATLAB does not have a built-in function of this form.

We may write our own as an anonymous function

Anonymous functions have this structure:

myFunction = @(X,y,z,...) X+y-2*x+...

\ J l_'j\ J \\ J
Y A\ 4 Y

function name at sign arguments function definition

call this function using

>> myFunction(1l.2,4,3,...)

For our example:

>> T = @(x) exp(x)/(1+exp(2*x));

i

Anonymous functions in use: integration

Anonymous functions make integration simple.
e

T 142

T

Let us use our function f to integrate /()
The quad function is used for integration.

1
The integral in question is / f(z)dx
0

>> quad(f,0,1)
ans =
0.4329

1
check using the exact result: /O f(z)dz = tan™"(e) — tan™"(1).

>> atan(exp(1l))-atan(exp(0))
ans =
0.4329
quad handles everything for us and is very accurate.

i

Optimization tools

Useful functions

We will consider three very useful optimization/root finding functions

fminsearch find local minimum of nonlinear function
fsolve solve system of nonlinear equations
roots find roots of a polynomial

These functions are sufficiently quick and accurate for many problems

To use fTminsearch and fsolve we need to remind ourselves about
anonymous functions from lecture |

Anonymous functions and function handles

Recall how to define an anonymous function
Examples: define functions f(x)=vVx+1 and g(x)=sin(x)+cos(x) :

f = @(x) sqrt(x+1);

g = @(x) sin(x) + cos(x);

We can now use f and g like normal functions

They are special variables that refer to functions called function handles

Another simple example: define h(x)=tan (x):

h = @(x) tan(x);

h = @tan; % shorthand definition

The second line shows a quick way of creating a function handle to a built-in

function

A B N

il
L

Using fminsearch

We now see why function handles are important

The function fminsearch takes two arguments: a function to minimise, and a

starting value

Example: find a local minimum of the function f<x>=sin<cos<x>-x2> near x=4:

f = @(x) sin(cos(x)-x"2):
fminsearch(f,4):

% create function handle

Example: find a local minimum of cosh (x) :

f = @cosh
fminsearch(f,1);

%

create function handle

A B N

il

Using fsolve

The function fsolve solves equations of the form f (x)=0
It is called just like fminsearch, using a function handle and a starting guess
Example: solve x’+x’=exp(-x) :

First rewrite in the correct form

f = @(x) x*3 + x*2 -exp(-x) % create function handle
fsolve(f,1)

Example: find a complex zero of the second Hankel function of the first kind:
Solve equation H)'(x)=0

f = @(x) besselh(2,1,x) % create function handle

fsolve(f,1-11); % use complex initial guess

Polynomials

Roots takes a vector of polynomial coefficients
Example: find the roots of x’-2x°:

>> roots([1 0 0 -2 0 0]) % remember constant coefficient
ans =
0]
Q
-0.6300 + 1.0911i1
-0.6300 — 1.0911i
1.2599

