
Scientific Computing Lecture 1:
MATLAB fundamentals

InFoMM CDT

Mathematical Institute
University of Oxford

Andrew Thompson

(slides by Stuart Murray)

Lecture I: MATLAB fundamentals

MATLAB combines many things:

● command line based interaction;

● suite of quality solvers/functions;

● programming language;

● interactive development environment (IDE);

● debugger and code analyzer.

Designed for numerical problem solving

Differs from Maple and Mathematica in this respect

Some symbolic manipulation possible, but will not be covered

What is MATLAB?

History and aims

● Invented by Cleve Moler in 1970s

● Interface to Fortran packages

LINPACK and EISPACK

● Removes some of the pain from

numerical programming

● Prevents reinvention of the wheel:

routines for performing many tasks

are included

● Now very evolved: range of

toolboxes, support for parallel

computing, object oriented

● Industry standard in many fields

● Fast if used correctly

MATLAB fundamentals

Open MATLAB

There are 3 main windows:

Getting started in the command window

Command window

Workspace window

Command history

The command window is
the means by which we will
interact with MATLAB
Prompt looks like this:

>>

Simple calculations

>> 1 + 1

ans =

 2

Arithemetic in the command window

>> 0.3 * 0.2

ans =

 0.06

>> (1/3 + 1/2)/(1/3 - 1/2)

ans =

 -5.0000

>> 2^64

ans =

 1.8447e+19

>> 1 + 1

ans =

 2

Number forms

>> 0.3 * 0.2

ans =

 0.06

>> (1/3 + 1/2)/(1/3 - 1/2)

ans =

 -5.0000

>> 2^64

ans =

 1.8447e+19

integer

double precision

scientific notation

complex

other

0 2 -3458

0.3475 -0.1121

1.2E-8 9E-10

i j 2i 1-3j

pi inf NaN nan

>> 1 + 1

ans =

 2

Setting variables

>> 0.3 * 0.2

ans =

 0.06

>> (1/3 + 1/2)/(1/3 - 1/2)

ans =

 -5.0000

>> 2^64

ans =

 1.8447e+19

>> x = 2

x =

 2

>> y = ‘hello’

y =

hello

N.B.
no variable declarations are required

Variables and workspace

Display a variable value by typing its name

All variables in use are stored in the workspace

Saving the workspace:

>> save mywork

Clear workspace:

Display a variable value by typing its name

All variables in use are stored in the workspace

Saving the workspace:

>> clear

Clear command window:

>> clc

Reload data into the workspace:

>> load mywork

Mathematical functions

MATLAB contains hundreds of basic mathematical functions

We call a function using its name:

>> rand

ans =

 0.3458

Include any arguments between brackets:

>> sin(pi/2)

ans =

 1.0000

Some functions can return more than one result:

>> [theta,r] = cart2pol(0.5,0.5);

Notice the semicolon suppressed the output.

Mathematical functions

trigonometric:

>> rand

ans =

 0.3458

>> sin(pi/2)

ans =

 1.0000

sin, cos, tan, cosec, sec, cot,

asin, acos, atan, acosec, asec, acot

hyperbolic:

sinh, cosh, tanh, cosech, sech, coth,

asinh, acosh, atanh, acosech, asech, acoth

exponential:

sqrt, realsqrt, exp, expm1m, log,

log10, log2, log1p, nthroot

complex:

real, imag, abs, angle, conj

integer:

mod(a,b), rem(a,b), round, fix, ceil, floor

discrete:

lcm(a,b), gcd(a,b), isprime, primes, factors,

factorial, nchoosek(n,k)

Find information on any function using help:

>> help factorial

or documentation using doc:

>> doc factorial

find a function using the f
x
 button

Arrays:
the foundation of

MATLAB

Basics

MATLAB is very good at dealing with arrays

A vector is a 1d array; a matrix a 2d array

Arrays with more dimensions are allowed, but uncommon

Construct a row vector like so:

>> a = [1 2 3 4]

a =

 1 2 3 4

Enter a 2-by-2 matrix like this

>> A = [1 2; 3 4]

A =

 1 2

 3 4

N.B. MATLAB is case sensitive, so a and A are different variables.

Concatenation

Note that the semicolon was used to separate two rows of the matrix

The semicolon works as a concatenation operator

It can be used to concatenate two arrays in the up-down direction:

>> a

a =

 1 2 3 4

>> [a;a]

ans =

 1 2 3 4

 1 2 3 4

The space concatenates in the left-right direction:

>> [A A]

ans =

 1 2 1 2

 3 4 3 4

Ranges

Often we require a vector of equally spaced numbers

MATLAB has ranges to deal with this

Declare a range with startvalue:stopvalue

>> r = 1:10

r =

 1 2 3 4 5 6 7 8 9 10

Ranges need not have integral spacing: use startvalue:step:stopvalue

>> r = 1:0.2:2

r =

 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000

r = 2:-0.2:1

 2.0000 1.8000 1.6000 1.4000 1.2000 1.0000

Array manipulation

Matrix transpose: transpose(a) or a.’

Complex conjugate: conj(a)

Hermitian transpose: a’

Inverse: inv(a)

Left matrix division (solve Ax=b) A\b

Right matrix division (solve xA=b) b/A

Determinant: det(a)

Left and right matrix division are much more efficient than using inv

Array arithmetic

For matrices * is interpreted as matrix multiplication

+ and - work for matrices

Addition of a matrix and a scalar is interpreted sensibly:

>> [1 2 3] + 1

ans =

 2 3 4

Elementwise operations

There are occasions when we wish operations to act on each element of a

matrix, rather than the whole matrix.

Example: computing the square of every element of a matrix squareMat:

squareMat^2 is not what is required.

To make an operator act elementwise, prefix it with a dot:

squareMat.^2

Another example: consider vectors x and y:

x./y + y.^2 -2*y.*x

Most of the mathematical functions covered work with arrays elementwise:

>> sin([0 pi/4 pi/3 pi/2 pi])

ans =

 0.0000 0.7071 0.8660 1.0000 0.0000

exp works elementwise: use expm for matrix exponentials

Array construction functions

MATLAB has many functions to construct common matrices:

eye(n) n-by-n identity matrix

zeros(m,n) m-by-n zero matrix

ones(m,n) m-by-n matrix of ones

rand(m,n) uniformly distributed m-by-n matrix

randn(m,n) N(0,1) distributed m-by-n matrix

diag(x) diagonal matrix formed using vector x

and some that are less common:

topeliz Topelitz matrix

hadamard Hadamard matrix

vander Vandermonde matrix

hilb Hilbert matrix

 magic magic square

Array access

Vectors are accessed using a single subscript between brackets:

>> v =[1 3 5];

>> v(3)

ans =

 5

>>v = v.’;

>> v(2)

ans =

 3

Matrix elements are accesed using the row and column number:

>> A = [1 2;3 4];

>> A(2,2)

ans =

4

Array access continued

The word end can be used to refer to the last element along a dimension:

>> x = 1:100;

>> x(end)

ans =

 100

Ranges can be used to access arrays:

>> x(1:5)

ans =

 1 2 3 4 5

A more complicated example:

>> A = [1 2 3;4 5 6;7 8 9];

>> A(2,1:end)

ans =

 4 5 6

Functions for array manipulation

repmat(A,m,n) concatenate A m times vertically, n times horizontally

reshape(A,m,n) reshape the elements of A into an m-by-n matrix

sort(A,dim) sort A along the dimension dim

flipud(A) flip A in the up-down direction

fliplr(A) flip A left-to-right

circshift(A,n) circularly shift elements of A down by an amount n

Functions that interrogate arrays

sum(A,dim) sum elements of A along dimension dim

prod(A,dim) form product of elements of A along dimension dim

size return vector of dimensions of A

length return length of vector

numel return number of elements of an array

nnz return number of elements not equal to

max return maximum of each column

Simple plotting

The plot command

MATLAB has many features for producing high quality plots

Plot the values of a vector using plot:

>> x = 0:0.01:2*pi;

>> y = sin(x);

>> plot(y);

By default, elements are plotted against their indices.

Plot one data set against another using plot(x,y):
>> plot(x,y)

Create a new figure window with figure

Close all figure windows with close all

More plot tools

The axis([xmin xmax ymin ymax]) sets the axis limits

Use hold on to plot multiple lines on the same figure:

>> hold on

>> plot(x,cos(x),’r’);

Note we added an optional string for the line style

String controls colour, line type, and markers

Colours:

r red

g green

b blue

c cyan

m magenta

y yellow

b black

Line types:

- solid (default)

-- dashed

: dotted

-. dash-dotted

none no line; handy for markers

Markers:

+ cross

o circle

* star

. dot

x x

s star

d diamond

p pentagram

Add a title using title(‘yourTitle’)

Similarly with xlabel and ylabel

Saving plots

The default MATLAB figure format is a .fig file

Simply go to Figure: File > Save As

For LaTeX reports save as encapsulated postscript: .eps

Alternatively in the command window use

>> print -depsc myFigureName

Anonymous
functions

Writing your own function

MATLAB does not have a built-in function of this form.

We may write our own as an anonymous function

Anonymous functions have this structure:

myFunction = @(x,y,z,...) x+y-2*x+...

function name at sign arguments function definition

call this function using

>> myFunction(1.2,4,3,...)

For our example:

>> f = @(x) exp(x)/(1+exp(2*x));

Suppose we wish to study the function

Anonymous functions in use: integration

Anonymous functions make integration simple.

Let us use our function f to integrate

The quad function is used for integration.

The integral in question is

>> quad(f,0,1)

ans =

 0.4329

check using the exact result:

>> atan(exp(1))-atan(exp(0))

ans =

 0.4329

quad handles everything for us and is very accurate.

Optimization tools

We will consider three very useful optimization/root finding functions

Useful functions

fminsearch find local minimum of nonlinear function

fsolve solve system of nonlinear equations

roots find roots of a polynomial

These functions are sufficiently quick and accurate for many problems

To use fminsearch and fsolve we need to remind ourselves about

anonymous functions from lecture I

Anonymous functions and function handles

Recall how to define an anonymous function

Examples: define functions and :

f = @(x) sqrt(x+1);

g = @(x) sin(x) + cos(x);

The second line shows a quick way of creating a function handle to a built-in

function

f x = x1 g x=sin x cos x

We can now use f and g like normal functions

They are special variables that refer to functions called function handles

Another simple example: define :h x= tan x

h = @(x) tan(x);

h = @tan; % shorthand definition

Using fminsearch

We now see why function handles are important

The function fminsearch takes two arguments: a function to minimise, and a

starting value

Example: find a local minimum of the function near :

f = @(x) sin(cos(x)-x^2); % create function handle

fminsearch(f,4);

f x =sin cos x −x2
 x=4

Example: find a local minimumof :

f = @cosh % create function handle

fminsearch(f,1);

cosh x

Using fsolve

The function fsolve solves equations of the form

It is called just like fminsearch, using a function handle and a starting guess

Example: solve :

First rewrite in the correct form

f = @(x) x^3 + x^2 -exp(-x) % create function handle

fsolve(f,1)

f x =0

Example: find a complex zero of the second Hankel function of the first kind:

Solve equation :

f = @(x) besselh(2,1,x) % create function handle

fsolve(f,1-1i); % use complex initial guess

x3
x2

=exp −x

H 2
1

 x=0

Polynomials

Roots takes a vector of polynomial coefficients

Example: find the roots of :x5
−2x2

>> roots([1 0 0 -2 0 0]) % remember constant coefficient

ans =

 0

 0

 -0.6300 + 1.0911i

 -0.6300 – 1.0911i

 1.2599

