
Scientific Computing Lecture 2:
Logical operations, m-files and functions

InFoMM CDT

Mathematical Institute
University of Oxford

Andrew Thompson

(slides by Stuart Murray)

Some new syntax

In this lecture we will be looking at full MATLAB programs

It is useful to be able to add comments to a program

Anything on a line following a percent sign is a comment and is ignored

Comments and semicolons

>> x = 1 % set the value of x to 1. This is a comment

Semicolons have two uses: to suppress the display of results:

>> x = 1

ans =

 1

>> x = 1;

and allow multiple statements on one line:

>> x = 1; y = 2; z = 3;

Logic

We have met some variable classes already: string, integer, double precision

MATLAB has another for handling logic: the logical class

A logical variable can have the value true or false

Logical expressions

>> x = true

x =

 1

>> class(x)

ans =

 logical

True and false are also represented by 1 and 0:

>> x = logical(0); % sets x to false

Logical expressions: comparison

We can make logical comparisons in MATLAB

>> 2 > 1

ans =

 1

>> 1 == 0

ans =

 0

== is equal to

~= is not equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Boolean operators

MATLAB has symbols for the operations not, or and and:

>> 2 > 1

ans =

 1

>> 1 == 0

ans =

 0

>> true & true

ans =

 1

>> false | true

ans =

 1

>> ~true

ans =

 0

XOR (exclusive or) has the function xor.

Short circuit operators

MATLAB also offers the operators && together with ||
These are short circuit operators
Give identical results to & and |
If the result can be obtained from the lhs, the rhs is not evaluated
An example:

~ high precedence

&

|

&&

|| low precedence

>> true || verySlowFunction

>> false && bigDeterminant

Boolean operators have an order of precedence like /,*,+,-
Safe to use brackets

Array logic

All logical expressions covered so far work with arrays elementwise

The result is an array of logical values (0s or 1s); a logical array

Here we see arrays being compared:

>> A = [1 2;3 4]; B = [1 2;-3 4];

>> A == B

ans =

 1 1

 0 1

We may perform Boolean operations with logical arrays as well:

>> a = logical([1 0 0]); b = logical([0 1 0])

>> a | b

ans =

 1 1 0

Logical indexing: powerful expressions

We may use a logical array to index another array

Why is this useful?

Suppose we wish to find all numbers in a matrix fulfilling some criteria

e.g. all the positive entries

We write an expression whose result is a logical array:

>> z = [1 2 -1 0 -4 20 -2];

>> z > 0

ans =

 1 1 0 0 0 1 0

Use this array to index the original array:

>> index = z > 0;

>> z(index)

ans =

 1 2 20

It is usually much neater to write a single expression:

>> z(z>0)

ans =

 1 2 20

A more complicated example: return all the elements that are on the diagonal:

>> a = 1:16;

>> A = reshape(a,4,4); % create a 4-by-4 matrix

>> index = logical(eye(4))

>> A(index)

ans =

 1 6 11 16

What will the following return from a matrix X?

X((mod(X,2)==0) & (X > 0))

The find function returns indices of the nonzero elements of an array

This is useful to find the indices of elements that fulfil certain criteria

Using find

The find function

>> a = [1 0 5 0 -1]

>> find(a)

ans =

 1 3 5

Combine find with a logical expression:

>> find(a < 0)

ans =

 5

The M-file

We can write programs or scripts for MATLAB

At their simplest these are a list of statements one after another

Written in an M-file, using the .m extension

No special structure: simplest program is just a list of statements

A simple code:

Getting started

% simple.m

A = rand(2);

display(eig(A));

Programs can be created in any text editor: simply save using the .m extension

MATLAB has a very good editor of its own with syntax highlighting

Simply go to File > New or use the command line

Editing and running programs

>> edit MyProgram.m

Open a file with File > open or

>> open MyProgram.m

Hit F5 to run a program or use

>> run MyProgram.m

We can control whether certain parts of a program are executed

We can make execution conditional using an if statement

An example: compute a matrix inverse only if matrix is nonsingular:

Program flow: if statements

if (abs(det(A)) > eps)

 display(inv(A));

end

We can allow the program to follow one of two paths using the else keyword:

Example: display a warning if the matrix is singular:

if (abs(det(A)) > eps)

 display(inv(A));

else

display('matrix is singular to working precision')

end

The elseif keyword allows the program to follow one of several branches

Example: display a message about the size of a 2d array

The elseif keyword

% part of a program

x = min(size(A);

if (x==0)

display('A is empty');

elseif(x==1)

 display('A is a vector');

else

display('A is a matrix');

end

We used else here to catch all the other possible cases

N.B. spelling of elseif vs elsif as in some languages (Ruby, Perl)

MATLAB has a switch statement that replaces lots of elseif statements

We can switch on an integer or string

An example: produce plots depending on user input

The switch statement

% section of switching program

plottype = input('what type of plot?');

switch plottype

case 'line'

plot(x)

case 'bar'

bar(x)

case 'pie'

pie3(x)

otherwise % use to catch other possibilities

display('unknown plot type')

end

We can repeat sections of code using a for loop

Follow for with an index equal to a range, to control the number of loops:

Loops

% generate ten random numbers

for i=1:10

display(rand);

end

The index can be used within the loop:

% calculate the ranks of some magic squares and store in v

for i=3:10

v(i) = rank(magic(i));

end

Suppose we only need to repeat a loop under certain circumstances:

An example: iterate the equation until :

Controlling loops: break

% iterator1

z = 0; c = 1 + 1i;

for i=1:1000

z = z^2 + c

if (abs(z)>2)

break

end

end

In the last example we kept repeating until some condition was met

MATLAB has a type of loop that repeats while a condition is true: the while

loop

It allows infinite loops if the condition is always true

Controlling loops: while

% iterator2

z = 0; c = 1 + 1i;

while (abs(z)<=2)

z = z^2 + c

end

Much neater than using if and break

Suppose the body of a loop only needs to run when some condition is met

It would be useful to skip on to the next pass if the condition is not met

The continue statement skips to the next pass of the loop

An example: display the size of magic squares of rank 3

Controlling loops: continue

% magic ranks

for i=1:100

r = rank(magic(i));

if (r~=3)

continue

end

display(i);

end

Function files

We may add to the many MATLAB built-in functions

Simply write a function and save in an M-file, e.g MyFunction

Call the function in the normal way

Writing your own functions

>> MyFunction

MATLAB searches for the function in the current directory and executes it

Functions are also written in a .m file

Functions all have the same structure

You can even look at the code for the built-in functions

A skeleton function:

Function structure

function [out1,out2,...] = functionName(arg1,arg2,...)

statements

out1 =

out2 =

end

First line is the function signature

Result/output variables are defined within the function

Function ends with an end (actually optional, but a good idea)

Example: some simple functions

Simple functions

function [] = proclaim()

display('MATLAB is awesome');

end

Call one function from another:

function [xout] = jukowski(xin)

xout = xin + 1./xin;

end

function [xout] = jukowski(xin)

xout = xin + 1./xin;

proclaim();

end

The only variables a function can "see" and use are the input arguments

Any others cannot be seen: they are outside the scope of the function

Example of a function invalid in this way:

Scope

function [] = doSomething

display(x) % will cause an error; what is x?

localvar = 2;

end

Similarly, a program calling doSomething can't "see" localvar;

localvar only exists within the scope of the function

Functions may call themselves; sometimes this is useful

No special declarations are required (cf. Fortran)

An example: a function to recursively calculate the Catalan number

using the recurrence relation

Recursion

function [cn] = catalan(n)

if n==1

cn = 1; % base case

else

cn = (4*n-2)*catalan(n-1)/(n+1);

end

end

