
Scientific Computing Lecture 3:
Advanced data types and solving ODEs

InFoMM CDT

Mathematical Institute
University of Oxford

Andrew Thompson

(slides by Stuart Murray)

Some more data types

Advanced data types and function handles Andrew Thompson – 2 / 2

• A text string can be entered by enclosing text within single quotes, and
has the char data type.

>>str = 'MATLAB is awesome!';

Some more data types

Advanced data types and function handles Andrew Thompson – 2 / 2

• A text string can be entered by enclosing text within single quotes, and
has the char data type.

>>str = 'MATLAB is awesome!';

• Cell arrays are collections of data of varying types, and are entered

using curly brackets.

>>mycell = {'Freedom!',randn(3,3)};

Some more data types

Advanced data types and function handles Andrew Thompson – 2 / 2

• A text string can be entered by enclosing text within single quotes, and
has the char data type.

>>str = 'MATLAB is awesome!';

• Cell arrays are collections of data of varying types, and are entered

using curly brackets.

>>mycell = {'Freedom!',randn(3,3)};

• Structures: A struct is a variable with several parts.
>>andrew.name = 'Andrew Thompson';

>>andrew.email = 'thompson@maths.ox.ac.uk';

>>andrew.favouritenumber = 42;

• >>andrew
name: 'Andrew Thompson'

email: 'thompson@maths.ox.ac.uk'

favouritenumber: 42

Sparse matrices

In many problems we deal with matrices that are sparse (most entries are zero)

Arrays containing many zeros waste memory in MATLAB

MATLAB can store sparse matrices in a special way:

Only nonzero elements and their positions are stored

All other entries are taken to be zero

We use sparse to create a sparse matrix:

Memory

A = diag(1:10000); % create a diagonal matrix

S = sparse(A);

Convert from a sparse matrix to a full matrix using full

Take a look at A and S in memory using whos:

>> whos

 Name Size Bytes Class Attributes

A 1000x1000 800000000 double

S 1000x1000 160004 double sparse

Memory requirement is reduced to around 1/10,000 of that for A

MATLAB remembers that S is a sparse matrix

All of MATLAB's built-in arithmetic, logical and indexing operations work with

sparse matrices.

Operations with sparse matrices will return sparse matrices.

Speed

Let us compare some operations using the timers tic and toc:

tic

A+A;

toc

tic

S+S;

toc

Elapsed time is 1.250672 seconds.

Elapsed time is 0.109196 seconds.

We get the following results

The expression A^2 even causes my machine to run out of memory, while S^2

completes quickly

ODE solvers

MATLAB has many built-in functions for numerically solving ODEs

Here is a partial list:

Why so many?

ode45 Medium accuracy solver: first port of call for all problems

ode23 For solving systems with crude error tolerance

ode113 For systems with stringent error tolerance

ode15s Stiff system solver (because ode45 has proved too slow)

We will consider only ode45

It is a very good general purpose routine, and usually efficient/accurate enough

ODE solving

We use ode45 to solve a system of ODEs of the form

y2 '= f 2 t , y1, y2,. .. , yn

y3 '= f 3t , y1, y2,. .. , yn

y1 '= f 1t , y1, y2,. .. , yn

yn '= f nt , y1, y2,. .. , yn

i.e.

We supply ode45 with three arguments:

a handle to a function to compute the right-hand sides

a vector of start and stop times

a vector of initial conditions for each

y '= f t ,y

y

Computing the right-hand sides

We write a function that given values y and t, returns the right-hand side

Example: solve : y '=y , yt=0 =1

function [dy] = myFun(t,y)

dy = y;

end

An example of a system: solve the equations

y1 '=y2

y2 '=sin y1 , y1t=0=y2t=0=1

function [dy] = myFun2(t,y)

dy = zeros(2,1) % make a column vector

dy(1) = y(2);

dy(2) = sin(y(1));

end

Calling ode45

We call ode45 using a function handle like this:

sol = ode45(@myFun,[0 100], [1])

output handle time range i.c.s

For our second example, the call would look like this:

sol = ode45(@myFun2,[0 10], [1 1])

The function deals with everything including the time stepping

Solution information is stored in sol

If you omit the left-hand variable the ode45 produces plots showing the

solutions automatically

Example solutions

