
InFoMM CDT

University of Oxford

Scientific Computing

Class exercises

Michaelmas Term 2019

Acknowledgments: Some exercises in this course are taken from the course ‘Introduction to
Matlab’ for the Financial Mathematics MSc and the Financial Modelling and Optimization
MSc (University of Edinburgh, 2011) by Stuart Murray.

©2019 Mathematical Institute, University of Oxford

1

Session 1: Variables, arrays, functions and plots

In this session you will gain practice in:

• Using the Matlab work environment;

• Entering, manipulating and indexing arrays in Matlab ;

• Using basic mathematical functions in Matlab ;

• Numerical root finding;

• Using Matlab to plot simple line graphs.

Exercise 1.1 Calculate the following in Matlab .

1. 0.8×
(

7
13 + 5

7

)
2.

2− 3i

1 + 1−4i
3−2i

3. γ = 1/
√

1− ν2

c2
where ν = 5× 107 and c = 3× 108

Exercise 1.2

1. Use the magic command to create a 3× 3 magic square A.

2. Use diag to create a column vector d which is the leading diagonal of A.

3. Create the matrix

B =

[
0 dT

d A

]
.

4. Check that its dimensions are correct using size.

You will need A, d and B in Exercise 1.4, so keep them in your workspace.

Exercise 1.3

1. Use the colon operator to make a row vector of the integers from −10 to 10.

2. Create a row vector of the real numbers from 7 to 2, descending in steps of 1/3.

3. Create a row vector of the pure imaginary numbers from 2i to 3i in steps of 0.05i.

Exercise 1.4 Using the arrays A, d and B from Exercise 1.2, calculate:

1. dTd and ddT

2. ATd and B

[
1T

A

]
, where 1 denotes a vector of all ones

3. C = A+ iA−1

4. CT , C∗ and C†, where ∗ and † represent complex conjugate and pseudoinverse respec-
tively

2

5. The determinant of A and the eigenvalues of A.

Exercise 1.5

1. Create a 5× 5 magic square M .

2. Vectorize M to give m.

3. Reverse the order of the entries of m to give m2.

4. Reshape m2 back into a 5× 5 matrix M2.

5. Use sort to sort each column of M2. How would you sort each row?

6. Find the maximum value of each column ofM2 using max. What single Matlab expression
gives the maximum value of the entire matrix?

7. Use size and prod together to calculate the number of elements in M2. Does this agree
with the result of numel?

Exercise 1.6 This exercise concerns the evaluation of the integral 2√
π

∫ 1
0 e
−t2 dt.

1. Use the linspace command to create a vector t of 10 points from 0 to 1 inclusive.

2. Create a vector integrand whose elements are the values of the integrand 2/
√
πe−t

2
,

where t runs over each value in t. Hint: use elementwise operations.

3. Use sum to find a rough approximation to the definite integral. Remember to multiply
your answer by the size of the intervals in t.

4. Make a 5 × 2 matrix of zeros called results. Store the number of points used in
linspace and the result of your integration as the first and second entries in the first
row of this matrix.

5. Repeat the last few steps using successively more points in your vector t. Each time
add the number of points used and the result of integration to a row of your matrix
results. The command history might be helpful here. The aim is to end up with
something like this:

points result

10 . . .
100 . . .

1000 . . .
.
.

6. The integral in question is equal to erf(1), where erf is the error function. Plot a loglog

plot of the absolute value of the error between your results and the true value erf(1)
against number of points. Can you draw any conclusions from the plot?

7. Create an anonymous function called f that computes 2√
π
e−t

2
(you will have to use an

elementwise operation for the power). Use quad to calculate the integral. How does
the accuracy of the result compare with that of your own?

3

Exercise 1.7 Use Matlab to evaluate the following integrals numerically to six digit accu-
racy:

1.

∫ 1

0
ex

3
dx

2.

∫ 10

0

1√
1 + x4

dx

3.

∫ 5

0
sin
(
ex/2

)
dx.

Exercise 1.8 The Gamma function Γ(x) has a minimum for 1 < x < 2. Use the fminsearch

function as discussed in the lecture to find this minimum.

Exercise 1.9

1. The Airy function Ai(x) has a zero on the real line for −3 < x < −2. Use the MATLAB
functions fsolve and airy to solve Ai(x) = 0, and find this zero.

2. Can you find another zero on the negative real line?

Exercise 1.10 The Riemann Zeta Function ζ(z) is defined for real z > 1 as

ζ(z) =
∞∑
n=1

n−z,

and the definition can be extended to an analytic function on the entire complex plane except
z = 1.

1. Using the inbuilt zeta function, plot ζ(z) on the negative real axis for −13 < z < −1.5.
Note: it turns out that ζ(z) is real-valued on the whole of the negative real axis.

2. Use fsolve to find all the zeros of ζ(z) in this range.

3. Now plot the real and imaginary part of ζ(12 + ib) on the same graph for −30 < b < 30.
Plot the real part in blue and the imaginary part in red.

4. Use fsolve to find all the zeros of ζ(z) in this range.

5. How do your findings relate to the Riemann Hypothesis? Wikipedia it!

Exercise 1.11 Create two square matrices P and Q, both of size 100, using any of the special
matrix constructions in Matlab . Let I denote the (100×100) identity matrix, let ⊗ denote
the Kronecker product, and let vec(X) denote the columnwise vectorization of a matrix X.
Verify numerically that

(I ⊗ P)vec(Q) = vec(PQ).

Exercise 1.12 In this exercise, we explore the function sincx which is defined as

sincx =

sinx

x
x 6= 0,

1 x = 0.

4

1. Plot sincx for −30 ≤ x ≤ 30.

2. It can be shown that each maximum or minimum of the graph of sincx corresponds to
a point of intersection of the graphs of sincx and cosx. Illustrate this result by drawing
the graph of cosx on the same plot.

3. Can you prove the result?

Exercise 1.13

1. Use the Matlab quad function to evaluate the integral

Ip =

∫ 1

0

[
ln

(
1

x

)]p
dx

for integer values of p.

2. Plot a graph of Ip against p for real-valued p between 0 and 4.

3. Can you prove a result about Ip?

Exercise 1.14 An integral solution of the ODE

x
d3y

dx3
+ 2y = 0

is given by

y(x) =

∫ ∞
0

e

(
−t− x√

t

)
dt. (1)

1. Try using quad along with the function handle for the integrand in (1) and upper limit
Inf to evaluate y(2). What is the result? Vary the upper limit in (0,∞) to explore
what is happening.

2. Try the above with the function quadgk instead.

3. Plot the solution to the equation for x ≥ 0.

Exercise 1.15 The cycloid x = t− sin t, y = 1− cos t is the curve traced out by a point on
a wheel as the wheel turns. Plot this curve for 0 ≤ t ≤ 6π.

Exercise 1.16 Use ezpolar to plot (both leaves of) the lemniscate r2 = cos 2θ.

Exercise 1.17 The hypotrochoid curve is defined implicitly by the equations

x(t) = (a− b) cos t+ c cos
[(a
b
− 1
)
t
]
, y(t) = (a− b) sin t− c sin

[(a
b
− 1
)
t
]
.

Plot the hypotrochoid for a = 1, b = 7/5 and c = 7/13. Experiment with other choices of a,
b and c.

5

Session 2: Logical operations, m-files and functions

In this session you will gain practice in:

• Using array logic;

• Writing m-files;

• Writing recursive loops;

• Writing your own Matlab functions.

Exercise 2.1 Write and test a logical expression that returns

1. Logical true if 1 < a < 2. Hint: simply using the expression 1 < a < 2 will not work.

2. Logical false if either a or b is strictly positive.

Exercise 2.2 Use rand to create a 10×10 matrix A of uniformly distributed random numbers,
and use it to perform the following tasks.

1. Type the expression A > 0.5. What is the result? Use nnz to count how many entries
of A are greater than 0.5.

2. Use logical indexing to display all of the entries of A that are greater than 0.5. Use
find to display their indices.

3. Use array logic to count how many elements of A are either less than 0.5 or greater
than 0.9.

Exercise 2.3 Create a vector of the numbers from 1 to 1000.

1. Use mod to count how many numbers are divisible by 17.

2. Do the same thing to work out which numbers are divisible by 5 or by 7.

Exercise 2.4

1. Write and test a for loop which generates the sequence by means of the iteration
xn+1 = xn + sinxn, trying different starting values. What does the iteration converge
to?

2. Modify your loop by adding an if statement and a break statement, so that the loop
stops if |xn+1 − xn| < 10−8.

3. Rewrite your code using a while loop to achieve the same thing.

Exercise 2.5 The sequence of square triangular numbers (numbers which are both square
numbers and triangle numbers) is generated by the recursion

Gn+2 = 34Gn+1 −Gn + 2,

with G0 = 0 and G1 = 1. Generate the first ten square triangular numbers.

6

Exercise 2.6 The Hadamard matrix H2m of size 2m is obtained by repeated Kronecker
products as follows:

H2m = H2 ⊗H2 ⊗ . . .⊗H2, where H2 =
1√
2

(
1 1
1 −1

)
,

and where the matrix H2 occurs m times in the Kronecker product.

1. Write a program that generates H2m for any positive integer m.

2. Consider the case m = 5 and let us write H = H32 for convenience. Display H,
H − HT , HTH and the eigenvalues of H. What do these displays tell you about H?
Check whether the same properties hold for other choices of m.

Exercise 2.7 Euler’s totient function φ(n) counts how many numbers less than or equal
to n are coprime to n, i.e. have no common factors greater than 1. With the help of gcd,
write a function which takes a single argument n and calculates φ(n). Given that gcd works
elementwise, can you think how to calculate φ(n) using a single Matlab expression?

Exercise 2.8 The function lcm calculates the least common multiple of two numbers. Gen-
eralize the function by writing a program that calculates the least common multiple l of all
the numbers in a vector v. You will need to loop over all possible values of l, and you may
find it useful to use the elementwise property of mod.

Exercise 2.9 Given any two real numbers x0 and y0, calculate their arithmetic and geometric
means

x1 =
x0 + y0

2
; y1 =

√
x0y0. (2)

The two sequences {xn}n≥0 and {yn}n≥0, produced by iterating (2), both converge to the
same limit M(x, y), known as the arithmetic-geometric mean.

1. Write a function that calculates the arithmetic-geometric mean of two numbers, and
stops when |xn − yn| < ε for a given accuracy ε.

2. The arithmetic-geometric mean is related to the complete elliptic integral of the first
kind. Find out the relation and use an appropriate inbuilt Matlab function to check
your code output. Take care: the complete elliptic integral of the first kind can be
defined in slightly different ways.

3. Find out how Matlab calculates this elliptic integral.

Exercise 2.10 A group of n gentlemen enter a restaurant and check their hats. Unfor-
tunately, the waiter is having a bad day due to spending the previous night out with the
InFoMM CDT, and he forgets which hats belong to which gentlemen. Optimistically, he
returns the hats to the gentlemen at random.

1. Write a function which takes an input n, simulates the waiter’s behaviour using the
rand function, and outputs the number of correct assignments.

2. By performing a large number of trials, estimate the probability that no gentleman gets
his own hat.

3. Investigate the limiting value of this probability as n→∞.

7

Exercise 2.11 The binary representation of numbers is often useful in computational math-
ematics. For example, 26 = 1 × 16 + 1 × 8 + 0 × 4 + 1 × 2 + 0 × 1, so 26 has binary form
11010.

1. First the easy way round, write a function outofbinary which converts a binary vector
into decimal.

2. A little harder, write a function intobinary to convert a decimal number into a binary
vector.

Note: there are inbuilt functions bin2dec and dec2bin which work with binary numbers in
string form. This exercise is to give you practice in coding it yourself, but feel free to use
these inbuilt functions to check your code is working properly.

Exercise 2.12 Given β > 0, define a sequence by the recursion

xn+2 = xn+1 ± βxn,

where the sign in the sum is chosen at random for each n independently with equal proba-
bilities for + and −.

1. Investigate how the limiting behaviour (as n → ∞) of the sequence
{
|xn|1/n

}
n≥0 de-

pends upon the parameter β.

2. For what values of β does the sequence {xn}n≥0 exhibit exponential growth, and for
which values of β does it exhibit exponential decay?

Exercise 2.13

1. The multiplication of a vector of length 2m by a Hadamard matrix of size 2m× 2m (see
Exercise 2.6) is often referred to as the Walsh-Hadamard transform (WHT). Use the
decomposition formula

H2m

[
x1
x2

]
=

1√
2

[
H2m−1(x1 + x2)
H2m−1(x1 − x2)

]
to write a recursive ‘divide-and-conquer’ algorithm to compute the WHT.

2. Check your algorithm by comparing the output with the inbuilt fwht function.

3. Time the computation of the WHT of a random vector of length 214 using your method
above, and using näıve multiplication by a (pre-generated) Hadamard matrix.

4. For what m does it become impossible to store H2m in memory? Is the memory capacity
any different on one of the CDT remote machines?

5. Harder: Write an iterative algorithm to compute the WHT. Hint: you might find
reshaping useful.

Exercise 2.14 Define the Discrete Fourier Transform (DFT) y = {yk}0≤k<n of a vector
x = {xj}0≤j<n of length n to be

yk =
1√
n

n−1∑
j=0

e
−2πijk
n xj , 0 ≤ k < n.

8

If n = 2m for some integer m, define e = {ek}0≤k<n/2 and o = {ok}0≤k<n/2 to be the DFTs of
the even and odd components of x respectively. Then the following recursive formula holds.

yk = 1√
2

(
ek + e

−2πik
n ok

)
0 ≤ k < n/2

yn/2+k = 1√
2

(
ek − e

−2πik
n ok

)
n/2 ≤ k < n.

1. Use this recursive formula to code up a ‘divide-and-conquer’ algorithm for the DFT.

2. Check your algorithm by comparing the output with the inbuilt fft function.

9

Session 3: Sparse matrices and numerical solution of ODEs

In this session you will gain practice in:

• Solving systems of linear equations;

• Working with sparse matrices;

• Optimizing the efficiency of code;

• Numerical solution of ODEs.

Exercise 3.1

1. Create a column vector b consisting of 10, 000 ones. Then type the following to create
a sparse tridiagonal matrix A:
A = spdiags([b -2*b b],[-1 0 1], 10000, 10000);

2. Use spy to visualize the sparsity pattern of the matrix.

3. Use the backslash operator to solve the system Ax = b. How long does it take?

4. Now convert A from a sparse matrix to a full matrix, and solve the equation once more.
What do you find?

5. The calculation being performed here is x = A−1b. Find how long it takes to calculate
x using this explicit expression with both sparse and full matrices.

Exercise 3.2

1. Create a sparse matrix J of size 500 of the form

J =

1

1

. .
.

1

 .
Avoid creating a full matrix at any point.

2. Create the sparse matrix

M =

[
I J
J I

]
,

where I is the identity matrix of size 500. Again, work entirely with sparse matrices.

3. Visualize the matrix M using spy.

Exercise 3.3

1. Solve numerically the ODE y′ = x − y2 with initial condition y(0) = 0 over the range
0 ≤ x ≤ 4.

2. Plot a graph of the solution.

10

Exercise 3.4 Consider the 1D Poisson equation

d2y

dx2
+ f(x) = 0, 0 ≤ x ≤ 2π,

where f(x) = 2 cosx
ex , and where we are given the Dirichlet boundary conditions y(0) = 0,

y(2π) = 0. Discretization of the partial second derivative operator using central differences
and step length h = 2π

n−1 leads to the system of equations Ay = b where

A =

1 0 0 0

−1 2 −1
...

0 −1 2 −1
...

...
. . .

. . .
. . . 0

... −1 2 −1
0 0 0 1

, y =

0
h2f(h)
h2f(2h)

...
h2f((n− 2)h)

0

.

Note: the first and last rows are different due to the boundary conditions.

1. Create A and b for the case n = 10 in sparse form. Hence obtain a numerical solution
to the differential equation.

2. Obtain a closed form solution for the differential equation.

3. Investigate the approximation error for different n.

11

Session 4: Parallel computing

In this session you will gain practice in:

• Doing parallel computations in Matlab;

• Running tasks on remote compute machines.

Exercise 4.1 This exercise concerns the distribution of the extreme value of a certain number
of i.i.d. random variables. You will need the code extreme value.m which, given sample size
n and number of trials p, returns p instances of the maximum value over n instances of the
standard Normal distribution N(0, 1).

1. Access one of the departmental compute machines with multiple cores using ssh. Run
the script extreme value.m for n = 106 and p = 104. Parallelize the code using smpd

and vary the number of cores from 1 to the maximum number of cores available. For
each number of cores do five trials and compute the average computing time over these
trials. Plot a graph of the speed-up versus the number of cores. Check what type of
speedup you get (e.g. linear, logistic, etc.). Check with your cohort fellows who have
used a different compute machine what type of speedup they get and discuss what can
influence the behaviour(s) you observe.

2. Parallelise the code using parfor and vary the number of cores from 1 to the maximum
number of cores possible. Compare the speedup using parfor and smpd for the same
number of cores. Check which approach is faster and discuss amongst you why?

3. It is known that the pdf fn of the maximum of n independent standard Normal random
variables satisfies

fn(x)→ gn(x) :=
1

βn
e−(z+e

−z)

as n→∞, where z = (x− µn)/βn and where

µn = Φ−1
(

1− 1

n

)
and βn = [nφ(µn)]−1 ,

in which Φ(x) and φ(x) represent the cumulative distribution function and probability
density function for the standard Normal distribution respectively. By superimposing
gn(x) onto normalized histograms of the distribution of your maximum values, explore
visually the convergence to this distribution.

Exercise 4.2 This exercise explores the behaviour of the maximum squared singular value1

of certain large random matrices. You will need the code max sing.m which, given a matrix
size n, an aspect ratio ρ ∈ (0, 1] and a number of trials p, returns p instances of the maximum
squared singular value of an n× ρn matrix whose entries are i.i.d. N(0, 1/n).

1. Take ρ = 1. Taking n = 10r for various r, verify numerically that the expected value
of the maximum squared singular value tends to 4 as n→∞. Make sure to parallelize
the code and run it on one of the departmental machines using multiple cores.

1If you are not familiar with the singular value decomposition check online what it is about.

12

2. Do similar exploration for other choices of ρ ∈ (0, 1). Can you make a conjecture about
an expression for the limiting value of the expected maximum squared singular value
in terms of ρ?

3. Repeat the previous task for the minimum squared singular value.

4. It is known that, given ρ ∈ (0, 1], the pdf fρ of the maximum squared singular value
satisfies

fρ(x)→ gρ(x) :=

{ √
(λ+−x)(x−λ−)

2πρx x ∈ (λ−, λ+)

0 otherwise,

where λ+ and λ− are the expected maximum squared singular value. By superimposing
gρ(x) onto normalized histograms of the distribution of your maximum values, explore
visually the convergence to this distribution.

