
INTRODUCTION TO QFT 2019: PROBLEM SET 2

JOHN WHEATER

Please hand in your answers at the Reception Desk of the Physics Department by 5pm
on Monday Week 3 (28 October) preferably using the cover sheet on the website.

1. Klein Gordon Field Equation I. In this question you will do the manipulations taking
us from the discretised action to the continuum field equation in the opposite order to the
lecture. Start with the action for a system of coupled oscillators on a lattice of spacing a
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dt a3
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)
where the sites of the lattice are labelled by k and µ̂ runs over unit vectors connecting
adjacent vertices in the positive x, y and z directions.

a) Find the classical equation of motion for φ(xk, t) in the discrete system.

b) Now set κ = 1
2
a−2 and take the limit a → 0 to obtain the Klein Gordon field

equation.

2. KG Lagrangian density. All of these manipulations can be done purely in the contin-
uum. Let

L =
1

2
∂µφ ∂µφ−

1

2
ω2φ2 (1)

be the Lagrangian Density. Consider a spatial region VΣ bounded by the surface Σ and
consider the evolution of φ from φ0(x) at t = 0 to φ1(x) at t = T so that

L =

∫
VΣ

d3xL, and S =

∫ T

0

Ldt. (2)

a) By considering the variation φ(x) = φcl(x) + δφ(x), with δφ(x, 0) = δφ(x, T ) = 0
at the endpoints, show that

δS =

∫ T

0

dt

∫
VΣ

d3x δφ
(
−(∂0)2 + ∇2 − ω2

)
φcl −

∫ T

0

dt

∫
Σ

δφ n̂.∇φcl dA (3)

where n̂ is the unit normal vector to the surface Σ and dA is the element of area.

b) To deduce the KG equation we need the boundary term to vanish. Suppose Σ is
the surface of a sphere of radius R; assuming that |δφ| < constant, how fast does
φcl have to fall off in order for the boundary term to vanish as R→∞? Does this
cause any problem in practice?

c) Define the canonical momentum field by

π =
∂L

∂(∂0φ)
(4)

Find an expression for the Hamiltonian Density which is defined by

H(π, φ) = π ∂0φ− L (5)

(Beware, H can contain ∇φ but not ∂0φ.)
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d) What are the Hamiltonian equations of motion in this case? Show that they lead
to the KG equation for φ.

3. Manipulating the quantum scalar field. Given that

φ(x) =

∫
d3p

(2π)3

1√
2Ep

(
a†−p + ap

)
eip.x

π(x) = i

∫
d3p

(2π)3

√
Ep
2

(
a†−p − ap

)
eip.x

H =

∫
d3p

(2π)3
Epa

†
pap

a) Work backwards to find H in terms of φ(x) and π(x).

b) Show that

P =

∫
d3p

(2π)3
p a†pap = −

∫
d3x π(x)∇φ(x)

c) By explicit calculation find the eigenvalues of (H,P) for the two particle state

|p,p′〉 = a†pa
†
p′ |0〉.

d) Find 〈0|φ(x)φ(y)|p,p′〉.

4. Calculating the unequal time commutator The Green’s functions that we will meet
in the course can all be expressed more-or-less explicitly in terms of well-known special
functions. For many purposes it is not necessary to do this but you should know how to
go about it. In this question we will calculate

∆(x) = [φ(x), φ(0)] =

∫
d3p

(2π)3

1

2Ep

(e−ip·x − eip·x) (6)

a) Set xµ = (t,x) and change to polar coordinates for the momentum integral, choos-
ing the polar axis to be along the direction of x. Integrate out the angular variables
to show that

∆(x) =
−i

8π2|x|

∫ ∞
−∞

ρ dρ

E(ρ)
Re(e−i(E(ρ)t−ρ|x|) − e−i(E(ρ)t+ρ|x|)) (7)

where E(ρ) =
√
ρ2 +m2.

b) Now change to the rapidity variables : t = s cosh τ, |x| = s sinh τ and ρ = m sinhφ
(these are a very useful way of expressing kinematic quantities in a wide variety
of applications). After some manipulations show that

∆(x) =
−im
4π2s

∫ ∞
−∞

coshφ (Re eims coshφ) dφ (8)

What is notable about this result?

c) The remaining integral is related to the Bessel functions – find out exactly what
the relationship is. If you are careful you will discover that we have made a subtle
assumption in our manipulations – what is it?


