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1. Basics

Historically the Dirac Equation was introduced in an attempt to rectify the defects of
the KG equation, in particular the absence of a current with positive definite density,
and the presence of negative energy modes. This leads to the hypothesis that the wave
equation should be first order in the time derivative, while respecting the relativistic
energy momentum relationship for a free particle

E2 = c2p2 +m2c4 (1)

We hypothesize that

i~
∂ψ

∂t
= Ĥψ = (cα.p̂ +mc2β)ψ (2)

where we need to establish what α, β are, and we have temporarily put hats on operators.
Now for a free particle of energy E and momentum p we must have

ψ = e−
i
~ (Et−p.x)ψ0 (3)

E2ψ = Ĥ2ψ = (c2(p.α)2 +mc3(p.αβ + βp.α) +m2c4β2)ψ (4)

This can only reproduce (1) if

αiαj + αjαi = 2δij (5)

αiβ + βαi = 0 (6)

β2 = 1 (7)

Clearly these are not commuting objects so they must be matrices. It is easy to show
that

β =

(
0 I
I 0

)
, αi =

(
−σi 0

0 σi

)
(8)

where σi are the Pauli sigma matrices and I is the 2 × 2 identity matrix, satisfy these
requirements. It is a good exercise to check this.

Pauli sigma matrices ...

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(9)

σiσj + σjσi = 2δij, σiσj = δij + iεijkσk (10)

We have a single particle Hamiltonian H but the free particle eigenvalue equation is
(from now on we revert to ~ = c = 1 units)

(p.α+mβ − E)ψ0 = 0 (11)

which is four dimensional. It is easy to check that the determinant is (E2 − (p2 + m2))2

so there are two eigenstates of positive E = +
√

p2 +m2 and two of negative E =
1
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−
√

p2 +m2 so we have not escaped the negative energy issue. We can find the con-
served charge and current starting with

i
∂ψ

∂t
= (−i∇.α+mβ)ψ (12)

taking h.c (α, β are hermitian)

−i∂ψ
†

∂t
= (i(∇ψ†).α+mψ†β (13)

multiplying the first by ψ† on the left and the second by ψ on the right and subtracting
gives

i

(
ψ†
∂ψ

∂t
+
∂ψ†

∂t
ψ

)
= −i

(
ψ†∇.αψ + (∇ψ†).αψ

)
(14)

so ρ = ψ†ψ and j = ψ†αψ.

2. Angular Momentum and Spin

We have the Hamiltonian

H = α.p +mβ (15)

What is the angular momentum? Let us start with the orbital angular momentum

L = x× p (16)

Li = εijkxjpk (17)

then

[Li, H] = αl[εijkxjpk, pl] (18)

= αlεijk[xj, pl], pk (19)

= iεijkαjpk 6= 0 (20)

So we have to add something to L. Consider

S =
1

2

(
σ 0
0 σ

)
(21)

which by construction commutes with β but not α. Then note

[σi, σjpj] = 2εijkσkpj (22)

(23)

it follows that

[Si, H] = [Si,α.p] (24)

=
1

2
2εijkαkpj (25)

(26)

so

[Li + Si, H] = 0 (27)

(28)

and we see that this equation describes spin-1
2

particles.
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It is convenient to write the DE in a more covariant form. We use the same conventions
as Peskin and Schroder. Set

gµν = diag(1,−1,−1,−1) (29)

xµ = (t,x) (30)

xµ = xνgµν = (t,−x) (31)

∂µ =
∂

∂xµ
= (

∂

∂t
,−∇) (32)

∂µ =
∂

∂xµ
= (

∂

∂t
,∇) (33)

pµ = i∂µ = (i
∂

∂t
,−i∇) = (E,p) (34)

(35)

Now we can rewrite the DE in this notation; multiplying through by β we get

0 =

(
−iβ ∂

∂t
− iβα.∇ +m

)
ψ (36)

= (−iγµ∂µ +m)ψ (37)

where

γµ = (β, βα) (38)

are called the gamma-matrices. It is straightforward to show that

{γµ, γν} = 2gµν (39)

by using the definition of the γs and the anticomutation properties of (α, β). In our
specific form we have

γ0 =

(
0 I
I 0

)
, γi =

(
0 σi
−σi 0

)
(40)

3. Plane Wave Solutions

For an eigenstate of 4-momentum

ψ = c−ipµx
µ

χ(p) (41)

substituting into the Dirac Equation we get

0 =

(
m −(p0 − p.σ)

−(p0 + p.σ) m

)
χ(p) (42)

We know that the possible values of p0 are ±Ep where Ep = +
√

p2 +m2; note also that
the spin projection operator p.S commutes with the matrix. So the eigenspinors χ can
be classified by energy and spin projection eigenvalue. [Note, the spin-projection operator
is closely related to a quantity called helicity.] We let ξ±(p) be two-component spinors
satisfying

σ.p ξ±(p) = ±|p| ξ±(p) (43)

ξ±(p)†ξ±(p) = 1 (44)



4 JOHN WHEATER

By changing p→ −p you can see that ξ±(−p) = ξ∓(p) We then write the four-component
spinor

χ(p) =

(
Aξ
B ξ

)
(45)

So for example the positive energy p0 = Ep and positive spin projection state gives

0 =

(
m −(Ep − |p|)

−(Ep + |p|) m

)(
A++

B++

)
(46)

where the first subscript om A means sign of the energy, and the second means sign of
the spin projection. So

A++ =
m

Ep + |p|
B++ (47)

=

√
Ep − |p|
Ep + |p|

B++ (48)

where we have used m2 = E2
p − |p|2. Similar exercises show

B+− =
m

Ep + |p|
A+− (49)

B−+ = − m

Ep + |p|
A−+ (50)

A−− = − m

Ep + |p|
B−− (51)

(52)

The last thing to fix is the normalization. Remember that ψ†ψ is a density with corre-
sponding current j so we expect it to be the 0-component of a 4-vector. The standard
normalization is

χ†χ = 2Ep (53)

The Ep is exactly the 0-component of a 4-vector, the 2 is purely convention. With this
normalization we obtain

(1) the positive energy spinors

u±(p) =

( √
Ep ∓ |p| ξ±(p)√
Ep ± |p| ξ±(p)

)
(54)

(2) and the negative energy spinors

v±(−p) =

( √
Ep ± |p| ξ±(p)

−
√
Ep ∓ |p| ξ±(p)

)
(55)

The minus sign in the definition of the negative energy spinors is deliberate – the reason for
it will become apparent when we construct the quantum field theory for Dirac particles.
Exercises

(1) show using (14) that ∂µj
µ=0 with jµ = ψ†γ0γµψ.

(2) show that all the different spinors are orthogonal
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4. Properties under Lorentz Transformations

We have seen that ψ†ψ is not a Lorentz scalar. So what combination is a scalar? The
answer is ψ†γ0ψ. Computing explicitly for the positive energy spinors we get

u±(p)†
(

0 I
I 0

)
u±(p) = 2 ∗

√
Ep ∓ |p|

√
Ep ± |p| (56)

= 2m (57)

Similarly we find that

v±(p)†
(

0 I
I 0

)
v±(p) = −2 ∗

√
Ep ∓ |p|

√
Ep ± |p| (58)

= −2m (59)

Of course this is explicitly a Lorentz scalar.

5. Final Comments

We will need all this apparatus later but the take-home messages are

(1) The negative energy states are still there

(2) They describe anti-particles just as in the KG case

(3) Relativistic QM is bound to fail because actually particles and antiparticles can
annihilate so the number of particles is not constant – and the formalism of a wave
function for a fixed number of particles cannot cope with this.

(4) So we need Quantum Field Theory which will be able to handle varying particle
number.

(5) Relativistic systems are not the only variable-number systems. We now understand
that many quasi-particle descriptions of CM systems are also like this and can also
be described by quantum field theories.


