INTRODUCTION TO QFT 2019: PROBLEM SET 3
SOLUTIONS

1. Particle Projection Operators
We will be interested in the product
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First we prove the following identity:
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with m < n. Let us proceed by induction on m. For the sake of readability we drop |0) in our
derivation, but all operators act on the vacuum |0). For m = 1 one has
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Take now m < n and rewrite the product on the lhs of as
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and assume to hold for m — 1, thus
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Using , the product of ap,, with the a;r{j reads
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Plugging the above in we finally get
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If we select m = n, the product of aLj operators on the rhs of reduces to 1 and rest is simply the
sum over all permutations of n-indices, S,. Therefore, for real scalar fields we get
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Permuting n bosonic real fields gives the same physical state. This is a consequence of the fact that
creation, as well as annihilation operators commute, i.e.
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Since there are n! permuations in §,, we finally get
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thus P,, acts as the identity operator.



2. The Quantized Dirac Field
a) Let us recall that
{a al } - {b;,b;*} — (2m)35%(p — K)0™* (12)
and all other anticommutators are zero.
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For the commutators in (13]) we have
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Applying the same algebraic manipulations one can readily show that
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Plugging and into we get
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where we used the fact that |1)) is an eigenstate of the Hamiltonian. As for the commutator we
have
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where we used the result in applying the replacement b‘;,T — af)T and accounting for a minus
sign from the order in the commutator. Thus
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In the same way one can show that
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These two identities imply that an eigenstate of the Hamiltonian remains as such under the
action of the creation operators af)T and bf)T, with its eigenvalue increased by Ep. In particular,
if we take the vacuum |0) to be state of zero energy (normal-ordered Hamiltonian) we conclude
that both af)T and b;T create states of energy Ej, i.e.
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More generally we have
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and the same holds for creation operators of antifermions. A state with n fermions and m
antifermions can be expressed as
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SO we can use to show that this is an eigenstate of the Hamiltonian with eigenvalue
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hence any state with a given number of fermions and antifermions is an eigenstate of the Hamil-
tonian.
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which can be expressed in a much compact form realising that the sum is just a sum over all
permutations, including the sign of the actual permutation, i.e.
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If we plug in , after relabelling x — x1, y — 2, 2 — x3, integrating over the momenta
k; and summing over spin configurations r; we get
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Let us define the matrix F as
Frn = u® (py e~ Prom, with  m,n=1,2,3. (35)
It follows that is simply the determinant of the matrix F, i.e.
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3. Noether’s Theorem I
Consider the transformation of the field ¢(z) as

¢(z) = ¢'(x) = ¢(z) + do(), (37)

which leaves the equations of motion invariant. The Lagrangian density thus must be invariant up to
a to 4-divergence term:

L(x) = L(x) + 0, T"(x) . (38)
Noether’s theorem states
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where the conserved current j#(z) is defined as
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In the case of the free Lagrangian for a complex Klein-Gordon field we have a global phase symmetry
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The Lagrangian density itself is invariant under this transformation, hence there is no surface term
involved and the Noether’s current reads
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Considering an infinitesimal transformation ¢(z) — ¢(x) + d¢(z) = ¢(x) + i0p(z) + O(0?), and the
equivalent for ¢f(z) we get
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a) If we rewrite the Lagrangian density as
L = Liree + Lint , (44)

and notice that the product ¢¢ is manifestly invariant under a phase transformation we get
J# =0 and so that the Noether’s current reads
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The interaction term does not depend on the field derivatives, thus the current is the same as
in the free case.
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b) Also in this case J# = 0 since the Lagrangian is manifestly invariant under a phase transformation
of the fields, however the interaction term depends on field derivatives. Explicitly:
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and for the field variations d¢(x) = i¢(z) and d¢f(z) = —ip!(z). Putting everything together,
the conserved current in this case reads
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The interaction Lagrangian is not manifestly invariant under a global phase transformation of

the fields, and moreover an infinitesimal transformation of the fields ¢ — ¢+i6¢ does not change
the Lagrangian by simply a surface term, i.e.
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where now 0L is a polynomial in the fields ¢ and ¢f. The Lagrangian is invariant under the
transformation ¢ — —¢, which, on the other hand, is not continuous and therefore, there is no
associated Noether’s current.

The Dirac Lagrangian is invariant under a global phase transformation of the fields
V(x) = (@) = (), Pi(z) = ¢T(a) = Pi(a)e™, (51)
therefore we have the conserved current
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4. Cancellation of vacuum bubble diagrams
Let us focus first on the numerator of the vacuum expectation value G g

G =, Jlm 0|T{H¢)zexp <—z/ dt/d3 >}|o> . (54)

If we introduce the shorthand notation
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the expansion in powers of A, i.e. in power of the Hamiltonian, reads
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According to Wick’s theorem, for a fixed order in n, only the fully contracted diagrams with 2K
external points and n internal ones contribute. Therefore, for given n we will have a sum of diagrams
which contain either connected graphs only (i.e. no vacuum graphs) or connected and disconnected
subgraphs. Thus
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where with the subscript ¢ we denote the connected subgraphs. The combinatorial factor comes from
the fact that there are (::l) ways to choose m internal points out of n to fully contract with the external
fields. If we now sum over all n, the numerator takes the form
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which can be factorised as
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The last term on the right hand side exponentiates
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and this exactly cancels the denominator in the vacuum expectation value. Hence, if we expand to
any O(A\F) we can discard all diagrams containing vacuum subgraphs.



5. Feynman Diagrams
We are interested in the Lagrangian density
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In this exercise we will locate external fields at points x;, and interaction points are defined at y;. For
example, for four-point diagrams, external fields ¢(x;), ¢ = 1,...,4 will be labelled as 1,2, 3, 4.
For the ¢* theory, there is a diagrammatic recipe to find the multiplicity factor of a Feynman diagram.

1. Draw a dot for each external point z; and a vertex with four lines coming out of it for each
internal point y;.

2. Start by connecting all the external lines to internal lines to form the diagram in question. each
time you connect a line to a vertex count how many ways you could have done this, generating
the same diagram.

3. Now form all the loops by picking an unconnected line from the vertex and keeping track of how
many ways it can be connected generating the same diagram - take care not to double count.

4. For a diagram with N internal points (vertices) the multiplicity factor is given by

1 1
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times the product of the number calculated above. Here the 1/4! factor comes from the interac-
tion term in the Lagrangian.

a) For the two point diagrams listed we have:
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b) At O()\) we have just one tree-level diagram.
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There are 4! possible ways to connect an internal point to the 4 external ones. If we include the
1/4! coupling from the Lagrangian, the multiplicity factor reads

S(d1.1) = 4!% _1. (66)



therefore the 1/4! normalisation in the Lagrangian ensures that the tree-level Feynman rule is
simply (—i\).
At O()\?) we are dealing with one-loop diagrams. There are 7 independent diagrams:
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4 of type (d2.1) where the one-loop insertion is on each external leg and 3 diagrams with a
one-loop insertion between external legs. Diagram (d2.2) is referred to as s-channel, (d2.3) as
t-channel and (d2.4) as u-channel. The multiplicity factors are:

1 1

S(d2.1) = 5W244323_5’ (67)
1 1

S(d2.2 — 4) = 2'(4,)243432_5 (68)

Diagram in (d2.1) is not irreducible, therefore its multiplicity factor is the product of its irre-
ducible subdiagrams, as one can check from and .

At O()\3) we have to consider two-loop diagrams. There are 42 independent diagrams:
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2 3 2 4
d3.17 d3.18 d3.19

6 of type (d3.1) where we have a one-loop insertion on two different external legs; 4 of type (d3.2)
where we have two reducible one-loop insertions on the same external leg; 4 of type (d3.3) where
the loop correction is placed on each external leg; 4 of type (d3.4) where the two-loop irreducible
correction is on each external leg; diagrams (d3.5-16) are irreducible and each is counted once;
for (d3.17-19) we can have one-loop insertion on each external leg of the s, ¢t and u-channel
diagrams, therefore 4 each. The multiplicity factors read:

1 1 1
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31 (41)73 7
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31 (d1)? 5
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S(d3.14—16) = ~ > 3.9.4.3.4.3.4.3.2.2—+ (75)
31 (41)73 5
1 1
S(ABAT19) = 5B 2 44430323 = 1. (76)

One can check again that for reducible diagrams the factor is given by the product of its irre-
ducible subdiagrams.

In this case ¢'(z) and ¢(z) are distinct fields (different charge) hence they are distinguishable.
Also, in the Lagrangian we now have a factor A/4, so for N interaction vertices we need to

consider a global factor
11
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We can repeat the exercise in a) and b) by considering the fields ¢! (x1), ¢(x2), ¢'(x3), ¢(x4) and
label them 1,2, 3,4 respectively. Let us consider first the 4-point fully connected O(\) diagram.
Take the four external fields and try to connect them through an internal point y;, where there
will be two fields ¢! and two fields ¢. Chosen ¢f(z;), we have two ways to connect it to the
internal point y;, and two ways to connect ¢(x3) to y;. The rest is fixed. Thus, we have in total
a factor

(77)

1

1 22=1 (78)
The factor 1/4 in the Lagrangian ensures again that the tree level Feynman rule is simply A.
As a consequence, for the first diagram of part b) we get the same answer. For what regards
part a) we can consider for definiteness the two point function of a field 1f. Taken one of the
two external points, there are two ways to connect it to the internal vertex and the rest is then
fixed, so we have a factor (1/4) - 2. Summarising the results for part a), the symmetry factor S,
for the n-loop two-point functions for a complex scalar field are

(CiN) g

Si="75 9 -9

(79)
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For part b) we have

S(d1.1) =1, (80)
S(a2.1) =3, (81)
S(d2.2 —4) =1, (82)
S(431) = 1. (83)
S(32) = 1. (34)
S(d3.3) = i (85)
S(d3.4) = % (86)
S(d3.5—7) = ?}!(41)33 2T =1, (87)
S(d3.8 —13) = ;(41)33 27 =1, (88)
S(d3.14 — 16) = ;(41)33 2T =1, (89)
S(d3.17 - 19) = % (90)

We have shown that in this model, up to two loops, irreducible four-point diagrams have a
symmetry factor equal to 1. This holds true for any higher-order loop correction.

12



