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Problem 1. Gamma matriz manipulation
a) 2pp = 2p 'l = pp = p?l
b) Trpg = pug"Trly = Trpg = 4p.q

c) 7°7° = YV = AP = 2P = 4%t =
0

(VA ={" A= =P = 0= (04 =

d) For any odd number of gamma matrices

a o cyclic o
Tr{y*/"7° ...} = = Tr{y*/*71*+%7° ...} °=° = Tr{y*y*%7° .. .4}
anticommute n o o

2 ()" T {7y = =T {0 Y

where n is the number of gamma matrices 4° was anticommuted through. The trace
is equal to minus itself hence 0.

c)

(1)

Tri{pgy#} = Te{pgrus, (=" +29")} = Te{pg(2s.r — #/)} (2)

Tr{pdy#} = Tr{pagerus, (=777 + 29"y y" — 297 74" + 2g°7"41)}
2Te{pgr#} = 2Te{pgs.r — pys.q + qys.p}Use b) (3)
Tr{pgy‘f} =4 (p.gs.r — p.rq.s + p.sq.r)

Problem 2. Scalar-fermion scattering

Diagrams to consider:
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Figure 1: Fermion-scalar scattering.

a) Useful relations for Dirac spinors:
(? - m)us(p) =0
us(p)(p —m) =0

(4)

Define S = (p+k)?, T = (p—p)* and U = (p—k’)?. In the following the spinor indices

are suppressed. S-channel diagram:

i = =gt () L ) — gy L2

U-channel diagram:

(p— K +m)
U—m?2

The scattering matrix element is M=M 1+ Mz.

Zu = (p+m)

u(p) = —igZﬂs’(p/)Mus(p)

M2 ZQQUS/< ) U — m2

b) Use the results

and
(@(p)y"ulk)" = a(k)y"u(p) .
The quantity of interest is
T =) M=) [N+ |Mpf* + MMy + M M; .

Calculate term by term

> M= ZTr{us’ (') (K + 2m)u* (p)a* (p) (K + 2m)}

8,8’

:Gﬁ:ﬁ?“ﬂﬂ+mxw+%mw+wwy+%m}:
g4

~ (S —m?)?

{8 K'p.k' +12m*p .p + 16m*(p + p').k' + 20m*} .

(5)

(10)



Substitute in for the Mandelstam invariants

T
pk=pk = g —m?, pp =kk =m*— 3 (11)
U
p.k':p'.k:mQ—E, S+T+U=4m?, (12)

and the result follows
4

pIVAEES (S_g—mQ)Z{(s +om2)2 + (U — 6m2)? — T(T +6m3)} . (13)

s,s’
The calculation of the remaining terms is analogous.

¢) The final spin direction is not measured, hence we have to sum over all the possibilities.
The initial spin is unknown, so we need to average over the possible two spin directions
as it can be either.

Problem 3. Fermion-fermion scattering

Diagrams to consider are:
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Figure 2: Fermion-fermion scattering.

a) The matrix element is

M = —ig? {"_‘83 (ps)u (7{72271;;(])4)“1@1) _u* (ps)uslg)lzﬁ;‘gm)usz (pz)} C(4)

where T = (py — p3)? and U = (p, — p4)? and spinor indices are suppressed.

b)
T= Y |MP= ) |Mg]+|My|*+ M;My + MrM; (15)

51,52,53,54 51,52,53,54

3



Calculate term by term

3 |MT|2:(9—4 ST T {u (pa)a® (pa)ue™ (o) ()}

T —m?2)?
51,52,53,54 51,52,53,54
X Tr{u™ (pa)u™ (pa)u™ (p2)u™ (p1)}
e (16)
= mTT{(H3 +m)(go +m) }Te{(ph +m)(h +m)}
16g*
= m(?:ﬁ?z +m?)(pa-pr +m?) .
Analogously
~ 16g*
Z |My|* = m(pz-pl +m?)(pa.pa +m?) . (17)
51,82,53,54
The cross-terms are
4
T L RN g
Z MMy + MMy = — (T — m2)(U — m2) Z
$1,52,53,54 51,52,53,54

(Tr{us?’ (p3)u™ (p3)u® (p2)u™ (p2)u (pa)u™ (pa)u® (p1)u™ (p1) }

+ Tr{u (ps)u™ (ps)u® (p1) " (p1)u’ (pa)u™ (pa)u®® (p2) (pz)})

4

(T = m?) (U = m?)
(e { (s + m) @ + ) (o + m) (g + )}
o+ Te{ (g + m)(gh + m) (g + m) (e + m)} )

8q*
(T —m2)(U —m?)

4
{P3.D2pap1 — P3.pap2-p1 + Ps.prpape +m> Y Y pip;+m'}

i=1 j#i
(18)
The Mandelstam invariants are
S T
P1p2 =P3pa =5 = m* Po-p3 = p1.pa = m> — 7 (19)
U
pg.p4:p1.p3:m2—§, S+T+U =4m*. (20)
The final result is
- 442 (S +U)?  4¢*(S+T)>  4¢*(TU — 4m?>S
T- Y ’M‘2:9( )° 49 A ) 21)
(T —m?)? (U-=m2)2 (T —m?)(U—m?)

51,52,53,54



Problem 4. One loop

a) The Feynman diagram
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Figure 3: Scalar two-point function contribution.

is described by

(22)

oo f A%k T{@+E+m)(E+m)}
0=~ | G i

where m has a small imaginary part. Note an additional minus sign associated with a
fermion loop. Using the Feynman’s parametrisation, the denominator becomes

1 /1 dzx
[(p+ k)2 =m?][k2 —m?] — Jo [(1—a)(k —m?) +z((p + k)? — m?)]?

_/1 dx
G

where | = k + pr, M? = m? — xp*(1 — x) and M? has a small imaginary component.
The numerator is

(23)

Te{(p+ E+m)(F+m)} =dlpp+ Kk +m?) =40+ M> +pd(1—22)),  (24)

where the terms linear in [ will vanish due to symmetry. Hence we have

_g/ / d*l 412+]\%;)
= —4g> / da / d4l ( Aj\jj) + (ZQQ_MA;)Q) (25)

=i / d”"/ - ( M?)*(PQ—MA;)?)‘

Perform Wick’s rotation. By standard arguments the temporal part of the integral
along the real axis is the same as along the imaginary axis. Replace [y = ily p and

2 =1
d4lE M2
26
~dig” / dw/ <12 ) <Z%+M2>2) (26)




and evaluate the Euclidean integrals (done in class). Define

[ dYg 1
v== G am o

dg 1
I =—1 . 28

=i | G .
After imposing an ultraviolet cut-off |Ig| < A, the results needed are

: A2 402
To(A) = — (A2 M210g+—>,

1671'2 M?
1 A%+ M? M?
Li(A) = 12 (log R i 1> : (30)

The propagator correction becomes

iS(p) = L (A2 + M?log
0

42

A% + M? 2M*
L —2M?) .
M? A% + M?

Leading order contribution is going to arise from the term

i%(p) = 292 dm (A2 + M?log e

47r0

Zg ! A2 2 2 A2 32
T dzx +(m*—p w(l—w))logﬁ (32)

s 2 1 A2 A2
zg(—pzlog—2+A2 m log—) .
™ \ 6 m m2

Mass and momentum renormalisation can be determined by comparing the obtained
expression with the formula for the propagator

1
D(p) = .
(») p? —m? + X(p) + i€

(33)

The leading order mass shift is dm? = «A? and the kinetic renormalisation contribution

is p?(1 + talog 43), where o = %.

b) Feynman diagram
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Figure 4: Scalar three-point function contribution.



is described by

Z,‘/3:_93/<d4k; Te{(ph + 1o + K+ m)(h + F +m)(k +m)}

2m)* [(p1 + p2 + k)* — m?][(p1 + k)? — m?][k? —m?] (34

The trace of an odd number of v matrices vanishes, hence the leading momentum
power in the numerator is

3mTr{f§} = 12mk* . (35)

To keep track of the "worse” divergence consider also only the leading power of mo-
mentum in the denominator. Then

,VN_g/d% mk? 3/d4k: L a A
tVs~—9 Qr)4 (k2 —m2)3 mg (2r)4 (k2 — m2)? L
(36)

as in the case of the propagator. This divergence can be cancelled by a counter-term
proportional to ¢°.

Feynman diagram
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Figure 5: Scalar three-point function contribution.

is described by

I / Eh T g+ B )@t g+ E )+ K+ m) (4 m))
AL e e R |
3

Again, consider also only the leading powers of the momentum &

d% K dk 1 A
Vi~ —qg* %—4/ —g*log — + ... 38
s / Q= =9 | Gapge ey I B8

by exactly the same argument as before. This divergence can be cancelled by a counter-
term proportional to ¢*. By simple power counting it can be asserted that any higher
order scalar vortex corrections are UV finite.



