Advanced Supersymmetry: Problem sheet 1

MMathPhys, University of Oxford, HT2020, Dr Cyril Closset

Tutor: Dr Cyril Closset. TA: Horia Magureanu

Due by Friday, week 7 (March 5), 4pm.

1. Gauge anomalies and Standard Model.

The Standard Model of particle physics has a gauge group $G = SU(3) \times SU(2) \times U(1)_Y$. See section 9.1 of the lectures notes 'Supersymmetry & Supegravity.' Check equation (9.6), which shows that it is anomaly-free. (That is, give some more details showing that you understand how to go from eq.(9.5) to (9.6).)

2. Symmetries and 't Hooft anomalies in SQCD.

Consider SQCD, the 4d $\mathcal{N} = 1$ theory with one vector multiplet for a $SU(N_c)$ gauge group, N_f chirals $\Phi = Q$ in the fundamental representation of $SU(N_c)$, and N_f chirals $\Phi = \widetilde{Q}$ in the anti-fundamental representation.

- 2.a) Write down the classical global symmetries of the theory. What is the *R*-symmetry?
- (2.b) Check that the $SU(N_c)$ gauge anomaly vanishes.
- (2.c) Show that the axial symmetry $U(1)_A$ that assigns charges A[Q] = A[Q] = 1 is anomalous—this is a chiral anomaly. How does the θ angle of SQCD transform under a $U(1)_A$ rotation?
- (2.d) Is the *R*-symmetry you defined above anomalous?
- (2.e) The flavor group of SQCD is $G_F = SU(N_f) \times SU(N_f) \times U(1)_B$ —see Table 1 in the 'Advanced Supersymmetry' lectures. Compute all the possible 't Hooft anomalies for G_F , for any N_f and N_c .
- 3. $\mathcal{N} = 2$ SQCD.
- (3.a) Write down the field content of $\mathcal{N} = 2$ SQCD, consisting of an $\mathcal{N} = 2$ vector multiplet and of N_f hypermultiplets, in terms of $\mathcal{N} = 1$ chiral superfields. [See Problem sheet 2 of 'Susy&Sugra' for a discussion of the 4d $\mathcal{N} = 2$ multiplets.]
- (3.b) Write down the most general $\mathcal{N} = 1$ renormalizable Lagrangian with this field content. In particular, pay attention to possible superpotential terms.
- (4.b) Write down the exact β -functions for τ and for the superpotential couplings. In the absence of mass terms, the superpotential is purely cubic in the $\mathcal{N} = 1$ chiral multiplets of the theory. Is a non-trivial fixed point (a zero of all the beta functions, for all coupling constants) possible at weak coupling, for some values of the parameters N_c and N_f ? What are these values, if they exist?