
Lecture notes on

Supersymmetry and supergravity

MMathPhys, University of Oxford, HT2020

Cyril Closset

Contents

1 Supersymmetry: why and what? 6

1.1 Motivations for supersymmetry . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 A very brief history of supersymmetry . . . . . . . . . . . . . 7

1.1.2 Motivations for the particle physicist . . . . . . . . . . . . . . 8

1.1.3 Motivations for quantum field theorist and/or string theorist 10

1.1.4 Motivations for the mathematician . . . . . . . . . . . . . . . 11

1.2 Supersymmetry: a first definition . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Mathematical definition . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Schematic form of the supersymmetry algebra . . . . . . . . . 12

1.3 Supersymmetric quantum mechanics (a first look) . . . . . . . . . . 13

1.4 Supermultiplets (a first look) . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.2 1d N = 1 supermultiplet . . . . . . . . . . . . . . . . . . . . . 16

1.4.3 1d N = 2n supermultiplets . . . . . . . . . . . . . . . . . . . 17

1.5 The Witten index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Spinors: a review 18

2.1 Spinors in various dimensions . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Lorentzian signature . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Euclidean signature . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Spinors in 4d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Weyl spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Lorentz symmetry generators. . . . . . . . . . . . . . . . . . . 23

2.2.3 Fierz identities . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Majorana spinors . . . . . . . . . . . . . . . . . . . . . . . . . 24

1



2 Contents

2.3 Spinors in 2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Supersymmetry in various dimensions (but mostly d = 4) 24

3.1 R-symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Minimal supersymmetry in 4d . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 R-symmetry U(1)R . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Supermultiplets: Massive representations . . . . . . . . . . . 28

3.2.3 Supermultiplets: Massless representations . . . . . . . . . . . 30

3.3 Non-minimal supersymmetry in 4d . . . . . . . . . . . . . . . . . . . 32

3.3.1 Massless multiplets . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 R-symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Supersymmetry in 3d . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Supersymmetry in 2d . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Supersymmetry in higher dimensions . . . . . . . . . . . . . . . . . . 36

4 Supermultiplets, superfields, and superspace 37

4.1 Representing supersymmetry on fields . . . . . . . . . . . . . . . . . 37

4.1.1 The chiral multiplet, off-shell . . . . . . . . . . . . . . . . . . 38

4.2 Superspace (4d N = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Coset manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Minkowski space as a coset manifold . . . . . . . . . . . . . . 43

4.2.3 4d N = 1 superspace as a coset super-manifold . . . . . . . . 44

4.2.4 On manipulating the superspace coordinates . . . . . . . . . 45

4.3 Superfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Superspace for other dimensions and/or N ’s? . . . . . . . . . . . . . 47

5 4d N = 1 supersymmetry, part I: chiral multiplets 48

5.1 The SUSY-covariant derivatives . . . . . . . . . . . . . . . . . . . . . 48

5.2 General multiplet and real multiplet . . . . . . . . . . . . . . . . . . 49

5.3 Chiral multiplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Supersymmetric Lagrangians—D-terms and F -terms . . . . . . . . . 54

5.4.1 D-terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.2 F-terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Lagrangians of chiral multiplets . . . . . . . . . . . . . . . . . . . . . 55

5.5.1 R-symmetry and the superpotential . . . . . . . . . . . . . . 56

5.5.2 General superpotential . . . . . . . . . . . . . . . . . . . . . . 57

5.6 The Wess-Zumino model . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.6.1 Interaction terms: superpotential and scalar potential . . . . 59

5.6.2 Majorana and Dirac mass terms . . . . . . . . . . . . . . . . 59

5.7 Supersymmetric vacuum equations . . . . . . . . . . . . . . . . . . . 60

5.7.1 The supersymmetric vacuum. . . . . . . . . . . . . . . . . . . 61

5.7.2 The vacuum equations in a theory of chiral multiplets . . . . 61

5.7.3 Vacuum moduli spaces . . . . . . . . . . . . . . . . . . . . . . 62

5.8 General Kähler potential & Kähler geometry . . . . . . . . . . . . . 63



Contents 3

6 Renormalisation of supersymmetric theories 65

6.1 The Wess-Zumino model at one loop . . . . . . . . . . . . . . . . . . 65

6.1.1 Feynman rules for the WZ model . . . . . . . . . . . . . . . . 66

6.1.2 Some one-loop corrections . . . . . . . . . . . . . . . . . . . . 67

6.1.3 A simpler perturbation theory . . . . . . . . . . . . . . . . . 70

6.2 Wilsonian effective action and the power of holomorphy . . . . . . . 71

6.2.1 Wilsonian effective action, in one word . . . . . . . . . . . . . 71

6.2.2 Holomorphy and non-renormalisation of the superpotential . 72

6.3 “Exact” β-functions for the physical couplings . . . . . . . . . . . . . 74

6.4 General comment on non-renormalisation theorems . . . . . . . . . . 76

7 4d N = 1 supersymmetry, part II: gauge theories 76

7.1 Classical and quantum gauge theory: executive summary . . . . . . 76

7.1.1 Classical gauge theory . . . . . . . . . . . . . . . . . . . . . . 77

7.1.2 Quantum gauge theory: running of the gauge coupling . . . . 79

7.2 Abelian vector multiplet . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2.1 Supersymmetry in the Wess-Zumino gauge . . . . . . . . . . 83

7.2.2 The abelian field-strength multiplet . . . . . . . . . . . . . . 85

7.3 Non-abelian vector multiplet . . . . . . . . . . . . . . . . . . . . . . 86

7.3.1 Supersymmetry in the Wess-Zumino gauge . . . . . . . . . . 86

7.3.2 Non-abelian field-strength superfield . . . . . . . . . . . . . . 87

7.4 The super-Yang-Mills Lagrangian . . . . . . . . . . . . . . . . . . . . 87

7.5 Charged matter fields and supersymmetric Lagrangians . . . . . . . 88

7.6 Scalar potential and classical vacuum equations . . . . . . . . . . . . 89

7.6.1 Classical scalar potential and vacuum manifold . . . . . . . . 89

8 Spontaneous supersymmetry breaking 91

8.1 The supercurrent multiplet . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Spontaneous supersymmetry breaking and goldstino . . . . . . . . . 93

8.3 Supersymmetric mass sum rule . . . . . . . . . . . . . . . . . . . . . 95

8.4 Mechanisms of supersymmetry breaking . . . . . . . . . . . . . . . . 95

8.5 F-term supersymmetry breaking . . . . . . . . . . . . . . . . . . . . 96

8.6 D-term supersymmetry breaking and Fayet-Iliopoulos model . . . . . 96

8.6.1 The Fayet-Iliopoulos term . . . . . . . . . . . . . . . . . . . . 97

8.6.2 FI-term-induced supersymmetry breaking . . . . . . . . . . . 97

8.6.3 Further comments . . . . . . . . . . . . . . . . . . . . . . . . 97

9 Supersymmetry and the Standard Model 98

9.1 The Standard Model (lightning review) . . . . . . . . . . . . . . . . 98

9.2 The supersymmetric SM . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.3 The MSSM: supersymmetry-breaking soft terms . . . . . . . . . . . 104

9.4 Hidden sector and supersymmetry-breaking mediation . . . . . . . . 104

9.4.1 Gauge mediation . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.4.2 Supergravity mediation . . . . . . . . . . . . . . . . . . . . . 105



4 Contents

9.5 Concluding comments . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10 A brief introduction to supergravity 107
10.1 Gauging the supercurrent: 4d N = 1 linearised supergravity . . . . . 107

10.1.1 Linearised old-minimal supergravity . . . . . . . . . . . . . . 108
10.2 Full N = 1 supergravity: general strategy . . . . . . . . . . . . . . . 109
10.3 Veirbein, spin connection, and curved-space spinors . . . . . . . . . . 110

10.3.1 Veirbein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.3.2 Covariant derivatives, spin connection and curvature . . . . . 112

10.4 Gravitino and the Rarita-Schwinger equation . . . . . . . . . . . . . 113
10.5 The old-minimal 4d N = 1 supergravity action . . . . . . . . . . . . 114

10.5.1 Gravitino and local supersymmetry . . . . . . . . . . . . . . . 114
10.5.2 Gravitino-twisted spin connection . . . . . . . . . . . . . . . . 114
10.5.3 The 4d N = 1 supergravity action . . . . . . . . . . . . . . . 115

A Useful identities 116
A.1 Useful identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2 Fierz identities for 4d Weyl spinors . . . . . . . . . . . . . . . . . . . 117



Contents 5

Caveat emptor and recommended readings

These lecture notes are very much a work in progress, intended exclusively to ac-
company the MMathPhys lectures in Oxford during Hilary term 2020. They will
be updated regularly during term. Similar comments hold for the lectures notes
for Advanced Supersymmetry. Please let me know (by email or in person) of any
mistake and confusion you may encounter.

The content of these lectures is standard. I have attempted to collect the most
important aspects of supersymmetry that can be explained in a set of introductory
lectures. This, of course, involved some arbitrary choices, and I would encourage
you to read more broadly.

I also aimed to present the material in such a way that, once you understand
supersymmetry in our own space-time (4d Minkowski space-time, to a good approx-
imation), you can easily move on to other dimensions and other contexts, depending
on your needs and interests.

Last updated on: April 22, 2020.

References:

The main sources for these lectures are:

• The Wess and Bagger book [1], the most widely used reference for 4d N = 1
supersymmetry. Chapters I to VIII are recommended reading.

• Weinberg’s QFT book, Volume III [2]. A great book if you need more detail.
Not the easiest read but always worth the effort.

• The lecture notes on 4d N = 1 supersymmetry by Philip Argyres, available on
his website: http://homepages.uc.edu/~argyrepc/cu661-gr-SUSY/index.
html.

• The original literature cited in the notes.

Other references you may find useful:

• The lectures by Joseph Conlon, here in Oxford: https://www-thphys.physics.
ox.ac.uk/people/JosephConlon/LectureNotes/SUSYLectures.pdf.

• The supersymmetry lectures by Adel Bilal [3].

• The very detailed supersymmetry lecture notes by Matteo Bertolini: https:
//people.sissa.it/~bertmat/susycourse.pdf.

• A recent set of lectures by Yuji Tachikawa [4] dealing with more recent devel-
opments.

• ...

http://homepages.uc.edu/~argyrepc/cu661-gr-SUSY/index.html
http://homepages.uc.edu/~argyrepc/cu661-gr-SUSY/index.html
https://www-thphys.physics.ox.ac.uk/people/JosephConlon/LectureNotes/SUSYLectures.pdf
https://www-thphys.physics.ox.ac.uk/people/JosephConlon/LectureNotes/SUSYLectures.pdf
https://people.sissa.it/~bertmat/susycourse.pdf
https://people.sissa.it/~bertmat/susycourse.pdf
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1 Supersymmetry: why and what?

1.1 Motivations for supersymmetry

We are accustomed to symmetries playing an important role in physics. This is
especially true for the (so-called) fundamental physics of the XXth century, from
special relativity to quantum mechanics to QFT.

In classical physics, continuous symmetries are associated to conservation laws,
by Noether’s theorem. More precisely, let us consider classical field theory in
Minkowski space-time R1,d−1 (that includes ordinary mechanics for d = 1). For
any Lagrangian mechanics with degrees of freedom φ(x), 1 and action:

S[φ] =

∫
ddxL (φ(x), ∂µφ(x)) , (1.1)

a continuous Lie group symmetry is closely related to the existence of conserved cur-
rents. Let us have a symmetry group G with algebra g = Lie(G), with infinitesimal
action:

φ(x) = φ(x) + εaFa(φ(x), ∂µφ(x), · · · ) +O(ε2) . (1.2)

Here, the parameters εa, with a = 1, · · · , dim(g), run over the group generators.
(In other words, ε ∈ g.) Let us assume the action (1.1) is left invariant by the
infinitesimal transformation (1.2), in the sense that:

δεS[φ] = S[φ+ εaFa]− S[φ] = 0 . (1.3)

This means that the symmetry variation of the Lagrangian is a total derivative: 2

δεL (φ) = εa∂µΛµa . (1.4)

Then, there exist conserved currents, the Noether currents, given by:

jµa (x) = Λµa −
∂L

∂ ∂µφ
Fa , ∂µj

µ(x) = 0 . (1.5)

Here, for simplicity, we assumed the Lagrangian is at most of second order in
derivatives. We have also used the equations of motions. 3

Symmetries play a similarly important role in quantum mechanics (QM) and in
quantum field theory (QFT). In a QFT in space-time dimension d with continuous
symmetries, the Noether currents jµa (x) are now viewed as local operators, and the
generator of the symmetry on the QFT Hilbert space is the charge operator:

Qa =

∫
Σd−1

dd−1x j0
a(x) . (1.6)

1We use the notation x = (xµ) ∈ R1,d−1.
2Here, we assume that the space-time measure ddx = dtdx1 · · · dxd−1 of Minkoswski space-time

is left invariant by the symmetry. This is the case, in particular, for the Poincaré symmetries
(translations, rotations and Lorentz boosts).

3We should note that the definition of any Noether current jµ is slightly ambiguous, since one
can always shift jµ to jµ + ∂νB

µν , with Bµν an antisymmetric tensor.
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Here, the integration is over a spatial slice Σd−1
∼= Rd at constant time t. The

conservation equation, d
dtQa = 0, follows from ∂µj

µ = 0, assuming appropriate
boundary conditions for the fields at spatial infinity. 4

1.1.1 A very brief history of supersymmetry

A bit more than fifty years ago (in the 1960’s), Particle Physics was in state of
creative confusion. There were many new “elementary” particles being discovered
(all the many “mesons” and “baryons”...), and no obvious way to organise them and
explain their interactions. Recall that, a little bit earlier, quantum electrodynamics
(QED) was developed and gave us an extremely satisfactory quantum theory of
the photon interacting with charged particles, 5 using the explicit Hamiltonian of
a Maxwell potential Aµ coupled to matter, and relying on perturbation theory.

When it came to the interactions of hadrons—the baryons (proton, neutron,...)
and mesons—, that success seemed hard to reproduce at the time, however. This
led to a proliferation of new and clever ideas, many of which are still being pursued
today. One general theme, at the time, was to try and “define” QFT by its observ-
ables only (as we should, in quantum mechanics), without relying on a particular
“microscopic” Hamiltonian or Lagrangian. For this approach to work, one would
have to rely heavily on symmetries (as well as on other more subtle but general
principles, such as unitarity). The only observables in scattering experiments are
the S-matrix elements, and therefore a natural question was: What is the more
general symmetry of the S-matrix?

Coleman-Mandula theorem. An apparently definitive answer was given in a
famous paper by Coleman and Mandula, in 1967, in the case of continuous sym-
metries [5]. The Coleman-Mandula (CM) theorem deals with a relativistic QFT
in R1,3 such that (i) only a finite number of particle types 6 are associated with
one-particle states of any given mass, (ii) there exists an energy gap between the
vacuum and one-particle states, (iii) there is non-trivial scattering. Then, the most
general symmetry of the S-matrix is:

Poincaré×G internal . (1.7)

The Poincaré group is the invariance of the relativistic QFT, by assumption: 7

Poincaré ≡ ISO(1, d− 1) ≡ SO(1, d− 1) nR1,d−1 , (1.8)

4Recall the one-line derivation:

d

dt
Qa =

∫
Σ

∂tj
t = −

∫
Σ

∂ij
i = 0 ,

where i are the space coordinate indices, (xµ) = (x0, xi) = (t, xi).
5The Nobel prize for QED was awarded to Schwinger, Feynman and Tomonaga in 1965.
6Here, by “particle type,” we mean positive-energy representations of the Poincaré group.
7The Poincaré group is also know as the “inhomogeneous Lorentz group,” hence the name

ISO(1, d− 1). The translations, R1,d−1, form a normal subgroup.
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and here we are specifically in the case d = 4. The theorem deals with the symmetry
group component connected to the identity. In other words, it states that, in a
non-trivial “massive” QFT, the most general space-time symmetry Lie algebra is
the Poincaré algebra (the generators of rotations, boosts, translations), and any
other “internal symmetries” G internal must commute with it. (For instance, the
historically important ‘isospin,’ and any similar ‘flavor symmetries.’)

Note that we assumed that the theory was “massive”—there is an energy gap
in the spectrum. One way to evade the theorem is to consider theories without any
built-in mass scales (for instance, with massless particles). Then, we can have a
larger group of space-time symmetries, the conformal group SO(2, d)—this would
lead us to the study of conformal field theories (CFT).

An important (implicit) assumption in the CM theorem, as stated above, is that
the symmetry generators are bosonic operator, so that they satisfy commutation
relations. That assumption can be relaxed. If we allow for fermionic generators,
which satisfy anti-commutation relations, we can generalize the CM theorem, by
replacing the Poincaré algebra with a so-called super-Poincaré algebra. This is the
content of the Haag-Lopuszanski-Sohius theorem [6], from 1975. (The theorem was
worked out after supersymmetry had been already discovered explicitly in QFTs.)

Historically, supersymmetry first appeared in the early days of string theory,
in a paper of 1971 by Neveu and Schwarz [7]. This was supersymmetry on the
string worlsheet, a d = 2 field theory—the first appearance of what we now call 2d
superconformal theories. (See [8] for further details and references.)

The d = 4 (4d N = 1, in modern language) super-Poincaré algebra was first
introduced at the same time by Golfand and Likhtman [9], in 1971 in the USSR.
That work went unnoticed by the larger community for several years, however.
Then, 4d supersymmetry was independently discovered by Wess and Zumino in
1974 at CERN [10, 11]. This launched a sustained investigation of supersymmetric
QFTs (and supergravity theories), which is still on-going 46 years later.

1.1.2 Motivations for the particle physicist

Once 4d supersymmetry was theoretically discovered, in the mid-1970s, it became
natural to expect that it might play an important role in particle physics. Real-
world particles do not form representations of the supersymmetry algebra, however.
This leaves us with the tantalising possibility that supersymmetry might be spon-
taneously broken at the relatively low energies probed by particle accelerators—up
to the TeV scale (so far).

Let us say from the get-go that we do not know of any airtight argument why
supersymmetry should be required in Nature, and certainly not why it should be
experimentally accessible in the near future. One can hope, however.

GUT and supersymmetry. One curious observation indirectly hints at super-
symmetry at the TeV scale, however weakly. It has been a long-running idea
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in Particle Physics that the gauge group of the Standard Model (SM), GSM =
SU(3)×SU(2)×U(1), might be “unified” by embedding into a larger GUT (‘grand
unified theory’) gauge group GGUT, such as SU(5) or SO(10). At some GUT scale
MGUT, the gauge group GGUT would be spontaneously broken down to GSM. The
known renormalisation group (RG) running of the SM gauge coupling constants
is approximately compatible with this scenario. When a particular supersymmet-
ric version 8 of the Standard Model is considered instead, the agreement of the
coupling-constant unification with a GUT scenario becomes much more impressive,
with MGUT ∼ 1016GeV.

The hierarchy problem. The other and main reason why many particle physi-
cists believe (or believed, until recently) that supersymmetry might be discovered
at the LHC is called “naturalness,” which is a rather theoretical—some would say,
philosophical—construct. Naturalness already motivated searches for supersymme-
try at LEP, the precursor of LHC at CERN. At the time of this writing, the LHC
results from proton-proton collisions at 13TeV are all in perfect agreement with
the Standard Model, and show no hint of supersymmetry. The jury is still out,
but the mood is rather more somber than a few years ago for those who hoped for
supersymmetry at the LHC.

What is naturalness, then? Roughly, it is the idea that numbers in physics that
are very small must be small for a reason. The Standard Model, with its Higgs
boson at 125GeV, does a great job at explaining the experiments so far. What
is odd, however, is that the Higgs-potential parameters in the standard model
seem “fine-tuned.” The Higgs mass term in the SM Lagrangian is renormalised
very strongly (“quadratically” in the RG scale, unlike the fermion masses, which
only run logarithmically), and its “natural” scale should be at whatever threshold
at which new physics appears. Since we know experimentally that the electroweak
(EW) scale is at ∼100GeV, this means that the Higgs mass is fined-tuned—in QFT,
one has to cancel two very large “bare” numbers against each other “by hand.”
This is, in a nutshell, the so-called hierarchy problem: what explains the apparent
‘hierarchy’ between the EW scale at 102GeV and whatever scales kicks in next—
for instance the GUT scale at 1016GeV, or the Planck scale of quantum gravity at
1019GeV. The “natural” solution is that there is a scale with new Physics soon after
the EW scale. Supersymmetry offers such models of particle physics beyond the SM
which would “solve the hierarchy problem.” However, even if supersymmetry were
discovered tomorrow, there would still be some relative “unnaturalness” creeping
in—a fully natural solution to the hierarchy problem has (likely) already been ruled
out experimentally.

At this point, I should also point out that I am not an expert in Particle Physics,
at all. I encourage you to directly ask experts in the Physics Department about
what is the current status of supersymmetry experimentally. The situation is likely
to keep evolving in the next few years.

8The MSSM with one Higgs doublet. See section 28.2 of Weinberg [2] for a detailed discussion.
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1.1.3 Motivations for quantum field theorist and/or string theorist

However successful the Standard Model may be—and it is very successful—, we
know it is not the full story. If anything, it does not incorporate gravity. Our best
candidate for a quantum theory of gravity, to this day, is String Theory.

Supersymmetry historically appeared within string theory, and is intimately tied
to it. In fact, supersymmetric QFT is part of the larger picture of (super)string
theory in multiple, complementary ways. To name a few:

• The string worldsheet itself can be described by a 2d superconformal theory
(2d SCFT). Interesting subsectors of string theory on non-trivial geometry
are captured by observables in 2d supersymmetric theories, including 2d su-
persymmetric gauge theories.

• Supersymmetric quantum field theories (without gravity) in every possible di-
mensions (d ≤ 10) appear naturally in the open-string sector of string theory;
in particular, at low energy on so-called D-branes—and also on M-branes in
11-dimensional M-theory. The closed-string sector of string theory also con-
tains supergravity theories, which tie supersymmetry with general relativity.

• The AdS/CFT duality, discovered by Maldacena in 1997 [12], is the statement
that various QFTd’s with conformal invariance are dual to quantum gravity
on an Anti-de-Sitter space-time in d + 1 dimensions (AdSd+1). This means
that, although a QFT looks very much different from a gravity theory in
curved space-time, quantum-mechanically they are one and the same things:
once we understand the proper dictionary between the two languages, all the
observables agree! The best-studied instances of theAdS/CFT duality involve
supersymmetric field theories dual to superstring theory in AdS. Thus, in
the last 20 years, supersymmetric QFT (and, more precisely, superconformal
theory) has become a tool to study quantum gravity.

Moreover, independently of string theory, supersymmetry is an important tool-
box to better understand QFT more generally. Many problems that would be too
hard in ordinary QFT, with our current technology, can be tackled analytically in
the supersymmetric context.

Let us just give one outstanding example: We still have no analytic theoretical
tools to study the confinement of quarks in QCD, because we lack the tools to ad-
dress the strong-coupling regime quantitatively. On the other hand, the low-energy
solution of 4d N = 2 supersymmetric gauge theories by Seiberg and Witten in 1994
[13] provided a rather explicit derivation of confinement in some supersymmetric
version of QCD (by monopole condensation, an idea that appeared in early work
by Gerard ’t Hooft).

This is arguably the one main motivation for many people who study super-
symmetric QFT these days: to understand better Quantum Field Theory itself.
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1.1.4 Motivations for the mathematician

In recent decades, there has been a very fruitful interplay between ideas in pure
mathematics—especially, but not only, in geometry—and development in string
theory and QFT. It works both ways: mathematical ideas inform and inspire the
work of physicists, but results in theoretical physics have also often produced sur-
prising mathematical conjectures, which are then studied by mathematicians in
their own right.

Supersymmetry is the central beam on this bridge between Physics and Math.
For instance, one can get a “physics proof” of the Atiyah-Singer index theorem
in the context of supersymmetric quantum mechanics. More recently, there has
been a rich interplay between Physics ideas in supersymmetric QFT (in particular,
S-duality in 4d N = 4 theory) and the geometric Langlands correspondence in
algebraic geometry [14]. The list goes on and on.

1.2 Supersymmetry: a first definition

As mentioned above, supersymmetry is the only way to extend the Poincaré sym-
metry group by evading the Coleman-Mandula theorem. (In the case of QFTs with
an energy gap.) It evades the CM theorem by introducing new generators which
satisfy anti-commutation relations amongst themselves. The anti-commutator of
two fermionic operators A and B is denoted by:

{A,B} ≡ AB + BA . (1.9)

Aside: quantizing fermions. Recall that fermions in QFT obey Fermi-Dirac
statistics: we pick a minus sign upon exchanging two identical particles. Let |m〉
denote the fermionic particle in some one-particle state indexed by m, which is
created from the vacuum by some operator b†m:

|m〉 ≡ b†m|0〉 , |m;n〉 ≡ b†nb†m|0〉 , · · · (1.10)

Fermi statistics means that the creation operators anti-commute:

|m;n〉 = −|n;m〉 ↔ {b†n, b†m} = 0 . (1.11)

This includes the Pauli exclusion principle:

|m;m〉 = 0 (1.12)

More generally, as we shall review below, quantization of a fermion leads to
anti-commutation relations such as:

{bn, b†m} = ~ δnm . (1.13)

The point, here, is just that: (1) Fermionic operators are nothing exotic. They
exist necessarily in any theory with “fundamental fermions,” such as e.g the real-
world electron and quarks. (2) Fermionic operators satisfy anti-commutation rela-
tions amongst themselves, not commutation relations.
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1.2.1 Mathematical definition

We can be a bit more formal:

Definition: A superalgebra (over C) is a Z2 graded vector space:

A = A0 ⊕A1 (1.14)

with a bilinear multiplication A×A→ A such that:

a0a
′
0 ∈ A0 , a0a1 ∈ A1 , a1a

′
1 ∈ A0 , if a0, a

′
0 ∈ A0 , a1, a

′
1 ∈ A1 . (1.15)

We call the elements of A0 bosonic (or ‘even’) and the elements of A1 fermionic (or
‘odd’). It is obvious that the bosonic algebra A0 is a sub-algebra of A.

Let a, b ∈ A, and let |a|, |b| denote their Z2 degree. The super-commutator is
simply:

[a, b} = ab− (−1)|a||b|ba . (1.16)

Thus, we arrive at our first formal definition of supersymmetry:

Definition: A supersymmetry algebra over the space-time R1,d−1 is a superalge-
bra that contains the d-dimensional Poincaré symmetry algebra iso(1, d − 1) as a
subalgebra of its bosonic subalgebra.

A super-Poincaré algebra is a supersymmetry algebra whose bosonic subalgebra
is the Poincaré algebra. In these lectures, unless otherwise specified, we will use
the term “supersymmetry algebra” to mean a super-Poincaré algebra, in keeping
with common usage.

1.2.2 Schematic form of the supersymmetry algebra

Let X denote either Poincaré symmetry generators, or internal symmetry genera-
tors. Then, a general supersymmetry algebra will have generators:

X ∈ A0 , Q ∈ A1 , (1.17)

and it will take the schematic form:

[X,X ′] = X ′′ , [X,Q] = Q′′ , {Q,Q′} = X . (1.18)

This a priori form can be constrained further by studying the closure of the algebra.
In particular, Jacobi identities impose strong constraints.

The fermionic generators Q are the supersymmetry generators, by defini-
tion.

Depending on the space-time dimension, we can have slightly different forms of
the supersymmetry algebra. As we will see, we always have some relations of the
form:

{Q,Q′} ∼ Pµ , (1.19)
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with Pµ the momentum operator, generator of translations. Thus, the supersym-
metries can be thought of as a “square root” of space-time momentum.

But first, let us study an interesting ‘toy model’ of supersymmetry, in quantum
mechanics.

1.3 Supersymmetric quantum mechanics (a first look)

It is sometimes useful to view QM as a ‘QFT in d = 1’ (the “fields” depend only on
time, not space). The 1d Poincaré algebra is simply generated by E = −i ddt . We
introduce N supersymmetry generators:

QI , I = 1, · · · ,N . (1.20)

The 1d supersymmetry algebra takes the form:

[QI , H] = 0 , {QI , QJ} = 2HδIJ + ZIJ , (1.21)

where ZIJ = ZJI (I 6= J) are some real central charges (that is, which commute
with QI and H).

Relativistic massless spinning particle. In the Feynman path integral lan-
guage for quantum mechanics, a “1d fermion” is simply a Grassmann-valued field
ψ = ψ(t): 9

{ψ(t), ψ(t′)} = 0 . (1.22)

A free fermion has a Lagrangian:

L = iψ
dψ

dt
+mψψ , (1.23)

corresponding to the 1d “Dirac equation” (i ddt +m)ψ = 0.
Possibly the simplest 1d N = 1 supersymmetric model is a theory of D free

1d bosons Xµ(t) and D free 1d fermions ψµ(t), of vanishing mass (with the index
µ = 1, · · · , D). It is defined by the Lagrangian:

L =
1

2
ẊµẊ

µ + iψµψ̇
µ . (1.24)

Here, we use the standard notation ẋ ≡ dx
dt . The indices µ, ν are lowered with

a “target-space metric” gµν—for simplicity, we choose gµν = ηµν the Minkowski
metric in D space-time dimensions. This system describes a relativistic massless
spinning particle in R1,D−1. The 1d “worldline” fields Xµ(t) are the coordinates
of the point particle in R1,D−1, and the 1d fermions ψµ are the spin degrees of
freedom [15]. Classically, they satisfy:

{ψµ, ψν} = 0 . (1.25)

9Here, ψ denotes a classical field, not an operator.
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We have the conjugate momenta:

Πµ
X = Ẋµ , Πµ

ψ = iψµ , (1.26)

so that a 1d fermion is conjugate to itself. Quantum mechanically, we then have:

[Xµ,Πν
X ] = igµν , {ψµ, ψν} = gµν , (1.27)

in canonical quantisation. Thus, the classical Grassmann algebra (1.25) becomes
the Clifford algebra quantum mechanically.

The Lagrangian (1.24) enjoys 1d N = 1 supersymmetry, which acts on the fields
as:

δX = 2iεψ , δψ = −εẊ , (1.28)

with ε a constant supersymmetry parameter. Indeed, we can check that:

δL = iε
d

dt

(
ψµẊ

µ
)
. (1.29)

The Noether charge for supersymmetry is then the Hermitian operator:

Q = ψµẊ
µ . (1.30)

We also have the energy operator:

H = −P0 =
1

2
Ẋ2 , (1.31)

which is associated to translations in time. The operators Q and H are conserved,
since Q̇ = 0 and Ḣ = 0 upon using the 1d equations of motions. One also sees that:

{Q,Q} = {ψµ, ψν}ẊµẊν = 2H , (1.32)

using the canonical commutation relation for the operator ψ in (1.27).

On quantising a real fermion. The careful reader must have wondered how
one obtained the canonical commutation relations (1.27) for the real fermions. One
apparent issue is that the phase space variables ψ and Πψ = iψ are linearly related:

ψ + iΠψ = 0 . (1.33)

This is an example of a (second class) constraint, in the Dirac formalism for con-
strained dynamical systems. We also find that the Hamiltonian of the free fermion
is identically zero:

Hψ = 0 . (1.34)

To quantize this theory in the canonical formalism, one should use the so-called
Dirac bracket instead of the Poisson bracket, and then replace the Dirac bracket
by the (anti)-commutator quantum-mechanically. One can then eliminate Πψ from
the description using the constraint, to finds:

{ψ,ψ} = 1 . (1.35)

We refer to section 7.6 of Weinberg volume I [16] for a general discussion. The case
of interest here is treated explicitly in chapter 7 (section 7.1.1) of [17].
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1.4 Supermultiplets (a first look)

A supermultiplet is a representation of the supersymmetry algebra.
For instance, in the 1d example above, the fields Xµ and ψµ form the super-

multiplets:
Xµ = (Xµ, ψµ) . (1.36)

The supersymmetry transformations (1.28) realise the supersymmetry algebra:

{Q,Q} = 2E , (1.37)

on fields, with δ ≡ εQ and H ≡ E, since:

δ2X = −2iε2
d

dt
X , δ2ψ = −2iε2

d

dt
ψ . (1.38)

1.4.1 General properties

Consider the general supersymmetric algebra in QM,

{QI , QJ} = 2EδIJ + ZIJ , [E,QI ] = 0 . (1.39)

The trivial commutator [E,QI ] = 0 implies all the states in a given super-multiplet
have the same energy. Moreover, in a supersymmetry theory, the energy of any
state is non-negative:

〈Ω|E|Ω〉 =
1

2
〈Ω|{Q1, Q1}|Ω〉 = |Q1|Ω〉|2 ≥ 0 . (1.40)

We define the fermion number operator (−1)F , which acts as:

(−1)F |b〉 = |b〉 , (−1)F |f〉 = −|f〉 , (1.41)

on bosonic and fermionic one-particle states, respectively. Since Q sends bosons to
fermions, and vice-versa, we have:

(−1)FQI = −QI(−1)F , (1.42)

for any QI . We then find:

Tr
(
(−1)F {QI , QJ}

)
= Tr

(
(−1)FQIQJ + (−1)FQJQI

)
= 0 , (1.43)

using (1.42) and the cyclicity of the trace. This holds for any finite-dimensional
representation of the supersymmetry algebra (so that the trace is well-defined).
Using (1.39), we find:

Tr
(
(−1)F (2EδIJ + ZIJ)

)
= 0 , (1.44)

and, in particular, we have:

Tr
(
(−1)FE

)
= 〈E〉Tr

(
(−1)F

)
= 0 , (1.45)

where 〈E〉 is the fixed energy of the supermultiplet. If 〈E〉 is non-zero, we must
have as many bosonic as fermionic states, so that the trace vanishes. In other
words, finite-energy supermultiplets contain as many bosons as fermions.
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1.4.2 1d N = 1 supermultiplet

The simplest case is N = 1, with the supersymmetry algebra (1.37). Consider Q
acting on some set of states of energy E. We define the rescaled operator:

b =
1√
2E

Q , (1.46)

so that the supersymmetry algebra (on those states) takes the simple form:

{b, b} = 1 . (1.47)

This supersymmetry algebra is isomorphic to the anti-commutator of a single real
fermion, as in (1.35). (That is, a 1d Clifford algebra.) It can be represented on a
two-dimensional Hilbert space H, where b is realized as the matrix:

b =
1√
2

(
0 1
1 0

)
. (1.48)

We then simply have a two-component supermultiplet:

{|E〉 , b|E〉} , (1.49)

as in (1.36). Here, the boson and the fermion in the supermultiplet can be repre-
sented by the vectors:

|E〉 =

(
1
0

)
∈ H , |E〉′ =

√
2b|E〉 =

(
0
1

)
∈ H ,

respectively. Note that this obviously is in agreement with the discussion in terms
of fields; in particular, acting twice with Q gives back the same state times its
energy, Q2|E〉 = E|E〉.

Caveat: The two-dimensional representation of the 1d Clifford algebra (1.47) that
we just gave is not irreducible. Instead, (1.47) has two irreducible one-dimensional
representations, which can be given as:

b = ± 1√
2
. (1.50)

However, such irreducible representations correspond to the linear combinations:

|E〉 ± |E〉′ , (1.51)

which mix a bosonic and a fermionic state (corresponding to the fields X and ψ).
The physical 1d N = 1 supermultiplets are the two-dimensional ones, as given
above.
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1.4.3 1d N = 2n supermultiplets

For applications to higher-dimensional field theories, it is convenient to focus on
the case N = 2n an even integer. We then introduce the complex supercharges:

Qi = Qi + iQn+i , Q̄i = Qi − iQn+i , i = 1, · · · , n , (1.52)

in terms of which the supersymmetry algebra takes the form:

{Qi, Q̄j} = δij4E , {Qi,Qj} = 2iZ ij , {Q̄i, Q̄j} = −2iZ ij , (1.53)

with Z ij = Zi,n+j .

The “massive” (Clifford) supermultiplet. For simplicity, let us assume that
Z ij = 0. Then, we define:

ai =
1

2
√
E
Qi , a†i =

1

2
√
E
Q̄i , (1.54)

so that we have a Clifford algebra:

{ai, a†j} = δij , {ai, aj} = {a†i , a
†
j} = 0 . (1.55)

This is isomorphic to the algebra obtained upon quantising n complex fermions.
Given a Clifford vacuum, |Ω〉 such that ai|Ω〉 = 0, we have the states:

[Ωi1i2···ik〉 = a†i1a
†
i2
· · · a†ik |Ω〉 . (1.56)

Since the a†’s anti-commute, we have

(
n
k

)
such states and the highest state is the

unique state at k = n. The total number of states in the supermultiplet is then:

n∑
k=0

(
n
k

)
= 2n . (1.57)

In later lectures, we will see that this “massive” multiplet structure arises in
higher-dimensional QFTs in the case of a massive one-particle state with Pµ =
(E, 0, · · · , 0), where 2n is the number of real supercharges of the QFTd. We will
also come back to the case when the 1d central charges might be non-trivial (that
might be the momentum operator in QFT).

1.5 The Witten index

Consider a supersymmetric quantum mechanics with (by assumption) a discrete
spectrum of H = E and a finite number of vacua. One defines its Witten index as:

IW = TrH

(
(−1)F e−βH

)
, (1.58)
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where the trace is over the full Hilbert space of the theory. However, any states
with E > 0 contribute trivially to the index, by the property (1.45). Thus, the
Witten index is really a property of the vacuum only:

IW = TrH,H=0

(
(−1)F

)
= nB − nF , (1.59)

and it is given by the number of bosonic vacua minus the number of fermionic
vacua. This quantity plays an important role in supersymmetric QFT—it was first
introduced by Edward Witten to explore the possibility of spontaneous supersym-
metry breaking [18], as we will explain in a later lecture, but it also plays a central
role in many more recent developments.

The main interest of the Witten index is that it is invariant under (appropriate)
deformations of the theory. As we deform various parameters, the spectrum might
change, but the index does not. This is because non-zero energy states come in a
boson-fermion pairs. As we vary the parameters, states can leave or hit the ground
state, H = 0, but only in boson-fermion pairs, therefore (1.59) is invariant.

2 Spinors: a review

2.1 Spinors in various dimensions

In any space-time dimensions, the supercharges transform like spinors under the
Lorentz group SO(1, d−1). Moreover, to discuss supersymmetry at all, we need to
be very familiar with fermions in QFT, which are also spinors (by the spin-statistic
theorem).

Consider first the Lorentz group in space-time d dimension. At first, we may
consider the general case SO(p, q) with p + q = d. This is the invariance of the
metric:

(ηµν) = diag
(
−1, · · · ,−1︸ ︷︷ ︸

p times

, 1, 1, · · · , 1︸ ︷︷ ︸
q times

)
. (2.1)

We focus on the Minkowski signature, (p, q) = (1, d− 1). For many purposes, it is
also useful to consider the Euclidean signature, (p, q) = (0, d).

The generators of SO(p, q) are designated by Mµν = −Mνµ. They satisfy the
so(p, q) algebra:

[Mµν ,Mρσ] = i (ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ) . (2.2)

The fundamental representation of SO(p, q) is the vector representation, of dimen-
sion d. The spinor representations, on the other hand, are not strictly speaking
representation of the group SO(p, q) but rather of its double cover, Spin(p, q). 10

10In particular, Spin(d) is simply-connected for d > 2.
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For low d, it is useful to keep in mind the (accidental) isomorphisms:

Spin(2) ∼= U(1) , Spin(1, 1) ∼= Gl(2,R) ,

Spin(3) ∼= Sp(1) ∼= SU(2) , Spin(1, 2) ∼= Sl(2,R) ,

Spin(4) ∼= SU(2)× SU(2) , Spin(1, 3) ∼= Sl(2,C) ,

Spin(5) ∼= Sp(2) , Spin(1, 4) ∼= Sp(1, 1) .

(2.3)

Of course, SO(p, q) and Spin(p, q) have the same Lie algebra (2.2), denoted by
so(p, q).

The (Dirac) spinor representation of so(p, q) can be constructed explicitly as
follows. First, let us introduce the gamma matrices γµ which satisfy the Clifford
algebra:

{γµ, γν} = 2ηµν . (2.4)

Then, the spinor representation matrices are given explicitly by: 11

Mµν =
i

4
[γµ, γν ] . (2.5)

The gamma matrices can be constructed explicitly in any dimensions. They are of
dimension:

D = 2n if d = 2n or d = 2n+ 1 . (2.6)

Thus, D = 2n is also the dimension of the Dirac spinor. It particular, we have
D = 4 in d = 4.

The Dirac spinor representation is not necessarily an irreducible representation
of so(p, q), however. Which are the actual irreducible spinor representations de-
pends non-trivially on p and q. We see this below, in the physically-important
examples in d ≤ 4.

2.1.1 Lorentzian signature

Consider the case (p, q) = (1, d−1). Suppose we are given a set of gamma matrices
{γµ} in d = 2n dimensions, with µ = 0, · · · , 2n − 1. Then, we directly have the γ
matrices in d = 2n+ 1 dimensions, by introducing additional matrix:

γ2n+1 ≡ (−i)n+1γ0γ1 · · · γ2n−1 . (2.7)

Since µ runs from 0 to d − 1, we should really denote γ2n+1 by “γ2n,” but the
notation is customary. (In particular, for d = 4, we have γ5 used to define chirality.)

Given γµ in d = 2n, we can also construct the matrices ΓM in d = 2n+ 2, with:

Γµ = γµ ⊗ σ1 , Γ2n+1 = γ2n+1 ⊗ σ1 , Γ2n+2 = 12n×2n ⊗ σ2 . (2.8)

Therefore, we can build the γ matrices inductively, for any d. Let us now discuss
the first few cases, by making some convenient choices:

11Be mindful of what is a representation matrix—here, denoted M—and what is an “abstract”
generator Mµν of the algebra. This should always be clear from context.
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d = 2 and d = 3: In the case n = 1, it is useful to introduce the Pauli matrices
σi (i = 1, 2, 3):

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.9)

Recall that:
σiσj = δij12×2 + iεijkσk . (2.10)

We can then choose:

γ0 = −iσ2 =

(
0 −1
1 0

)
, γ1 = σ1 =

(
0 1
1 0

)
, γ3 = σ3 =

(
1 0
0 −1

)
. (2.11)

d = 4 and d = 5: For n = 2, we take the 4× 4 gamma matrices of so(1, 3) to be:

γ0 =

(
0 −1
1 0

)
, γi =

(
0 σi

σi 0

)
, (2.12)

with i = 1, 2, 3, and with 1 the 2× 2 identity matrix. We then have:

γ5 = iγ0γ1γ2γ3 =

(
1 0
0 −1

)
. (2.13)

Note that (2.12) is not the choice of the 4d γ-matrices that would follow from the
general construction (2.8) starting from (2.11). Instead, this is a particularly con-
venient choice of 4d γ matrices for later purposes. It corresponds to an equivalent
general construction with:

Γ0 = 12n×2n ⊗ (−iσ2) , Γi = γi ⊗ σ1 , Γ2n+2 = iγ0 ⊗ σ1 , (2.14)

up to a permutation of the spatial coordinates. Here, the index i runs over 1, · · · , 2n,
where i = 2n corresponds to the γ2n+1 matrix.

2.1.2 Euclidean signature

In the case (p, q) = (0, d) with d = 2n, with indices µ = 1, · · · , 2n, we similarly
define:

γ2n+1 ≡ (−i)nγ1γ1 · · · γ2n . (2.15)

This is the same matrix as in (2.7) provided that we take:

γ2n = iγ0 . (2.16)

Consider again the cases n = 1 and n = 2:

d = 2 and d = 3. In Euclidean signature, we now simply have:

γi = σi . (2.17)
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d = 4 and d = 5. In this case, we have the so(4) gamma matrices:

γi =

(
0 σi

σi 0

)
, γ4 =

(
0 −i1
i1 0

)
(2.18)

and the γ5 matrix is:

γ5 = −γ1γ2γ3γ4 =

(
1 0
0 −1

)
. (2.19)

2.2 Spinors in 4d

In these lectures, we will focus on d = 4 in Lorentzian signature.

2.2.1 Weyl spinors

From the explicit gamma matrices (2.12), it is easy to see that the Dirac spinor
representation is reducible. We use the projector:

P± =
1

2
(1± γ5) , (2.20)

which commutes with the 4d gamma matrices, to decompose Dirac spinors Ψ =
(Ψa), with Dirac indices a = 1, · · · , 4, into Weyl spinors:

Ψ =

(
ψα
χ̄α̇

)
. (2.21)

Here, ψα, with α = 1, 2, denotes a so-called two-component left-handed Weyl
spinor. 12 It it a two-component complex vector, ψ ∈ C2, which sits in the fun-
damental representation 2 of Sl(2,C). The dotted index α̇ corresponds to the
conjugate representation 2̄; the corresponding right-handed Weyl spinor is denoted
by ψ̄α̇, with:

(ψα)∗ = ψ̄α̇ , (ψα)† = ψ̄α̇ . (2.22)

Note that undotted (α) lower indices are row index, while undotted upper indices
are column index, while the dotted (α̇) index follow the opposite convention—upper
dotted indices are row index, as is apparent in (2.21), and lower dotted indices are
column indices.

It is useful to note that Sl(2,C) can be viewed as:

SL(2,C) ∼= SU(2)× SU(2)∗ , (2.23)

where the two SU(2) factors are exchanged under complex conjugation, as we will
discuss further in the exercises. A spinorial representation of so(1, 3) can then be
denoted by (j, k), with j, k ∈ 1

2Z the SU(2) spins, and with (j, k)∗ = (k, j) the

12The terminology “left-handed” or “right-handed” in this context in somewhat imprecise, albeit
standard. The more correct terminology is to simply call P±Ψ the (left- or right-) chiral fermions.
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conjugate representation. A left-handed Weyl spinor ψ sits in a representation
(1

2 , 0) and its conjugate, the right-handed Weyl spinor ψ̄, sits in (0, 1
2). The vector

representation corresponds to:

(
1

2
, 0)⊗ (0,

1

2
) = (

1

2
,
1

2
) . (2.24)

Any other representation of so(1, 3) can be obtained by tensor products, which
follow from the tensor products of SU(2) representations. For instance,

(
1

2
, 0)⊗ (

1

2
, 0) = (1, 0)⊕ (0, 0) , (2.25)

where (1, 0) corresponds to a self-dual anti-symmetric tensor of so(1, 3).
The isomorphism between Spin(1, 3) and Sl(2,C) can be made explicit by in-

troducing the σ-matrices:

(σµ) = (σ0, σi) , with σ0 = −σ0 = −1 . (2.26)

We have:

σµXµ =

(
−X0 +X3 X1 − iX2

X1 + iX2 −X0 −X3

)
, (2.27)

for any 4-covector Xµ. We have the following index structure, following the con-
ventions of Wess and Bagger [1]:

σµαα̇ . (2.28)

In particular, we have the bi-spinor Xαα̇ = σµαα̇Xµ in (2.27), in agreement with
(2.24).

We lower and raise the α and α̇ indices with the anti-symmetric tensors εαβ and
εα̇β̇, defined by:

ε12 = −ε21 = 1 , ε12 = −ε21 = −1 , (2.29)

such that εαβε
βγ = δα

γ . Then:

ψα = εαβψβ , ψα = εαβψ
β , (2.30)

and similarly for the dotted indices. We then define the σ̄-matrices, with raised
indices:

σ̄µα̇α = εα̇β̇εαβσµ
ββ̇

. (2.31)

We can check that:
(σ̄µ) = (σ0,−σi) . (2.32)

Finally, we choose the following implicit notation for contraction of spinor indices:

ψχ ≡ ψαχα , χ̄ψ̄ ≡ χ̄α̇ψ̄α̇ . (2.33)

Note that, in these conventions,

(χψ)† = ψ̄χ̄ . (2.34)

We also have χψ = ψχ, for anticommuting spinors.
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2.2.2 Lorentz symmetry generators.

Note that the gamma matrices (2.12) read:

γµ =

(
0 σµ

−σ̄µ 0

)
, (2.35)

and therefore:

Mµν =
i

4
[γµ, γν ] = −i

(
σµν 0
0 σ̄µν

)
, (2.36)

where we defined the matrices:

σµν ≡ 1

4
(σµσ̄ν − σν σ̄µ) , σ̄µν ≡ 1

4
(σ̄µσν − σ̄νσµ) , (2.37)

with indices:

(σµν)α
β , (σ̄µν)α̇β̇ . (2.38)

Therefore, −iσµν and −iσ̄µν are the Lorentz group generators on left- and right-
handed Weyl spinors, respectively. Note the relations:

(σµσ̄ν + σν σ̄µ)α
β = −2ηµνδα

β ,

(σ̄µσν + σ̄νσµ)α
β = −2ηµνδα̇β̇ ,

(2.39)

which ensure that γµ satisfy the Clifford algebra. Finally, we should point out that:

iσ12 =
i

4
(σ1σ̄2 − σ2σ̄1) =

1

2
σ3 , (2.40)

which has eigenvalues ±1
2 . That corresponds to the usual J3 = −M12 spin in the

{x1, x2} plane.

2.2.3 Fierz identities

Given some Weyl spinors, we can write down various bilinears by contracting the
Weyl indices, such as:

ψχ , ψ̄σ̄µχ , ψσµχ̄ , · · · . (2.41)

In explicit computations, it is often necessary to use some non-obvious-looking
identities amongst spinor bilinears, such as, for instance:

(ψη)χ̄α̇ = −1

2
(ησµχ̄)(ψσµ)α̇ . (2.42)

Here, we assumed that the Weyl spinors ψ, η, χ̄ are also fermionic (that is, ψαηβ =
−ηβψα, etc.). Such identities are known as Fierz identities. We will study them in
a problem sheet.
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2.2.4 Majorana spinors

A Majorana spinor is a “real Dirac” spinor, of the form:

(Ψa) =

(
ψα
ψ̄α̇

)
. (2.43)

Recall that, by definition, Majorana fermions are their own anti-particle.

2.3 Spinors in 2d

The d = 2 case is useful for string theory. More generally, 2d QFTs, with or without
supersymmetry, are very interesting toy-models of more general QFT phenomena.

Two-dimensional Dirac spinors are two-component vectors, which we denote by
ψα. Using the projector:

P± =
1

2
(1± γ3) , (2.44)

we can decompose them into two one-component Weyl spinors, denoted by ψ±:

(ψα) =

(
ψ−
ψ+

)
. (2.45)

Note that, unlike in 4d, the two Weyl spinors are not related by complex conjuga-
tion. In Euclidean signature, Spin(2) = U(1), with the spinors having half-integer
charges. In this language, the 2d Weyl spinors ψ∓ have spin ±1

2 , respectively.

Further discussion of 2d spinors is left for the problem sheets.

3 Supersymmetry in various dimensions (but mostly
d = 4)

Given the above discussion of spinors, we are ready to write down super-Poincaré
algebras in various dimensions. Recall the Poincaré algebra, in any space-time
dimension d:

[Pµ, Pν ] = 0 ,

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ) ,

[Mµν ,Mρσ] = i (ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ) .

(3.1)

The supersymmetry generators, which we will denote by “Q” or “Q,” transform
as spinors under the Lorentz group. Given a supercharge Q in some irreducible
D-dimensional spinor representation S of so(1, d− 1), 13 this determines the com-
mutators:

[Pµ,Qa] = 0 , [Mµν ,Qa] = −(Mµν)a
bQb . (3.2)

13Or so(d), if we are interested in Euclidean signature.
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d spinor N max R-sym. NQ N SUSY
max N SUGRA

max

1 “Dirac” N = n SO(N ) N 16 32
2 Weyl N = (nL, nR) SO(nL)×SO(nR) nL + nR (8, 8) (16, 16)
3 Dirac N = n SO(N ) 2N 8 16
4 Weyl N = n U(N ) 4N 4 8

Table 1: Supersymmetry in d ≤ 4. Here, “spinor” denotes the irreducible so(1, d−1)
spinor representation in each dimension, and n ∈ N. We highlighted the case
d = 4, which will be our main object of study. We will briefly discuss the higher-
dimensional case, d > 4, at the end of this section.

Here, we wrote down explicitly the spinor indices a, b = 1, · · · , D. The constant
D × D matrix Mµν is the generator Mµν in the representation S. For a Dirac
spinor, it is given by (2.5).

The super-Poincaré algebras in d dimensions are labelled by a number:

N ∈ N , (3.3)

the number of distinct irreducible spinors QI (I = 1, · · · ,N ) amongst the genera-
tors. In dimensions 1 to 4, the types of supersymmetry are summarized in Table 1.
Note that, for d = 2, there can exist an independent number nL and nR of “left-
chiral” and “right-chiral” Weyl spinor supercharges, QI− with I = 1, · · · , nL and
QK+ with K = 1, · · · , nR.

In Table 1, NQ denotes the number of “real supercharges”—that is, effectively,
the number of independent supersymmetries. Many general aspects of supersym-
metric QFTs in various dimensions depend on NQ, essentially because the size of
the supermultiplets is determined by NQ, not N .

We also indicated Nmax in the Table, corresponding to NQ = 16. This is the
“maximal supersymmetry” in each dimension. This means the maximal amount
of supersymmetry that can be realised by interacting quantum field theories. For
higher N , we necessarily need to include gravity. Indeed, even with gravity, we
can only consider NQ ≤ 32. 14 Thus, for any d, there is a finite list of “physical”
supersymmetry algebras.

In addition to the commutators (3.1) and (3.2), the d-dimensional super-Poincaré
algebra consists of the anti-commutators amongst supercharges. Schematically, we
have:

{Qa,Qb} = CµabPµ + Zab . (3.4)

The second term in (3.4), Zab, is the central charge—that is, a generator of an “in-
ternal symmetry” which commutes with the full Poincaré symmetry. In particular,
Zab is a Lorentz scalar.

14 More on this later, and on the problem sheets.
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For any d and N , the right-hand-side of (3.4) can be fixed by consistency
with Lorentz invariance and the super-Jacobi identities. Let us define the super-
commutator:

[Oa,Ob} ≡ OaOb − (−1)εaεbObOa , (3.5)

where εa ∈ {0, 1} is the Z2 grading of Oa, the Jacobi identities of a super-algebra
read:

(−1)εcεa [[Oa,Ob},Oc}+ (−1)εaεb [[Ob,Oc},Oa}+ (−1)εbεc [[Oc,Oa},Ob} = 0 .

This can be used to constraint the form of (3.4). Indeed, using (3.2) and the Jacobi
identity, we must have:

[Pµ, {Qa,Qb}] = {[Pµ,Qa],Qb}+ {[Pµ,Qb],Qa} = 0 . (3.6)

and

[Mµν , {Qa,Qb}] = {[Mµν ,Qa],Qb}+ {[Mµν ,Qb],Qa}
= − (Mµν)a

c{Qb,Qc} − (Mµν)b
c{Qa,Qc} .

(3.7)

This implies that the commutator {Qa,Qb} can only give a linear combination of
the momentum operator Pµ and (possibly) a central charge—and the last identity
can be used to completely fix the structure constants Cµab.

3.1 R-symmetry

In a supersymmetric QFT, almost any internal continuous Lie group symmetry
commute with the super-Poincaré algebra. In particular, in any supermultiplet—to
be discussed below—all states must transform in the same representation (possibly
trivial) of any such internal symmetry. Such internal symmetries are often called
“flavor symmetries.” There is one important exception to this, known as an R-
symmetry.

Definition: An R-symmetry is an automorphism of the super-Poincaré algebra.

The maximal possible R-symmetry, for a given d ≤ 4 and N , is shown in Ta-
ble 1. This corresponds to the R-symmetry without central charges. Central charges
will generally break the R-symmetry explicitly to a subgroup of the maximal R-
symmetry.

Consider the supersymmetry generators QI , I = 1, · · · ,N . An R-symmetry
acts on the supercharges as:

[R,QIa] = −RI
J QIa , (3.8)

where R is a representation matrix of the R-symmetry group, while leaving the
supersymmetry algebra invariant. Note that R must commute with the Poincaré
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algebra (and, in particular, with so(1, d − 1)), in agreement with the Coleman-
Mandula theorem.

The actual R-symmetry of a given supersymmetric QFT depends on the details
of the theory. In general, only a subgroup (possibly trivial) of the maximal R-
symmetry is actually realised in a given QFT. For instance, in a theory defined
by a Lagrangian, the Lagrangian might not be invariant under the R-symmetry.
Even if the classical Lagrangian is R-symmetry invariant, one still has to check
whether the symmetry still holds quantum-mechanically. We will see examples of
this phenomenon in later lectures.

Since R has a non-trivial commutator with Q, the different components of a
supermultiplet will necessarily span different representations of the R-symmetry
group.

3.2 Minimal supersymmetry in 4d

Let us now, finally, consider in detail the supersymmetry algebra we will most
study: minimal supersymmetry in four dimensions, also known as 4d N = 1 super-
symmetry. There are four real supercharges, NQ = 4, which fill out one complex
Weyl spinor Qα, and its conjugate Q̄α̇. The supersymmetry algebra reads:

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ , {Qα, Qβ} = 0 , {Q̄α̇, Q̄β̇} = 0 , (3.9)

Of course, we also have:

[Pµ, Qα] = 0 , [Pµ, Q̄α̇] = 0 , (3.10)

and:
[Mµν , Qα] = i(σµνQ)α , [Mµν , Q̄α̇] = −i(Q̄σ̄µν)α̇ . (3.11)

This, together with the bosonic Poincaré algebra (3.1)̈ı¿1
2 itself, gives the full 4d

N = 1 supersymmetry algebra.

Note that the structure of the RHS of (3.9) is consistent with the decomposition
(2.24) . Note that we also have (2.25), which imply that {Qα, Qβ} could be given
by the sum of a spin-(1, 0) (self-dual antisymmetric tensor) and of a scalar. This
could only be:

{Qα, Qβ} = MαβY + εαβZ , (3.12)

where Mαβ is the so(1, 3) generator written as a bi-spinor, and Y and Z are con-
stants. From (3.6), one can see that Y = 0; we must also have Z = 0 since the LHS
is symmetric in (α↔ β).

3.2.1 R-symmetry U(1)R

The maximal R-symmetry of 4d N = 1 supersymmetric theories is the abelian
group U(1)R. It acts on the supercharges as:

Qα → e−iαQα , Q̄α̇ → eiαQ̄α̇ . (3.13)
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This clearly leaves the supersymmetry algebra (3.9) invariant. In other words, we
assign U(1)R charges −1 and +1 to Qα and Q̄α̇, respectively. We have:

[R,Qα] = −Qα , [R, Q̄α̇] = Q̄α̇ . (3.14)

Thus, acting on a state |Ω, r〉 of non-zero R-charge r ∈ R with Qα, we decrease the
R-charge by 1 unit:

Qα|Ω; r〉 ∼ |Ω′; r − 1〉 , (3.15)

and similarly Q̄α̇ increases the R-charge by 1 unit.
At this point, the R-symmetry might look like a curiosity, but it will play an

important role in the discussion of the dynamics of actual 4dN = 1 supersymmetric
theories, later on.

3.2.2 Supermultiplets: Massive representations

In QFT, essentially by definition, a “particle” is an irreducible finite-dimensional
unitary representation of the Poincaré algebra. Using Wigner’s induced represen-
tation method, one labels particle states by their mass and spin (for a “massive
particle”) or by their energy and helicity (for a “massless particle”).

Let us define:

Wµ =
1

2
εµνρσPνMρσ , (3.16)

the Pauli-Ljubanski pseudovector. One can show that:

C1 = PµP
µ , C2 = WµW

µ , (3.17)

are Casimir operators of the Poincaré algebra—that is, they commute with every
Poincaré generator. In fact, they are the only two Casimir operators of ISO(1, 3).
For massive particles, they define the mass and spin, respectively.

Consider then a massive particle of energy-momentum Pµ = pµ, for which we
have C1 = −M2 < 0. We can go to the rest frame,

pµ = (M, 0, 0, 0) . (3.18)

Then, particle are classified in terms of finite-dimensional unitary representations
of the “little group” that leaves (3.18) invariant, namely SO(3). We then have:

Wµ = (0,W i) , W i = −MJ i , with J i ≡ −1

2
εijkMjk , (3.19)

where J i are the SO(3) spin operator, satisfying:

[J i, J j ] = iεijkJk . (3.20)

Therefore, we have the massive particles classified by their mass M and their spin
j ∈ 1

2Z:
C1 = −M2 , C2 = M2JiJ

i = M2j(j + 1) . (3.21)
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Let us now build the supermultiplets, which are collections of one-particle states
that form representation of the super-Poincaré algebra. Since we obviously have:

[C1, Qα] = [PµP
µ, Qα] = 0 , [C1, Q̄α̇] = [PµP

µ, Q̄α̇] = 0 , (3.22)

all particles in a supermultiplet have the same invariant mass, M2. In other words,
C1 is a Casimir the full super-Poincaré algebra. This is not the case of C2, on the
other hand.

Note that J i acts as:

[J i, Qα] = −1

2
(σi)α

β
Qβ , [J i, Q̄α̇] =

1

2
Q̄β̇(σi)β̇ α̇ , (3.23)

on the supercharges, in term of the Pauli matrices σi. In particular:

[J3, Qα] =
(−1)α

2
Qα , [J3, Q̄α̇] = −(−1)α

2
Q̄α̇ , (3.24)

for the four supercharges, where α = 1, 2 and α̇ = 1, 2.

At fixed mass M2, a representation of the Poincaré group is a representation of
SO(3)—more precisely, of the spin group Spin(3) = SU(2), since the spin can be
half-integer. The spin-j representation consists of 2j + 1 states:

|j〉 =
{
|j,m〉 , m = −j,−j + 1, · · · , j − 1, j

}
. (3.25)

In the rest frame (3.18), the supersymmetry algebra (3.9) reads:

{Qα, Q̄β̇} = 2Mδαβ̇ , (3.26)

with all other anticommutators vanishing. Defining the annihilation and creation
fermionic operators aα = 1√

2M
Qα and a†α = 1√

2M
Q̄α̇ (with α = α̇), respectively, we

have:

{aα, a†β} = δαβ . (3.27)

Note that:

[J3, a†1] =
1

2
a†1 , [J3, a†2] = −1

2
a†2 , (3.28)

so that, while J3|j,m〉 = m|j,m〉,

J3a†1|j,m〉 = (m+
1

2
)a†1|j,m〉 , J3a†2|j,m〉 = (m− 1

2
)a†2|j,m〉 . (3.29)

In fact, acting on a spin-j set of states |j〉 with a†α, we obtain the spin j + 1
2 and

j − 1
2 representations, since a†α carries spin 1

2 :

j ⊗ 1

2
= (j +

1

2
)⊕ (j − 1

2
) , (3.30)
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assuming j > 0. (In the spin-zero case, j = 0, we simply have a single spin-1
2

representation.) More explicitly, we can build the states:∣∣∣∣j ± 1

2
,m

〉
= C 1

2
,j

(
j ± 1

2
,m;

1

2
,m− 1

2

)
a†1

∣∣∣∣j,m− 1

2

〉
+ C 1

2
,j

(
j ± 1

2
,m;−1

2
,m+

1

2

)
a†2

∣∣∣∣j,m+
1

2

〉
,

(3.31)

with C 1
2
,j the Clebsh-Gordan coefficients for coupling a spin j to a spin 1

2 . Acting

with two creation operator, we obtain the states:

εαβa†αa
†
β|j,m〉 , (3.32)

of the same spin that we started with. Thus, the massive supermultiplet has the
schematic form:

|j〉 , a†|j〉 ∼ |j +
1

2
〉 ⊕ |j − 1

2
〉 a†a†|j〉

dof : 2j + 1 , (2j + 2)⊕ (2j) , 2j + 1 .
(3.33)

Here we indicated the number of degree of freedom at each level. As expected, we
have as many bosons as fermion (namely, 4j + 2). Let us consider some examples:

Massive chiral multiplet. Consider the spin-zero case, j = 0. Then, we have
two scalar bosons and a spin-1

2 fermion:

bosons: |0〉 , a†1a
†
2|0〉 ,

fermions: a†α|0〉 ∼ |
1

2
〉 ,

(3.34)

giving us two bosonic and two fermionic one-particle states. There is thus 4 states
in total, in agreement with the discussion around (1.57).

Massive vector multiplet. This multiplet starts with j = 1
2 , which is fermionic.

We then have:

bosons: a†α|
1

2
〉 ∼ |1〉 ⊕ |0〉 ,

fermions: |1
2
〉 , a†1a

†
2|

1

2
〉 .

(3.35)

Thus, this multiplet contains an SO(3) vector and a scalar, as well as two spin-1
2

fermions.

3.2.3 Supermultiplets: Massless representations

Let us now consider massless representations of the supersymmetry algebra, such
that C1 = −PµPµ = 0. We can choose a frame such that:

pµ = (E, 0, 0, E) . (3.36)



3.2 Minimal supersymmetry in 4d 31

Recall that massless particles are indexed by their energy E, which we assume to be
positive, and by their helicity, which is a representation of the little group SO(2).
More precisely, the helicity λ ∈ 1

2Z is a representation Spin(2), a double cover of
SO(2) = U(1). 15

Plugging in Pµ = (−E, 0, 0, E) in the supersymmetry algebra (3.9), we obtain:

{Q1, Q̄1̄} = 4E , {Q2, Q̄2̄} = 0 , (3.37)

and all other anticommutators vanishing. Thus, we define a1 = 1
2
√
E
Q1, a†1 =

1
2
√
E
Q̄1̇, and we have a single pair of fermionic creation and annihilation operators:

{a1, a
†
1} = 1 . (3.38)

The helicity operator corresponds to J3 = −M12, the rotation in the (x1, x2) plane,
with:

J3|E, λ〉 = λ|E, λ〉 , (3.39)

by definition. We have:

[J3, a†1] =
1

2
a†1 , [J3, a1] = −1

2
a1 , (3.40)

Using the fact that {Q2, Q̄2̇} = 0, one can check that:

Q2|E, λ〉 = 0 , (3.41)

on any state. Thus, the supermultiplets consists of pairs of states:

|E;λ〉 , a†1|E;λ〉 = |E;λ+
1

2
〉 . (3.42)

Massless chiral multiplet. One of the most important example is the chiral
multiplet, for λ = 0. It consists of a scalar boson and a massless λ = 1

2 fermion:

boson : |E; 0〉 , fermion : |E;
1

2
〉 = a†1|E; 0〉 . (3.43)

A λ = ±1
2 particle is a massless Weyl fermion, which is left-chiral (ψα) or right-

chiral (ψ̄α̇), respectively. In a QFT, every particle must be accompanied by its
CPT conjugate, by CPT invariance. We will often write “chiral multiplet” for the
λ = 1

2 supermultiplet that contains ψα, while the CPT conjugate that contains ψ̄α̇

is called “the anti-chiral multiplet:”

boson : |E; 0〉 , fermion : |E;−1

2
〉 = a1|E; 0〉 . (3.44)

On the other hand, it is also common to just refer to the CPT-invariant pair of
both multiplets as “the chiral multiplet.”

15The full little group on the light-cone is the double cover of ISO(2), but the finite-dimensional
representations just correspond to representations of the compact subgroup Spin(2).
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Massless vector multiplet (a.k.a. gauge multiplet). Starting with λ = 1
2 ,

we obtain the pair:

boson : |E; 1〉 = a†1|E;
1

2
〉 , fermion : |E;

1

2
〉 . (3.45)

The λ = 1 particle, together with its CPT conjugate with λ = −1, give us a massless
vector, which necessarily has some gauge invariance. Thus, a massless vector mul-
tiplet (generally just called “vector multiplet”) contains a four-dimensional gauge
field Aµ. Its fermionic superpartner, generally denoted by λα, λ̄

α̇, is called the
“gaugino”.

Supergravity multiplet. If we take λ = 3
2 and its CPT conjugate, we get the

states:

fermion : |E;±3

2
〉 , boson : |E;±2〉 . (3.46)

A massless particle of helicity |λ| = 2—in other words, a spin-2 massless particle—
is a graviton—it can only appear in a supersymmetric theory of gravity, known as
a supergravity. The superpartner of the graviton, of helicity 3

2 , is a fermion called
the gravitino.

3.3 Non-minimal supersymmetry in 4d

Non-minimal supersymmetry in 4d means that we have N > 1 Weyl spinors QIα,
and their complex conjugates Q̄Iα̇. The supersymmetry algebra takes the form:

{QIα, Q̄β̇J} = 2σµ
αβ̇
Pµ δ

I
J ,

{QIα, QJβ} = εαβ Z̄
IJ ,

{Q̄α̇I , Q̄β̇J} = εα̇β̇ ZIJ ,

(3.47)

with I = 1, · · · ,N . Here, there is the possibility of a non-trivial complex central
charges ZIJ , with:

ZIJ = −ZJI . (3.48)

By a Hermitian transformation of the supercharges, we can always bring ZIJ to a
canonical block-diagonal form, where each block is a 2× 2 anti-symmetric matrix.
For N = 2, we take:

ZIJ = 2εIJZ , (3.49)

with a single complex central charge, denoted by Z.

3.3.1 Massless multiplets

With N > 1, let us focus on the massless multiplets, for simplicity. From the fact
that QI2 and QI

2̇
are realised trivially on such massless states, as in the N = 1
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case, we find that the central charges must also vanish, i.e. ZIJ = 0, on massless
multiplets. We then simply have:

{QI1, Q̄1̇J} = 4EδIJ , (3.50)

with all the other anticommutators vanishing. We thus have N pairs of helicity-
lowering and raising operators:

aI =
1

2
√
E
QI1 , a†I =

1

2
√
E
Q̄1̇I , {aI , a†J} = δIJ . (3.51)

Starting from a state |E;λ〉 of helicity λ, we obtain the states:

a†I1 · · · a
†
Ik
|E;λ〉 ∼ |E;λ+

k

2
〉 , (3.52)

with k running from 0 to N . Thus, an extended supersymmetry multiplet takes
the form:

|E;λ〉 , N ×|E;λ+
1

2
〉 , · · ·

(
N
k

)
×|E;λ+

k

2
〉 , · · · , |E;λ+

N
2
〉 . (3.53)

Any such extended massless multiplet spans helicities λ to λ+ 1
2N . If −λ 6= λ+ N2 ,

we also need to add the CPT conjugate supermultiplet.

In the case N even, N = 2n, the minimal helicity in a supermultiplet is:

|λmax| =
1

4
N =

n

2
, (3.54)

with helicities λ = {−N4 ,
N
4 + 1

2 , · · · ,
N
4 −

1
2 ,
N
4 }, which is CPT invariant. For any

other multiplets, for any N , we also need to add the CPT conjugate multiplet in
any physical theory.

Rigid supersymmetry and supergravity. Massless particles of helicity |λ| > 1
2

are associated to gauge symmetries:

|λ| = 1 ↔ Lie group gauge theory (“local” symmetry G) ,

|λ| = 3

2
↔ local supersymmetry ,

|λ| = 2 ↔ gravity (local Poincaré) ,

|λ| > 2 ↔ higher-spin theories—always free.

(3.55)

For gauge theories, this is the statement that the Lagrangian of a free massless
vector field has a invariance:

Aµ(x)→ Aµ(x) + ∂µα(x) , (3.56)
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for any function α(x)—here, we consider the Abelian case, G = U(1), for simplicity.
Equivalently, the so-called gauge field Aµ couples to a conserved current:

SAj =

∫
d4xAµj

µ : S → S +

∫
d4x∂µαj

µ = S −
∫
d4xα∂µj

µ = S . (3.57)

We will come back to gauge theories, and to the |λ| > 1 generalization, later in
the lectures. For now, we would just like to point out that theories with massless
particles of helicity |λ| = 3

2 or |λ| = 2 necessarily involve gravity. Indeed, an helicity
2 massless particle is a graviton; moreover, we claim that an helicity 3

2 massless
particle, called a gravitino, is necessarily paired with a graviton in a consistent field
theory. The rough idea is that the gravitino couples to a supersymmetry current,
while the graviton couples to the energy-momentum tensor; but, per the structure
of the supersymmetry algebra, we cannot have “local supersymmetry” without also
having “local super-Poincaré”—that is, supergravity.

Supersymmetric theories without massless particles of helicity |λ| > 1 are called
rigid supersymmetric theories—we can just keep calling them supersymmetric the-
ories, for short.

Any supersymmetric theory with a graviton and gravitinos is called a super-
gravity.

Theories with massless particles of helicities |λ| > 2 are called higher-spin the-
ories. It is known that such theories are either free, or must contain an infinite
tower of particles of essentially every spin. This is a rather esoteric subject, and we
will not mention it again.

Thus, if we are interested in rigid supersymmetry only, there is a finite list of
4d supersymmetries:

N = 1, 2, 3, 4 . (3.58)

Four-dimensional 4d N = 4 theory is known as maximally supersymmetric Yang-
Mills (SYM) theory. From our discussion above, we easily understand that it must
be a gauge theory—i.e. a Yang-Mills (YM) theory, since there is only one possible
multiplet in the case, with |λmax| = 1.

If we are interested in supergravity, we can consider supergravities with:

N = 1, 2, · · · , 7, 8 . (3.59)

In particular, 4d N = 8 supersymmetry is called maximal supergravity in four
dimensions. It has is a unique massless multiplet with |λmax| = 2.

We will study extended supermultiplets further in a problem sheet.

3.3.2 R-symmetry

The maximal R-symmetry of 4d extended supersymmetry is U(N ), with (QI)
transforming in the fundamental representation, and (Q̄I) transforming in the anti-
fundamental representation.
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In particular, in the rigid-supersymmetry case, the maximal R-symmetry of 4d
N = 2 theories is U(2)R ∼= U(1)r × SU(2)R. The maximal R-symmetry of 4d
N = 4 supersymmetry is U(4), but the actually realized symmetry in N = 4 SYM
is SU(4) ∼= SO(6).

3.4 Supersymmetry in 3d

Supersymmetry in 3d, in Lorentzian signature, can be discussed similarly. The
irreducible spinor of SO(1, 2) is the Dirac spinor ψα, where the spinor index takes
values α = 1, 2.

Consider the γ matrices as in (2.11), namely:

(γµ)α
β = (−iσ2, σ1, σ3)α

β
, (3.60)

with µ = 0, 1, 2. We may raise and lower the spinor indices with εαβ and εαβ, as
for Weyl spinors in 4d. They satisfy:

γµγν = ηµν − εµνργρ , (3.61)

with ε012 = 1. Therefore, the so(1, 2) matrices in the spinor representation are:

Mµν = − i
2
εµνργ

ρ . (3.62)

The supersymmetry generators are real Dirac spinor supercharges QIα, and the
supersymmetry algebra must take the form:

{QIα, QJβ} = 2γµαβPµδ
IJ + εαβZ

IJ . (3.63)

We leave it as an exercise for the reader to check this, using the Jacobi identity; the
overall constant can be chosen at will, by rescaling the QI ’s. The possible central
charges are antisymmetric, ZIJ = −ZIJ .

The most well-studied supersymmetric d = 3 QFTs are with N is even. Then,
we can organise the supercharges into complex Dirac spinors, similarly to (1.52). In
particular, for N = 2, we define:

Qα = Q1
α + iQ2

α , Q̄α = Q1
α − iQ2

α . (3.64)

The 3d N = 2 superalgebra is closely related to the 4d N = 1 superalgebra. (We
will make this more precise in an exercise.)

3.5 Supersymmetry in 2d

Supersymmetry in 2d can be discussed similarly. We leave this as an exercise.
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d spinor N max R-sym. NQ N SUSY
max N SUGRA

max

1 “Dirac” N = n SO(N ) N 16 32
2 Weyl N = (nL, nR) SO(nL)×SO(nR) nL + nR (8, 8) (16, 16)
3 Dirac N = n SO(N ) 2N 8 16
4 Weyl N = n U(N ) 4N 4 8
5 Dirac N = n Sp(N ) 8N 2 4
6 Weyl N = (nL, nR) Sp(nL)×Sp(nR) 8(nL+nR) (1, 1) or (2, 0) nL+nR = 4
7 Dirac N = n Sp(N ) 16N 1 2
8 Weyl N = n U(N ) 16N 1 2
9 Dirac N = n SO(N ) 16N 1 2
10 Weyl N = (nL, nR) SO(nL)×SO(nR) 16(nL+nR) (1, 0) (1, 1) or (2, 0)
11 Dirac N = n SO(N ) 64N 0 1

Table 2: Supersymmetry in 1 ≤ d ≤ 11. There is no rigid supersymmetry beyond
d = 10, and no supergravity beyond d = 11.

3.6 Supersymmetry in higher dimensions

Let us give a very brief overview of supersymmetry in space-time dimensions d > 4.
We list the types of supersymmetry up to d = 11 in Table 2.

We may focus on the general structure of the massless supermultiplets, similarly
to the d = 4 case discussed above. Let us just state two important results:

• There is a maximal dimension in which one can have rigid supersymmetry,
namely d = 10. The corresponding 10d N = (1, 0) SYM is closely related to
4d N = 4 SYM.

• The maximal dimension in which one can have a supergravity (λ ≤ 2) is
d = 11. The corresponding unique supergravity theory is simply called 11d
SUGRA.

• There are also two types of maximal superrgavities in d = 10, called type
IIA and type IIB, which have N = (1, 1) and N = (2, 0) supersymmetry,
respectively.

These maximally supersymmetric theories appear prominently in string theory—
in particular, IIA/B supergravity is the low-energy limit of the ten-dimensional
type-IIA/B superstring. On the other hand, 11d SUGRA is thought to be the low-
energy limit of a conjectured theory of quantum gravity in 11 dimensions, called
M-theory.
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4 Supermultiplets, superfields, and superspace

4.1 Representing supersymmetry on fields

In a QFT, we would like to realise supersymmetry explicitly on fields—namely, some
functions of the space time coordinates, ϕ(x), which may also transform in some
non-trivial representations of the Lorentz group—, not only on one-particle states.
Moreover, if at all possible, we would like to realise the supersymmetry algebra
off-shell—that is, without the need to impose the equations of motion of fields (in
fact, without the need of specifying the equations of motions, or equivalently the
Lagrangian).

We are familiar with the way the Poincaré algebra is realised on fields. In
particular, the momentum operator Pµ is simply realised as:

Pµ = −i∂µ , (4.1)

acting on fields of any spin. On a classical field, it acts as:

eia
µPµϕ(x) = ϕ(x+ a) . (4.2)

This is equivalent to:

e−ia
µPµϕ(x)eia

µPµ = ϕ(x+ a) ⇔ [Pµ, ϕ] = −Pµϕ , (4.3)

for the corresponding field operator.

Similarly, we would like to realise the supersymmetry algebra on fields, with
explicit transformations such as:

[Qα, φ] = ψα , [Qα, ψβ] = ϕαβ , · · · , (4.4)

for instance, for 4d N = 1 supersymmetry. (In this schematic example, φ and ϕαβ
are bosonic fields, and ψα is a fermionic field.) We would like to find supersym-
metry transformations as in (4.4) which close on a set of fields (φ, ψ, ϕ, · · · )—the
supermultiplet—and which realise explicitly the supersymmetry algebra (by defini-
tion).

In any dimension d, we denote the action of supersymmetry on the fields by:

δ = iεaQa , (4.5)

where ε are supersymmetry parameters, which we choose to be anti-commuting. For
4d N = 1 supersymmetry, we have:

δ = δε + δε̄ , (4.6)

with:

δε ≡ iεQ = iεαQα , δε̄ ≡ iε̄Q̄ = −iε̄α̇Q̄α̇ , (4.7)
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where the supersymmetry parameters are constant, anti-commuting Weyl spinors,
εα and ε̄α̇. Since the supersymmetry parameters are chosen to be fermionic, the
variations themselves are bosonic operators.

(Note: The variations δε and δε̄ are not independent, since εQ and ε̄Q̄ are
Hermitian conjugate of each other. Nonetheless, for all intents and purposes, we
can treat the parameters ε and ε̄ as independent. This is effectively what we do
below.)

The supersymmetry variations should satisfy the supersymmetry algebra, namely:

[δε, δε̄] = −2(εσµε̄)Pµ , [δε1 , δε2 ] = 0 , [δε̄1 , δε̄2 ] = 0 . (4.8)

In principle, one can try and work out the supersymmetry transformations for the
most general supermultiplet, by writing down the most general transformations on
fields allowed by Lorentz covariance, and then fixing all the coefficients by requiring
that the variations satisfy (4.8). In the following, we present the result of this
procedure for the off-shell chiral multiplet, the simplest supermultiplet of 4d N = 1
supersymmetry.

4.1.1 The chiral multiplet, off-shell

A 4d N = 1 chiral multiplet consists of the fields:

Φ = (φ, ψα, F ) , Φ̄ = (φ̄, ψ̄α̇, F̄ ) . (4.9)

Here, Φ and Φ̄ are CPT-conjugate of each other. They are often called the ‘chiral
multiplet’ and the ‘anti-chiral multiplet,’ respectively. The corresponding on-shell
multiplets were discussed in the previous section. In the massive case, we have
a spin-1

2 fermion and its complex conjugate, giving two real degrees of freedom;
in the massless case, we have an helicity |λ| = 1

2 fermion, again giving us two
real degrees of freedom. In all cases, we also have two bosonic particles which
are Lorentz scalars. Those bosons are accounted for by the complex scalar field φ
in (4.9). 16 On the other hand, the fermionic particles should correspond to the
Weyl spinor field ψ, ψ̄. Since a Weyl spinor ψα has four real degrees of freedom
off-shell (but only two real degrees of freedom on-shell!), we should add (by hand)
two real bosonic degrees of freedom in the off-shell description, to maintain the
fermion-boson degeneracy. These so-called auxiliary fields are scalar fields denoted
by F , F̄ in (4.9). They are called ‘auxiliary’ because their equations of motion are
algebraic (and therefore they can be eliminated from the description by imposing
those equations of motions).

16As a side comment, we should note that the two real scalars A and B in the complex scalar
φ = A+ iB are really a scalar and a pseudo-scalar, respectively. (That B is a pseudo-scalar means
that it changes sign under a parity transformation.) Indeed, the scalar εαβa†1a

†
2|0〉 in (3.34) is

really a pseudo-scalar, if |0〉 is a proper scalar (the telltale sign, as always, is the presence of the ε
symbol). In other words, parity maps the multiplet Φ to Φ̄, as is clear at the level of the fermions.
We refer to Weinberg’s book [2] for a detailed account of parity in supersymmetric theories; in
these lectures, we are not keeping track explicitly of the discrete symmetries.
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The supersymmetry transformations of the chiral multiplet Φ reads:

δφ =
√

2εψ ,

δψα = i
√

2(σµε̄)α∂µφ+
√

2εαF ,

δF = i
√

2ε̄σ̄µ∂µψ .

(4.10)

One can easily check that this realises the supersymmetry algebra (4.8). For future
convenience, we take the following convention for two successive variations of a field
ϕ (of any spin):

δ1δ2ϕ = δ2(δ1ϕ) . (4.11)

For instance:

[δε1 , δε2 ]φ =
√

2(ε1δε2ψ − ε2δε1ψ) = 2(ε1ε2 − ε2ε1)F = 0 . (4.12)

Similarly, we can check:

[δε, δε̄]φ =
√

2εδε̄ψ = 2iεσµε̄∂µφ . (4.13)

This indeed realises (4.8), with Pµ = −i∂µ. We also have:

[δε, δε̄]ψα =
√

2εαδε̄F − i
√

2(σµε̄)α∂µ(δεφ)

= 2iεα(ε̄σ̄µ∂µψ)− 2i(σµε̄)α ε∂µψ

= 2iεσµε̄∂µψα .

(4.14)

Here, to go from the second to the third line, we used the non-trivial Fierz identity:

εα(ε̄σ̄µψ)− (σµε̄)αεψ = (εσµε̄)ψα .

One can check the remaining anti-commutators (4.8), acting on the fields φ, ψ and
F , in a similar manner. (The reader is encouraged to do so.)

Similarly, the transformations rules for the anti-chiral multiplet, Φ̄, are:

δφ̄ =
√

2ε̄ψ̄ ,

δψ̄α̇ = i
√

2(σ̄µε)α̇∂µφ̄+
√

2ε̄α̇F̄ ,

δF̄ = i
√

2εσµ∂µψ̄ .

(4.15)

One can then write down supersymmetric Lagrangians for chiral multiplets. The
simplest one is:

Lkin = −∂µφ̄∂µφ− iψ̄σ̄µ∂µψ + F̄F . (4.16)

This is the sum of the canonical kinetic terms for the scalar and Weyl fermion,
respectively, plus a trivial “kinetic term” for the auxiliary field F . (Exercise: check
explicitly that this is supersymmetric!) More interestingly, we can introduce inter-
action terms coupling the bosons to the fermions. For instance, the term:

Lcubic = g0(Fφ2 − ψψφ) + ḡ0(F̄ φ̄2 − ψ̄ψ̄φ̄) , (4.17)
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is supersymmetric, for any complex coupling constant g0. Indeed, using (4.10) we
easily check that:

δ(Fφ2 − ψψφ) = ∂µ

(
i
√

2ε̄σ̄µψφ2
)
, (4.18)

and similarly for the complex conjugate term. Considering:

L = Lkin + Lcubic , (4.19)

and “integrating out” the auxiliary fields F by using their equations of motion, we
find:

L = −∂µφ̄∂µφ− iψ̄σ̄µψ − V , (4.20)

with the potential:

V = |g0|2|φ|4 + g0ψψφ+ ḡ0ψ̄ψ̄φ̄ . (4.21)

Thus, we find a simple supersymmetric φ4 model with Yukawa couplings, where the
coupling constants are related as shown—this exact relation between a priori very
different coupling constants is the hallmark of supersymmetry, and one technical
reason why it is so powerful. We will come back to this class of models (known
as Wess-Zumino models, historically the first 4d N = 1 models to be studied)
after we introduce some more powerful technology for constructing supersymmetric
Lagrangians.

4.2 Superspace (4d N = 1)

The procedure just outlined to realise supersymmetry on fields, known as “super-
symmetry in components,” is perfectly fine, but one can do a bit better. The
formalism of superspace, which we will now describe, allows us to work with super-
multiplets more efficiently, in a way which is essentially covariant with respect to
the super-Poincaré algebra.

4.2.1 Coset manifolds

Let us start with a mathematical digression, by reviewing the general construction
of coset manifolds for Lie groups, and the resulting induced action of the group on
the coset.

Consider a Lie group G with a subgroup H ⊂ G. At the level of the Lie algebra,
g = Lie(G) and h = Lie(H), we have the direct sum:

g ∼= h⊕ K , (4.22)

where K is the complement of h inside g. Let TA denote the generators of g, with:

[TA, TB] = iCAB
CTC , (4.23)

and the indices A,B, · · · = 1, · · · , dim(g). Let us split the generators of TA into
generators of h and K, respectively:

(TA) = (MI ,Ka) , MI ∈ ih , Ka ∈ iK (4.24)
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with the indices I = 1, · · · , dim(h) and a = 1, · · · , dim(K). We then write general
group elements g ∈ G and h ∈ H as:

g = eiε
ATA = eiω

IMI+iαaKa , h = eiω̃
IMI , (4.25)

with εA = (ωI , αa) and ω̃I some real coefficients. The coset manifold:

M = G/H , (4.26)

is defined as the set of equivalence classes under right multiplication by H:

M∼= G/ ∼ , with g ∼ g′ iff ∃h ∈ H | gh = g′ . (4.27)

To obtain a good manifold, we assume that the coset is reductive, meaning that:

[h,K] ⊂ K . (4.28)

Furthermore, if we also have:
[K,K] ⊂ h , (4.29)

the coset manifold is a symmetric space. In terms of the Lie algebra generators, we
thus have:

[MI ,MJ ] = iCIJ
KMK ,

[MI ,Ka] = iCIa
bKb ,

[Ka,Kb] = iCab
cKc + iCab

IMI ,

(4.30)

with Cab
c = 0 for a symmetric space. Let us denote by x(y) the points in (4.27),

with y some local coordinates on the manifoldM. In the following, we will consider:

x(y) = e−iy
aKa ∈ G , (4.31)

as representatives of the equivalence classes that define M; in the examples we
consider, ya form a natural set of coordinates on the coset. In general, one could
choose any convenient set of coordinates y on M.

Given this coset construction, there is an induced action of G on M (with G
acting from the left). Indeed, for any g ∈ G, we should have: 17

g−1x(y) = x(y′)h(g, y) , (4.32)

for some h(g, y) ∈ H, which generally depends on the coordinate y and the group
element g. In explicit computations, we will need to use the Baker-Campbell-
Hausdorff formula:

eAeB = eA+B+ 1
2

[A,B]+··· , (4.33)

for the product of exponentiated generators (there is an infinity of terms on the
RHS, but we will just need the first non-trivial one).

17We act with g−1 instead of g for later convenience; this is just a convention.
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The relation (4.32) implies a transformation g : y → y′ on the coordinates on
M. At first order around the identity in g, we find:

g ∼= 1 + iεATA , y′
a ∼= ya + εAkaA(y) , (4.34)

for some functions kaA(y). Then, the differential operators:

TA ≡ −ikaA(y)
∂

∂ya
, (4.35)

realise the algebra g on scalar fields Φ(y)—that is, functions—on the coset manifold
M. 18 Note that the infinitesimal action of:

g−1 = g−1
1 g−1

2 g1g2 , (4.36)

on ya induced by (4.32), using the expansion (4.34), is:

g−1 · ya ≡ y′a = ya + εA1 ε
B
2 (kbA∂bk

a
B − kbB∂bkaA) = ya− εA1 εB2 [TA,TB]a + · · · , (4.37)

where we used the short-hand notation ∂a ≡ ∂
∂ya .

Note on conventions. We are using conventions in which the action of G on
(classical) fields is defined to be:

U(g)Φ(y) = (1 + iεATA + · · · )Φ(y) = Φ(y′) , (4.38)

which is sometimes called a “passive transformation,” with:

U(g) = eiε
ATA , (4.39)

some explicit representation of the group. Correspondingly, for a quantum-mechanical
operator Φ(y) on M, we have:

U(g)†Φ(y)U(g) = Φ(y′) , (4.40)

with U(g) = eiε
ATA a G-valued operator. We then have:

U(g)†Φ(y)U(g) = Φ(y)(y)− i[TA,Φ(y)] + · · · , (4.41)

and:
[TA,Φ] = −TAΦ , (4.42)

where TA is a particular representation of TA on the field Φ in terms of differential
operators. The minus sign in the RHS (4.42) is necessary for consistency with the
Jacobi identity:

[[TA, TB],Φ] = [TA, [TB,Φ]]− [TB, [TA,Φ]] , (4.43)

since [TA, [TB,Φ]] = TBTAΦ.

18Moreover, the coset manifold has a natural metric gM induced from the Killing metric on G,
and one can show that the real vector fields:

KA = iTA = kaA(y)
∂

∂ya
,

are Killing vectors of the pseudo-Riemannian manifold (M, gM).
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4.2.2 Minkowski space as a coset manifold

Consider the 4d Poincaré group:

ISO(1, 3) ∼= SO(1, 3) nR1,3 . (4.44)

Any group element (connected to the identity) can be written as:

g = e
i
2
ωµνMµν+ixµPµ ∈ ISO(1, 3) , (4.45)

for some parameters ωµν and xµ. Then, Minkowski space-time itself can be thought
of as a coset manifold with G = ISO(1, 3) and H = SO(1, 3). That is:

R1,3 ∼= ISO(1, 3)/SO(1, 3) , (4.46)

where SO(1, 3) acts from the right. Here, the generators Ka are simply the trans-
lation generators Pµ. The quotient gives a symmetric space, since (4.29) trivially
holds.

Let us parameterise the coset ISO(1, 3)/SO(1, 3) with the coordinates y = (xµ),
with:

x(x) = e−ix
µPµ , (4.47)

where the minus sign is introduced for convenience. Let us see how translations and
rotations act on G. Consider the left-multiplication (4.32) by either a translation
or a rotation:

gT ≡ eia
µPµ , gR ≡ e

i
2
ωµνMµν . (4.48)

For the translation, we have:

g−1
T x(x) = x(x+ a) = x(x′) , (4.49)

trivially, therefore we find:
x′
µ

= xµ + aµ , (4.50)

and the differential operator constructed in (4.35) is simply:

Pµ = −i ∂

∂xµ
, (4.51)

as expected. Similarly, for a rotation, we find:

g−1
R x(x) = e−ix

µPµ− i
2
ωµνMµν− 1

4
ωρσxµ[Mρσ ,Pµ]+···

= x(x′)h = e−ix
′µPµe−

i
2
ω̃ρσMρσ

= e−ix
′µPµ− i

2
ω̃µνMµν− 1

4
ωρσx′µ[Pµ,Mρσ ]+··· .

(4.52)

At first order, this gives ωµν = ω̃µν and:

x′
µ

= xµ +
1

2
ωρσxν(−ηνρδσµ + ηνσδρ

µ) . (4.53)
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This gives us the generators:

Mρσ = i

(
xρ

∂

∂xσ
− xσ

∂

∂xρ

)
, (4.54)

where xµ ≡ ηµνxν . The differential operators (4.51) and (4.54) satisfy the Poincaré
algebra (3.1) on scalar fields ϕ(y) in R1,3, as one can readily check.

4.2.3 4d N = 1 superspace as a coset super-manifold

The four-dimensional N = 1 superspace is defined similarly to (4.46), as the coset:

R1,3|4 ∼= ISO(1, 3|4)/SO(1, 3) . (4.55)

Here, ISO(1, 3|1) denotes the 4d N = 1 super-Poincaré “group” (or supergroup)
obtained by exponentiating the super-Poincaré algebra generators:

g = e
i
2
ωµνMµν+ixµPµ+iθαQα+iθ̄α̇Q̄

α̇ ∈ ISO(1, 3|1) . (4.56)

The parameters θα and θ̄α̇ are Grassmanian numbers—that is, they anti-commute:

{θα, θβ} = 0 , {θ̄α̇, θ̄β̇} = 0 , {θ̄α̇, θβ} = 0 . (4.57)

We parameterise the quotient (4.55) by:

x(y) = e−i(x
µPµ+iθQ+iθ̄Q̄) , (4.58)

with the superspace coordinates:

y = (xµ, θα, θ̄ᾱ) , (4.59)

bosonic and fermionic—the central new players are the four Grasmmanian coordi-
nates θ and θ̄.

The key idea of superspace is that we can view supersymmetry geometrically,
as a “translation” along the fermionic coordinates of superspace. Indeed, consider
the supersymmetry “group element:”

gSUSY = eiηQ+iη̄Q̄ , (4.60)

for some arbitrary Grassmanian parameters ηα, η̄ᾱ. We have:

g−1
SUSYx(y) = e−ix

µPµ−i(θ+η)Q−i(θ̄+η̄)Q̄− 1
2

[ηQ,θ̄Q]− 1
2

[η̄Q̄,θQ]+··· . (4.61)

Using the supersymmetry algebra, we get:

[ηQ, θ̄Q̄] = ηαθ̄α̇{Qα, Q̄α̇} = 2ησµθ̄Pµ , (4.62)
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for any two anti-commuting spinors η and θ̄. Therefore, we find the induced action
of supersymmetry on the superspace coordinates:

x′
µ

= xµ − iησµθ̄ + iθσµη̄ ,

θ′ = θ + η ,

θ̄′ = θ̄ + η̄ ,

(4.63)

Since supersymmetry should act on classical fields as:

U(gSUSY)Φ(x, θ, θ̄) = eiηQ+iη̄Q̄ Φ(x, θ, θ̄) , (4.64)

we obtain the differential operators on superspace:

Qα = −i
(

∂

∂θα
− iσµαα̇θ̄

α̇ ∂

∂xµ

)
, Q̄α̇ = i

(
∂

∂θ̄α̇
− iθασµαα̇

∂

∂xµ

)
. (4.65)

The Grassmanian derivatives are defined as:

∂

∂θα
θβ = δβα ,

∂

∂θ̄α̇
θ̄β̇ = δβ̇α̇ . (4.66)

We refer to subsection 4.2.4 for further discussion. The differential operators (4.65)
realise the supersymmetry algebra, since:

{Qα, Q̄α̇} = −2iσµαα̇∂µ = 2σµαα̇Pµ , {Qα,Qβ} = 0 , {Q̄α̇, Q̄β̇} = 0 . (4.67)

Note that the field Φ(y) is a function of superspace, not only space-time–this,
almost by definition, is a superfield. (We’ll give a more precise definition of what
is a superfield momentarily.)

Exercise: How are the SO(1, 3) generators Mµν represented on superspace? It
should be clear that it cannot be simply as in (4.54). (Explain why.)

4.2.4 On manipulating the superspace coordinates

Since θ and θ̄ are Grassman numbers, we have to be a bit careful with signs. Let
us introduce the short-hand notation:

∂α ≡
∂

∂θα
, ∂α ≡ ∂

∂θα
, ∂̄α̇ ≡

∂

∂θ̄α̇
, ∂̄α̇ ≡ ∂

∂θ̄α̇
. (4.68)

As mentioned above, we define:

∂αθ
β = δβα , ∂̄α̇θ̄

β̇ = δβ̇α̇ . (4.69)

This implies:

∂αθβ = −δαβ , ∂̄α̇θ̄β̇ = −δα̇
β̇
. (4.70)
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All derivative are taken from the left; this means that we first need to move any
θα to the left (incurring whatever signs) before using the definition ∂βθ

α = δαβ , and

similarly for the ∂̄α̇ derivative. Note that, in particular, we have:

∂α θθ = 2θα , ∂̄α̇ θ̄θ̄ = −2θ̄α̇ , (4.71)

and therefore:
εα∂α θθ = 2ηθ , ε̄α̇∂̄α̇ θ̄θ̄ = 2ε̄θ̄ . (4.72)

Because Grassman numbers are anti-commuting, we can always expand any
function into a polynomial in θα and θ̄α̇—the Taylor expansion truncates. For
instance, a function of only xµ and a single Grassman number, θ1, is given by:

F (x, θ1) = f0(x) + θ1f1(x) , (4.73)

where f0 and f1 are arbitrary functions of x. The expansion truncates because
(θ1)2 = 0. Thus, derivation is always a purely algebraic operation. For instance, in
this example:

∂

∂θ1
F (x, θ1) = f1(x) . (4.74)

In the following, we will also use a notion of integration over Grassman numbers—
known as Berezin integration. For a single Grassman number, say θ1, the integra-
tion can be defined as:∫

dθ1θ1 = 1 ,

∫
dθ1g(x, θ2, θ̄) = 0 . (4.75)

In other words, it acts just like a derivation. One can check that this is a linear
operation. We also have a fermionic “Stoke’s theorem:”∫

dθ1 ∂

∂θ1
F = 0 . (4.76)

Integration over superspace. In 4d N = 1 superpace, we define:∫
d2θ ≡ 1

2

∫
dθ1dθ2 ,

∫
d2θ̄ ≡ 1

2

∫
dθ̄2dθ̄1 . (4.77)

Since θθ = 2θ2θ1 and θ̄θ̄ = 2θ̄1θ̄2, this is such that:∫
d2θ θθ = 1 ,

∫
d2θ̄ θ̄θ̄ = 1 . (4.78)

In particular, an integral over the four Grassman coordinates is equivalent to col-
lecting the θθθ̄θ̄ coefficient in the Taylor expansion of the integrand:∫

d2θd2θ̄ F (x, θ, θ̄) = F (x, θ, θ̄)
∣∣
θθθ̄θ̄

. (4.79)

One can also check that:∫
d2θ = εαβ∂α∂β ,

∫
d2θ̄ = −εα̇β̇ ∂̄α̇∂̄β̇ . (4.80)
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4.3 Superfields

A superfield is a function over superspace,

S(x, θ, θ̄) , (4.81)

which transforms according to:

eia
µPµ+iεQ+iε̄Q̄ S(x, θ, θ̄) = S(x′, θ′, θ̄′)

= S(x+ a− iεσθ̄ + iθσε̄, θ + ε, θ̄ + ε̄) ,
(4.82)

under translations and supersymmetry (that is, any superspace translations). It
is clear that linear combinations of superfields are superfields, and products of
superfields are superfields.

We can expand an arbitrary superfield S in the Grassman coordinates, to obtain:

S̃(x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θθM(x)− i

2
θ̄θ̄M̄(x)

− θσµθ̄vµ(x) + iθθθ̄η̄(x)− iθ̄θ̄θη(x) +
1

2
θθθ̄θ̄ D̃(x) .

(4.83)

The coefficients in the expansions are ordinary fields in Minkowski space-time, 19

the components of the superfield. Assuming that the fields C,M, M̄, vµ and D̃
are bosonic, the fields χ, χ̄, η, η̄ are fermionic. The simplest example of a general
superfield is when C is a scalar field—then, χα, χ̄

α̇ are spinor fields, and so on and
so forth.

If C is a real field, the superfield S contain 8 bosonic and 8 bosonic degrees of
freedom. This is too many to furnish an irreducible representation of the super-
symmetry algebra. For instance, we saw in section 4.1.1 that the off-shell chiral
multiplet has 4 + 4 degrees of freedom. To obtain irreducible supersymmetry mul-
tiplet in superspace, therefore, we will need to impose superspace constraints.

4.4 Superspace for other dimensions and/or N ’s?

Before we specialise to 4d N = 1 superspace in most of the following, we should
briefly mention how the superspace formalism can be generalised to other space-
time dimensions and other amounts of supersymmetry.

In four dimensions, it turns out that there is no useful superspace formalism (of
the simple type we just discussed) for N > 1. 20 More precisely, for N = 2 there
exists a superspace formalism for pure gauge theories, but not for matter fields (in
so-called hypermultiplets). In the N = 4 case, there is no superspace formalism at
all.

19The numerical coefficients in (4.83) are just a matter of conventions, of course.
20There exists more sophisticated approaches to superspace for extended supersymmetry, but

they are rather more complicated, and it is fair to say that none has been particularly useful in
explicit computations. One important exception is the superspace description of the 4d N = 2
vector multiplet.
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In other space-time dimensions, the rule of thumb is that there exists a useful
superspace formalism for less than or equal to 4 real supercharges, NQ ≤ 4; in
particular, only in dimensions d ≤ 4. The basic reason can be understood as follows.
In a general supersymmetric theory with NQ supercharges, we would introduce NQ

superspace coordinates θa, a = 1, · · · , NQ, and a general superfield would take the
form:

F (x, θ) = f0(x) + θafa(x) +
1

2
θaθbfab(x) + · · ·+ θ1θ2 · · · θNQftop(x) . (4.84)

That gives a total of:

NQ∑
k=0

(
NQ

k

)
= 2NQ = 2NQ−1 bosonic + 2NQ−1 fermionic (4.85)

components. In general, this is much larger than the number of degrees of freedom
expected in an irreducible representation of supersymmetry. For instance, for 4d
N = 4 rigid supersymmetry, the vector multiplet contains 4 Weyl spinors, for a total
of 16 off-shell fermionic components, while 2NQ−1 = 215, which is much larger than
16 = 24. In general, there might not exist any consistent sets of constraints that
give rise to the correct off-shell supermultiplets. There are also no-go theorems to
that effect. For instance, there does not exist any off-shell formulation of 4d N = 4
SYM with a finite number of auxiliary fields [19].

5 4d N = 1 supersymmetry, part I: chiral multiplets

In this section, we write down supersymmetric field theories explicitly. More pre-
cisely, we construct 4d N = 1 supersymmetric Lagrangians systematically, restrict-
ing ourselves to theories of chiral multiplets. These are theories that contain only
scalar fields and Weyl fermions.

(Later on in the lectures, we will discuss in detail the final ingredient necessary
to describe anything resembling the “real world” of Particle Physics: the gauge
fields.)

5.1 The SUSY-covariant derivatives

Since Pµ commutes with the supercharges, space-time derivatives ∂µ commute with
the supercharge operators Q and Q̄. This is also clear from their explicit expres-
sions,

Qα = −i
(
∂α − i(σµθ̄)α∂µ

)
, Q̄α̇ = i

(
∂̄α̇ − i(θασµ)α̇∂µ

)
. (5.1)

This is necessary so that various differential constraints, such as for instance the
on-shell condition P 2 = −M2 for a free scalar field, commute with supersymmetry.
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On the other hand, the naive superspace derivatives ∂α and ∂̄α̇ do not commute
with supersymmetry. For instance:

[δ, ∂α] = [iε̄Q̄, ∂α] = −i(σµε̄)α∂µ 6= 0 . (5.2)

Then, the derivative ∂αS of a superfield S is not itself a superfield. There exists,
however, supersymmetry-covariant derivatives. They are given by:

Dα = ∂α + i(σµθ̄)α∂µ , D̄α̇ = ∂̄α̇ + i(θσµ)α̇∂µ . (5.3)

The same way that the supercharges (5.1) are constructed by looking as left multi-
plication in (4.61), one can define (5.3) in the coset construction by right multiplication—
one can readily check that:

x(y)g−1
SUSY = e−ix

µPµ−iθQ−iθ̄Q̄ e−iηQ−iη̄Q̄ = x(y′) , (5.4)

gives a superspace translation generated by (5.3). The differential operators (5.3)
anti-commute with the supercharges:

{Dα,Qβ} = {Dα, Q̄β̇} = 0 , {D̄α̇,Qβ} = {D̄α̇, Q̄β̇} = 0 . (5.5)

They also satisfy the supersymmetry algebra with the opposite sign:

{Dα, D̄α̇} = −2σµαα̇Pµ , {Dα,Dβ} = 0 , {D̄α̇, D̄β̇} = 0 . (5.6)

Using D, D̄ and ∂µ, we can build an arbitrary superfield by taking product of
superfields and their covariant derivatives. Note the curious property:

{Dα, D̄α̇} = 2iσµαα̇∂µ . (5.7)

In the language of differential geometry, this means that the connection:

∇ = (∂µ,Dα, D̄α̇) (5.8)

on “flat” superspace has a non-trivial torsion, with Tαα̇
µ = 2iσµαα̇ being the super-

space torsion tensor. For future reference, we also compute the commutator:

[Dα, D̄α̇] = 2∂α∂̄α̇ − 2i(θσµ)α̇∂α∂µ + 2i(σµθ̄)α∂α̇∂µ

− θσµθ(σµαα̇∂ρ∂ρ − 2σναα̇∂ν∂µ) .
(5.9)

(Exercise: Check this!)

5.2 General multiplet and real multiplet

The “general multiplet” is a long multiplet with components:

S̃ =
(
C,χ , χ̄ ,M , M̄ , vµ , η , η̄ , D̃

)
, (5.10)
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as introduced above. One often considers the case when the bottom component C
is a scalar, but it could also transform in any representation of the Lorentz group.
Let us again write down the component expansion of the corresponding superfield:

S̃(x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θθM(x)− i

2
θ̄θ̄M̄(x)

− θσµθ̄vµ(x) + iθθθ̄η̄(x)− iθ̄θ̄θη(x) +
1

2
θθθ̄θ̄ D̃(x) .

(5.11)

It is a tedious but straightforward exercise to derive the supersymmetry transfor-
mations in components, using the definition:

δ = δε + δε̄ = iεQ + iε̄Q . (5.12)

We simply write down:

δS(ϕ) = S(δϕ) , (5.13)

where ϕ denote the component fields, and match the result term by term in the
θ, θ̄ expansion. One then finds:

δC = iεχ− iε̄χ̄ ,
δχα = εαM + (σµε̄)α(∂µC + ivµ) ,

δχ̄α̇ = ε̄α̇M̄ + (εσµ)α̇(∂µC − ivµ) ,

δM = iε̄σ̄µ∂µχ+ 2ε̄η̄ ,

δM̄ = iεσµ∂µχ̄+ 2εη ,

δvµ = iεσµη̄ + iε̄σ̄µη −
1

2
εσν σ̄µ∂νχ−

1

2
ε̄σ̄νσµ∂νχ̄ ,

δηα = iεαD̃ −
1

2
(σνσµε)α∂µvν +

i

2
(σµε̄)α∂µM ,

δη̄α̇ = −iε̄D̃ − 1

2
(ε̄σ̄µσν)α̇∂µvν −

i

2
(εσµ)α̇∂µM ,

δD̃ = −εσµ∂µη̄ + ε̄σ̄µ∂µη .

(5.14)

These transformations law look rather cumbersome. Thankfully, we can find a
simpler-looking form by a simple field redefinition. Let us introduce the new fields
λ, λ̄ and D to replace η, η̄ and D̃, respectively:

λα = ηα −
i

2
(σµ∂µχ̄)α ,

λ̄α̇ = η̄α̇ − i

2
(σ̄µ∂µχ)α̇ ,

D = D̃ − 1

2
∂2C ,

(5.15)
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where ∂2 ≡ ∂µ∂µ. Then, the supersymmetry variations are simplified to:

δC = iεχ− iε̄χ̄ ,
δχα = εαM + (σµε̄)α(∂µC + ivµ) ,

δχ̄α̇ = ε̄α̇M̄ + (εσµ)α̇(∂µC − ivµ) ,

δM = 2iε̄σ̄µ∂µχ+ 2ε̄λ̄ ,

δM̄ = 2iεσµ∂µχ̄+ 2ελ ,

δvµ = iεσµλ̄+ iε̄σ̄µλ+ ε∂µχ+ ε̄∂µχ̄ ,

δλα = iεαD + 2(σµνε)α∂µvν ,

δλ̄α̇ = −iε̄α̇D − 2(ε̄σ̄µν)α̇∂µvν ,

δD = −εσµ∂µλ̄+ ε̄σ̄µ∂µλ ,

(5.16)

as one can readily check. This is the most convenient parameterisation of a general
multiplet:

S =
(
C,χ , χ̄ ,M , M̄ , vµ , λ , λ̄ ,D

)
. (5.17)

When C is real, this is called a real multiplet—in that case, the fields χ,M, λ and
χ̄, M̄ , λ̄ are complex conjugate of each other, as implied by the notation. In the
general case, however, all the fields in (5.17) can be complex and unrelated to each
other. The corresponding general superfield is given by:

S(x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θθM(x)− i

2
θ̄θ̄M̄(x)

− θσµθ̄vµ(x) + iθθθ̄

(
λ̄(x) +

i

2
(σ̄µ∂µχ(x))

)
− iθ̄θ̄θ

(
λ+

i

2
σµ∂µχ̄(x)

)
+

1

2
θθθ̄θ̄

(
D(x) +

1

2
∂2C(x)

)
,

(5.18)

when expanded in components.

By direct computation, one can show that the supersymmetry variations (5.16)
indeed satisfy the supersymmetry algebra (4.8)—we know this has to be true, by
construction, but it never hurts to check it explicitly.

5.3 Chiral multiplet

The chiral multiplet contains a complex boson and a left-chiral Weyl fermion, but
no right-chiral Weyl fermion. Looking at the general multiplet (5.17), we should
therefore set to zero the right-chiral fermions:

χ̄α̇ = 0 , λ̄α̇ = 0 . (5.19)

For this constraints to be consistent with supersymmetry, the supersymmetry vari-
ations of χ̄ and λ̄ should vanish, too. We easily see that δχ̄ = 0 implies M̄ = 0 and
vµ = −i∂µC. Then, δλ̄ = 0 just implies that D = 0, and δM̄ = 0 (for consistency
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with M̄ = 0) fixes λ = 0 as well. In short, the chiral multiplet Φ is obtained from
the general multiplet S by setting:

SΦ =
(
CΦ = φ, χΦ = −i

√
2ψ, χ̄Φ = 0, MΦ = −2iF, M̄Φ = 0,

vΦ
µ = −i∂µφ, λΦ = 0, λ̄Φ = 0, DΦ = 0

)
.

(5.20)

The numerical factors are a matter of convention, of course. One can readily check
that plugging (5.20) into the supersymmetry transformations (5.16) reproduces the
chiral multiplet transformations (4.10). Similarly, we can construct the anti-chiral
multiplet as:

SΦ̄ =
(
CΦ̄ = φ̄, χΦ̄ = 0, χ̄Φ̄ = i

√
2ψ̄, M Φ̄ = 0, M̄ Φ̄ = 2iF̄ ,

vΦ̄
µ = i∂µφ̄, λ

Φ̄ = 0, λ̄Φ̄ = 0, DΦ̄ = 0
)
.

(5.21)

Such supersymmetry-preserving constraints can be imposed more elegantly by
using the supersymmetry-covariant derivative. By definition, a chiral superfield Φ
is one that satisfy the differential constraint:

D̄α̇Φ(x, θ, θ̄) = 0 . (5.22)

Similarly, an anti-chiral superfield Φ̄ satisfies:

DαΦ̄(x, θ, θ̄) = 0 . (5.23)

One can readily solve these constraints by the following trick. Introduce the “chiral
coordinates:”

zµ = xµ + iθσµθ̄ , z̄µ = xµ − iθσµθ̄ . (5.24)

They satisfy:

D̄α̇z
µ = 0 , Dαz̄

µ = 0 . (5.25)

A chiral superfield is simply a function of (zµ, θα) only, while an anti-chiral super-
field is a function of (z̄µ, θ̄α̇) only:

Φ = Φ(z, θ) , Φ̄ = Φ̄(z̄, θ̄) , (5.26)

since D̄α̇θ = 0 and Dαθ̄ = 0. Thus, a chiral superfield in chiral coordinates has the
simple expansion:

Φ(z, θ) = φ(z) +
√

2θψ(z) + θθF (z) , (5.27)

and similarly for the anti-chiral multiplet:

Φ̄(z̄, θ̄) = φ̄(z̄) +
√

2θ̄ψ̄(z̄) + θ̄θ̄F̄ (z̄) . (5.28)
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Expressing (5.27) in terms of (x, θ, θ̄), we find:

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) + θθF (x)

+ iθσµθ̄∂µφ(x) +
i√
2
θθθ̄σ̄µ∂µψ(x) +

1

4
θθθ̄θ̄∂2φ(x) .

(5.29)

Comparing to the general multiplet (5.18), we see that (5.29) indeed corresponds
to the specialisation (5.20) of the general superfield. Similarly, for the anti-chiral
superfield, we have:

Φ̄(x, θ, θ̄) = φ̄(x) +
√

2θ̄ψ̄(x) + θ̄θ̄F̄ (x)

− iθσµθ̄∂µφ̄(x) +
i√
2
θ̄θ̄θσµ∂µψ̄(x) +

1

4
θθθ̄θ̄∂2φ̄(x) .

(5.30)

The product of two chiral superfields is again a chiral superfield, since:

D̄α̇(Φ1Φ2) = 0 . (5.31)

We can work out the product rules in components, for instance by using the chiral
coordinates zµ, for simplicity:

Φ1Φ2 = (φ1 +
√

2θψ1 + θθF1)(φ2 +
√

2θψ2 + θθF2) . (5.32)

Collecting the terms at each order in θ, one finds: 21

φΦ1Φ2 = φ1φ2 ,

ψΦ1Φ2 = ψ1φ2 + ψ2φ1 ,

FΦ1Φ2 = F1φ2 + F2φ1 − ψ1ψ2 .

(5.33)

On the other hand, the product of a chiral with an anti-chiral superfield is a
general superfield; in particular, the product of Φ with its complex conjugate Φ̄ is
a real superfield,

SΦ̄Φ ≡ Φ̄Φ , (SΦ̄Φ)† = SΦ̄Φ . (5.34)

The whole point of the superfield formalism is that it makes it easy to take “products
of supermultiplets.” In this example, the bottom component of SΦ̄Φ is the real
scalar CΦ̄Φ = φ̄φ, and all the other components can be found similarly to (5.33),
with a little bit more algebra. Note also that the sum of superfields Φ+Φ̄ is another
real superfield.

21In the last line, we used the simple Fierz identity:

2θψ1 θψ2 = −θθ ψ1ψ2 .

This can be checked using the identity (A.4) in Appendix.
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5.4 Supersymmetric Lagrangians—D-terms and F -terms

We can now answer the question of how to build supersymmetric actions—namely,
an action

S =

∫
d4xL (ϕ, ∂µϕ, · · · ) (5.35)

such that:

δS = 0 . (5.36)

Note that the Lagrangian density L (which we call ‘the Lagrangian,’ for short)
itself cannot be supersymmetric—if δS = 0, the commutators (4.8) imply that
S is a constant. However, for the action to be invariant, it is sufficient for the
supersymmetric variation of L to be a total derivative:

δL = ∂µV
µ

SUSY . (5.37)

By abuse of notation, we call such a L ‘a supersymmetric Lagrangian.’

5.4.1 D-terms

Looking at the supersymmetry transformation laws of a general multiplet in equa-
tion (5.16), we see that the only field component whose variation is a total derivative
is the field D(x)—or, equivalently, D̃(x) in (5.14); the two definitions are related
by a total derivative anyway. Indeed, since the supersymmetry parameters are
constant (we are doing “rigid supersymmetry”), we have:

δD = ∂µ
(
−εσµλ̄+ ε̄σ̄µλ

)
. (5.38)

Thus, there is a straighforward way to build a supersymmetric action: construct a
general superfield SL—more precisely, SL should be a real superfield, so that the
action is real—, for instance by taking products and sums of elementary superfields,
and consider the so-called “D-term Lagrangian:”

LD ≡
1

2
DS

L
. (5.39)

This can be written more elegantly as a superspace integral over the real superfield
itself:

LD =

∫
d2θd2θ̄ SL . (5.40)

The supersymmetric action is an integral over 4d N = 1 superspace, R1,3|4:

SD =

∫
d4x

∫
d2θd2θ̄ SL . (5.41)
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5.4.2 F-terms

In the presence of chiral multiplets, there is another possibility for constructing
supersymmetric Lagrangians. Indeed, from the transformations laws (4.10) of a
chiral multiplet, we see that the field F (x) also transforms as a total derivative:

δF = ∂µ

(
i
√

2ε̄σ̄µψ
)
, (5.42)

and similarly for the anti-chiral multiplet. Thus, given any chiral multiplet Φ, we
can construct the so-called F -term and anti-F -term Lagrangians:

LF = FΦ , LF̄ = F̄ Φ̄ , (5.43)

which are separately supersymmetric. (We should add the two of them to obtain a
real action, though.) The F -term action can be written as an integral over half of
superspace:

SF =

∫
d4x

∫
d2θΦ , SF̄ =

∫
d4x

∫
d2θ̄Φ̄ . (5.44)

5.5 Lagrangians of chiral multiplets

Consider now a theory of n chiral multiplet Φi, with i = 1, · · · , n—that is, a
theory of n complex bosons φi and n Weyl fermions ψi. Since Φ is complex, it is
convenient to denote the anti-chiral multiplet by Φ̄ī, with indices ī = 1, · · · , n. A
general supersymmetric Lagrangian takes the form:

L =

∫
d2θd2θ̄ K(Φ̄,Φ) +

∫
d2θW (Φ) +

∫
d2θ̄ W̄ (Φ̄) . (5.45)

It is fully determined by two functions:

• The real superfield K(Φ̄,Φ), which is an arbitrary real function of the funda-
mental chiral multiples Φ and Φ̄. It is called the “Kähler potential” (more on
this in subsection 5.8 below). It encodes the kinetic terms of the theory.

• The chiral superfield W (Φ), which is an arbitrary holomorphic function of
the fundamental chiral superfields Φi. It is is called the superpotential and it
encodes the interaction terms. The anti-holomorphic function W̄ (Φ̄) is the
complex conjugate of W (Φ).

Comment on notation: The term “superpotential” can denote either the chiral
superfields W (Φ), or the holomorphic function W (φ), an holomorphic function of
the scalar fields φi. Of course, W (φ) is the bottom component of the superfield
W (Φ).
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In order to obtain a quantum field theory which is local, we should restrict
ourselves to polynomial functions K(Φ̄,Φ) and W (Φ). Even so, for general polyno-
mials, the Lagrangian would be non-renormalisable. Recall that L is renormalis-
able (at tree level) if and only if every operator in the Lagrangian has engineering
dimensions less or equal than 4, which ensures that the coupling constants have
non-negative mass dimensions. Schematically, we denote this by:

[L ] ≤ 4 , for renormalisability. (5.46)

Note also that we have:

[dθ] = [dθ̄] =
1

2
, [d4x] = −4 , (5.47)

therefore, in a supersymmetric theory, we need:

[K] ≤ 2 , [W ] ≤ 3 , for renormalisability. (5.48)

Since the engineering dimensions of a four-dimensional scalar is 1, we have [Φ] = 1,
and therefore the only renormalisable Kähler potential is quadratic:

K(Φ̄,Φ) = gīiΦ̄
iΦī , (5.49)

with gīi a constant Hermitian matrix. This is often called the “canonical Kähler
potential.” Similarly, a renormalisable superpotential is at most cubic in the chiral
superfields:

W = giΦ
i + gijΦ

iΦj + gijkΦ
iΦjΦk , (5.50)

with gi, gij , gijk some coupling constants.

5.5.1 R-symmetry and the superpotential

It is often useful to keep track of the R-symmetry, U(1)R, of a given theory. Con-
sider the U(1)R action on chiral multiplets:

Φi → eiriαΦi , Φ̄ī → e−iriαΦ̄ī , (5.51)

which leaves the canonical Kähler potential term invariant. We say the “the chiral
multiplet Φi has R-charge ri, denoted as R[Φi] = ri (and then R[Φ̄ī] = −ri). This
means that the R-charges of its component fields are:

R[φi] = ri , R[ψi] = ri − 1 , R[Fi] = ri − 2 . (5.52)

This U(1)R is a symmetry of the canonical kinetic terms. In fact, this is a symmetry
for any choice of the R-charges ri. This is best understood as follows. Consider the
“reference R-symmetry” R0 such that:

R0[Φi] = 0 . (5.53)
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We also have the ordinary flavor symmetries U(1)Fi which rotate each Φi individ-
ually, with charge 1:

Fi[Φj ] = δij . (5.54)

A flavor symmetry, by definition, is such that all the component fields have the
same flavor charge; here:

Fi[φj ] = Fi[ψj ] = Fi[Fj ] = δij . (5.55)

Then, a general R-symmetry as above is simply a mixing of R0 with the flavor
symmetries:

R = R0 +
∑
i

riFi . (5.56)

In general, the flavor symmetry might be larger. For a free theory with diagonal
kinetic term, we actually have a U(n) flavor symmetry; here we just considered the
Cartan subgroup

∏
i U(1)Fi ⊂ U(n).

This is an important lesson, valid more generally in 4d N = 1 supersymmetric
theories: what we mean by “the R-symmetry” is often ambiguous, because one can
redefine R by mixing with abelian flavor symmetries.

The interaction terms generally break the flavor symmetry of the free theory
to a subgroup (possibly trivial). They also constrain the possible choices of R-
symmetry. Indeed, since R[Qα] = −1 and R[Q̄α̇] = 1, the superspace coordinate
themselves are charged under U(1)R:

R[θ] = 1 , R[θ̄] = −1 . (5.57)

Since Grassman integration acts like a derivation, we also have R[dθ] = −1 and
therefore we see that, for the action (5.45) to be R-symmetric, the superpotential
must have R-charge 2:

R[W ] = 2 , (5.58)

and of course R[W̄ ] = −2. A generic superpotential breaks U(1)R explicitly.

5.5.2 General superpotential

For future reference, let us compute the interaction Lagrangian for an arbitrary
superpotential W (Φ). This is a simple exercise, generalising the product of two
chiral multiplets in (5.33) to an arbitrary function W (Φi). It is easiest to carry
out the computation in components. Given the bottom component ΦW ≡W (φ), a
composite scalar field, its variation is given by:

δΦW = δφi ∂iW (φ) =
√

2εψi ∂iW (φ) , (5.59)
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where ∂i ≡ ∂
∂φi

, which allows us to read off ψW by comparing with (4.10), and
similarly for the F-term. We then find:

φW = W (φ) ,

ψW = ψi∂iW (φ) ,

FW = F i∂iW (φ)− 1

2
ψiψj ∂i∂jW (φ) .

(5.60)

Therefore, the interaction Lagrangian that follows from the superpotential is:

LW =

∫
d2θW (Φ) = F i∂iW (φ)− 1

2
ψiψj ∂i∂jW (φ) . (5.61)

Similarly, from the anti-holomorphic superpotential, we have:

LW̄ =

∫
d2θ W̄ (Φ̄) = F̄ ī∂̄īW̄ (φ̄)− 1

2
ψ̄iψ̄j ∂̄ī∂̄j̄W̄ (φ̄) . (5.62)

5.6 The Wess-Zumino model

A four-dimensional supersymmetric Wess-Zumino model is simply a supersymmet-
ric theory of chiral multiplets, with canonical kinetic term.

Kinetic term. The canonical Kähler potential gives the supersymmetric kinetic
term:

LΦ̄Φ =

∫
d2θd2θ̄ Φ̄Φ . (5.63)

Expanding in component, this gives:

LΦ̄Φ =
1

4
φ̄∂2φ+

1

4
∂2φ̄φ− 1

2
∂µφ̄∂

µφ+ F̄F

− i

2
ψ̄σ̄µ∂µψ +

i

2
∂µψ̄σ̄

µψ .

(5.64)

This gives:

LΦ̄Φ
∼= −∂µφ̄∂µφ+ F̄F − iψ̄σ̄µ∂µψ , (5.65)

up to a total derivative. Of course, this is a free theory of a massless complex scalar
and a massless Weyl fermion.

This was written for a single chiral superfield Φ, but the generalisation to n
chiral superfields with canonical kinetic terms is trivial—we just have Φ̄iΦ

i, where
we contracted the indices with a constant “metric” gīi in the obvious way:

LΦ̄Φ
∼= gij̄

(
−∂µφ̄j̄∂µφi + F̄ j̄F i − iψ̄j̄ σ̄µ∂µψi

)
. (5.66)

We can always set gij̄ = δij by a U(n) redefinition of the fields Φi.
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5.6.1 Interaction terms: superpotential and scalar potential

Consider the superpotential term:

LW+W̄ = F i∂iW −
1

2
ψiψj ∂i∂jW + F̄ ī∂̄īW̄ −

1

2
ψ̄iψ̄j ∂̄ī∂̄j̄W̄ , (5.67)

as computed above. The equations of motion for the auxiliary fields F i and F̄ ī are:

gīiF
i = −∂̄īW̄ , gīiF̄

ī = −∂iW . (5.68)

Imposing those relations (“integrating out” F and F̄ ), we find the scalar potential:

V0(φ, φ̄) = gīi∂iW∂̄īW̄ ≡
∣∣∣∂W (φ)

∂φ

∣∣∣2 . (5.69)

The scalar potential of a supersymmetric theory of this type is necessarily positive
definite. It is given by the square of the first derivative of the superpotential, hence
the name for the latter.

The other interaction terms in (5.67) are Yukawa-type couplings, involving the
fermions and the bosons:

V = V0(φ, φ̄) +
1

2
ψiψj ∂i∂jW +

1

2
ψ̄iψ̄j ∂̄ī∂̄j̄W̄ . (5.70)

In particular, the cubic terms in W give rise to the actual Yukawa interactions,
which are related by supersymmetry to the |φ|4 scalar interactions.

5.6.2 Majorana and Dirac mass terms

A quadratic superpotential is a supersymmetric mass term. Consider first a single
chiral multiplet, Φ. This corresponds to a single Weyl fermion (the left-chiral spinor
ψ and its CPT conjugate ψ̄), making up a single Majorana fermion, and its bosonic
partner φ. The mass term superpotential:

Wµ =
1

2
µΦ2 (5.71)

induces the masses:

Lµ = −|µ|2φ̄φ− 1

2
(µψψ + µ̄ψ̄ψ̄) . (5.72)

This is a Majorana mass term for the fermion. Indeed, adding this mass term to
the kinetic term (5.65), we find the Majorana equation, in Weyl spinor notation:

iσ̄µ∂µψ + µ̄ψ̄ = 0 , (5.73)

The scalar mass squared is the square of the Majorana mass, M2
φ = |µ|2. The

equality of masses is expected from supersymmetry. If we only have this quadratic
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superpotential, this is still a free theory of massive bosons and fermions, and their
spectrum has to be degenerate.

On the other hand, we could consider a Dirac fermion (say, the electron):

Ψ =

(
ψα
¯̃
ψ
α̇

)
. (5.74)

Those fermions sit inside two distinct chiral multiplets Φ and Φ̃ (together with the

anti-chiral multiplets Φ̄ and
¯̃
Φ), of charge +1 and −1 under a U(1) symmetry, re-

spectively (say, the electric charge, under which Ψ has charge 1). The corresponding
Dirac mass term in the superpotential is simply:

W = mΦΦ̃ , (5.75)

corresponding to:

Lm = −|m|2(|φ|2 + |φ̃|2)−mψψ̃ + m̄ψ̄
¯̃
ψ . (5.76)

Note that we can always fix the masses µ or m to be real, by a redefinition of the
chiral superfields. Adding this mass term to the massless kinetic Lagrangian for Φ
and Φ̃, we get the Dirac equation:

iσ̄µ∂µψ + m̄
¯̃
ψ = 0 , iσ̄µ∂µψ̃ + m̄ψ̄ = 0 . (5.77)

The main difference between the superpotentials (5.71)̈ı¿1
2and (5.75) is what

symmetries they preserve. The Majorana mass term (5.71) breaks the U(1) flavor
symmetry that rotates the single chiral multiplet Φ explicitly, and fixes the R-
symmetry to be R[Φ]=1. On the other hand, the Dirac mass term (5.75) preserves
a U(1) flavor symmetry (the “electric charge”) out of the U(2) symmetry of two
massless chiral multiplets (Φ, Φ̃); therefore, we can choose any R-symmetry with
R[Φ] +R[Φ̃] = 2.

5.7 Supersymmetric vacuum equations

In our discussion of supersymmetric quantum mechanics, we saw that the energy
of any state has to be non-negative—see equation (1.40). This is true also in 4d
N = 1 supersymmetric QFT:

E = −〈ψ|P0|ψ〉 ≥ 0 . (5.78)

Indeed, we have:
〈ψ|QαQ̄β̇ + Q̄β̇Qα|ψ〉 = 2σµ

αβ̇
〈ψ|Pµ|ψ〉 , (5.79)

from the supersymmetry algebra. Taking the trace, Tr(σµPµ) = −2P0 = 2E gives:

4E =
2∑

α=1

(∣∣∣(Qα)†|ψ〉
∣∣∣2 +

∣∣∣Qα|ψ〉∣∣∣2) ≥ 0 . (5.80)



5.7 Supersymmetric vacuum equations 61

5.7.1 The supersymmetric vacuum.

Since the relation (5.80) gives the energy as a sum over perfect squares, it implies
that the vacuum |vac〉 of the QFT is supersymmetric (i.e. it is preserved by the
four supercharges) if and only if its energy vanishes:

− P0|vac〉 = 0 ⇔ Qα|vac〉 = 0 and Q̄α̇|vac〉 = 0 . (5.81)

This is a very important relation, which holds in any (rigid) supersymmetric theory,
in any space-time dimension. In ordinary QFT, the vacuum formally has an infi-
nite energy, at least in a semi-classical approximation (from the zero-point energy
of harmonic oscillators at every point in space), and we can always redefine (renor-
malise) it to be whatever we want. Supersymmetry gives a well-defined meaning
to the zero of the energy, because the Hamiltonian of a supersymmetric theory is
necessarily a perfect square—schematically:

H = |Q|2 . (5.82)

Side note: In any theory including gravity, unlike in pure QFT, there is an
intrinsic meaning to the zero of the energy as well. The vacuum energy of a QFT
should gravitate, like any other form of energy-impulsion. The vacuum energy
gives rise to a cosmological constant (CC) term in the Einstein equations. In a
non-supersymmetric theory, the natural scale of the CC is the Planck scale. In
a supersymmetric theory, on the other hand, the CC would be exactly zero. Of
course, our world is not supersymmetry. Then, even if supersymmetry exists a high
energy, the natural scale of the CC is the supersymmetry-breaking scale, which is at
least 103GeV. On a log10 scale, that is essentially half-way between the Planck scale
(1019GeV) and the experimentally observed value of the vacuum energy, which tiny

(and positive), at about (ρvac)
1
4 = 10−12GeV. We have no good idea how this tiny

number comes about—that is the famous cosmological constant problem.

5.7.2 The vacuum equations in a theory of chiral multiplets

Consider a 4d N = 1 theory of chiral multiplets only. We have seen that the scalar
potential (in a theory with canonical kinetic terms) is given by:

V0(φ, φ̄) =
∑
i

|∂φiW (φ)|2 . (5.83)

This is a sum of perfect squares. Therefore, the supersymmetric vacuum (V0 = 0)
exists if and only if:

∂W (φ)

∂φi
= 0 , ∀i . (5.84)
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The solutions to these equations determine the possible vacuum expectation values
(VEVs) for the scalar fields φ. A supersymmetric vacuum is a configuration of
constant VEVs:

φi = 〈φi〉 = 〈vac|φi|vac〉 , (5.85)

which solve (5.84).
When the superpotential is a polynomial in the fields, the set of supersymmetric

vacua is determined by a set of algebraic equations for φi. Moreover, the equations
(5.84) are holomorphic equations in the complex scalars φi. Thus, determining
supersymmetric vacua is really a problem in algebraic geometry—given a set of
polynomials p1(z), p2(z), · · · in several complex variables z = (z1, z2, · · · , zn) ∈ Cn,
we want to know what is its zero set p1(z) = p2(z) = · · · = 0.

The expression for the scalar potential V0 is slightly modified in the case of a
non-canonical kinetic term, as we will see momentarily, but the vacuum equations
remain the same

5.7.3 Vacuum moduli spaces

In a theory of n chiral multiplets Φi, the vacuum equations (5.84) are n equations
for n unknowns. Depending on the particular form of the superpotential W , there
are three possibilities:

• There are no solutions. Then, supersymmetry is spontaneously broken. We
will come back to this possibility later in the lectures.

• There are a finite number N of solutions. They correspond to N “discrete
vacua,” local minima of the potential with V0 = 0.

• There could be a continuum of solutions. This is called a vacuum moduli
space. In an ordinary QFT, any such “flat direction” in the potential would
generally be lifted by quantum corrections. In a supersymmetric theory, we
will see that supersymmetry actually preserves the moduli space to all orders
in perturbation theory.

Let us give some simple examples:

Example 1. Consider first a theory with a single chiral multiplet Φ and a super-
potential:

W =
m

2
Φ2 +

λ

3
Φ3 . (5.86)

The vacuum equations reads:

∂φW = mφ+ λφ2 = 0 , (5.87)

so that we find two discrete vacua:

φ = 0 , φ = −m
λ
. (5.88)
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Here, we take the (widespread) notational convention of denoting the VEV 〈φ〉 of
φ simply by φ. The fact that it is a VEV of a field and not the field itself should
always be clear from the context.

Example 2. Consider a theory with three chiral multiplets and a cubic superpo-
tential:

W = Φ1Φ2Φ3 . (5.89)

The vacuum equations are:

∂φ1W = φ2φ3 = 0 , ∂φ2W = φ1φ3 = 0 , ∂φ3W = φ1φ2 = 0 . (5.90)

These equations are equations for singular quadrics in C3. There are now continuous
solutions. One can check that there are three branches that intersect at the origin:

{φ1 6= 0 , φ2 = φ3 = 0} ∪ {φ2 6= 0 , φ1 = φ3 = 0} ∪ {φ3 6= 0 , φ1 = φ2 = 0} . (5.91)

This is the vacuum moduli space, denoted by M.

M as an affine variety. Note that, in the free theory of n chiral multiplets
without superpotential, the vacuum moduli space is simply:

MW=0 = Cn . (5.92)

Namely, all the scalar fields φi can take arbitrary VEVs simultaneously. A non-
trivial superpotential then defines the vacuum moduli space as an affine variety,
with coordinate ring:

C[φ1, · · · , φn]/(∂φW ) , (5.93)

where (∂φW ) is the ideal generated by the n polynomials ∂φiW . (The reader not
familiar with algebraic geometry can ignore this last comment.)

5.8 General Kähler potential & Kähler geometry

Finally, consider a general theory of n chiral multiplets with an general Kahler
potential K(Φ̄,Φ) in (5.45). This is not a renormalisable theory, but it can still be
considered as an effective field theory.

To understand what the general kinetic term looks like, we should build the real
superfield K whose bottom component the real scalar:

CK = K(φ̄, φ) , (5.94)

to find the D-term. This is a tedious but straightforward computation. One finds:

LK =

∫
d2θd2θ̄K(Φ̄,Φ)

= gij̄(φ̄, φ)
(
−∂µφ̄j̄∂µφi + F̄ j̄F i − iψ̄j̄ σ̄µ∂µψi

)
+ · · ·

(5.95)
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where the ellipsis denotes additional interaction terms involving the fermions. (Ex-
ercise: compute them.) This is similar to (5.66), but now the coefficient of the
kinetic term is a non-trivial function of the scalar fields:

gij̄ = ∂i∂̄j̄K ≡
∂2K

∂φi∂φ̄j̄
. (5.96)

In a theory of scalar fields, it is always a good idea to think of the “field space”
for the scalars as a manifold—albeit infinite-dimensional, in general. More precisely,
we view the fields φ(x) as maps from space-time to a target space, M:

φ : R1,3 →M : xµ 7→ φ(x) . (5.97)

From this point of view, the scalar fields are viewed as local coordinates on the
target space M (of complex dimension n).

The entire field space is the infinite-dimensional space of maps (5.97). A partic-
ularly important submanifold of field space is the vacuum moduli space, which we
discussed in the last subsection. It corresponds to the space of constant maps to
target space, which is isomorphic to the target space itself. Thus, in the absence of
superpotential, we haveMW=0 = M. In the presence of superpotential, the target-
space picture still holds, except that the vacuum moduli space is a submanifold (or
rather, subvariety) of M.

The target space can have additional structure. In a general theory of real
scalars ϕi, it would simply be a real manifold. A Lagrangian of the general form:

L = −ηµν gij(ϕ)∂µϕ
i∂νϕ

j = −ηµν(ϕ∗g)µν , (5.98)

defines a so-called non-linear sigma model (NLSM), with g = gijdϕ
idϕj a choice

of Riemannian metric on target space. The kinetic term is given in term of the
pullback of the metric gij through the map ϕ : R1,3 →M. 22

Here, we are considering a theory of complex scalar fields, therefore M is nat-
urally a complex manifold, with complex coordinates (zi, z̄ ī) = (φi, φ̄ī), and a La-
grangian of the form:

L = −gij̄(φ̄, φ)∂µφ̄
j̄∂µφi + · · · . (5.99)

Here, g is an Hermitian metric on M. A particularly nice class of Hermitian man-
ifolds are the so-called Kähler manifolds. They are complex manifolds with an
Hermitian metric gij̄ such that the associated two-form ω is closed:

ω ≡ 2igij̄(z, z̄)dz
i ∧ dz̄j̄ , dω = 0 . (5.100)

This means that:

∂igjk̄(z, z̄)− ∂jgik̄(z, z̄) = 0 , ∂̄īgkj̄(z, z̄)− ∂̄j̄gkī(z, z̄) = 0 . (5.101)

22Recall the definition of the pullback of a map f : M → N from your differential geometry or
general relativity course.
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These condition actually imply that the Hermitian metric of a Kahler manifold—
the Kahler metric—can be written in terms of a real function K(z, z̄), the Kähler
potential, exactly as in (5.96). Thus, we conclude that:

the target space of a 4d N = 1 supersymmetry field theory is a Kähler mani-
fold. We have just shown this for a theory consisting only of chiral multiplets,
but this conclusion holds true inN = 1 supersymmetric gauge theories as well.

The simplest example is the canonical Kähler potential:

K =

n∑
i=1

|φi|2 , (5.102)

which obviously gives the flat metric δij̄ on the target space Cn. A more general
Kähler potential simply gives a non-flat metric (on a space which is still topologi-
cally Cn). 23

Finally, we can also consider a non-trivial superpotential. The presence of a
more general K(Φ̄,Φ) does not affect the discussion of the vacuum structure given
above. It is easy to check that the scalar potential still takes the form (5.69), where
now gīi is the inverse of the non-trivial Kähler metric. Then, assuming that there
are no metric singularities in gij̄ , the vacuum equations are still given by the critical
points of the holomorphic superpotential.

6 Renormalisation of supersymmetric theories

In this section, we finally start discussing some quantum properties of 4d N = 1
supersymmetric theories. Supersymmetric quantum field theories are much better
behaved than non-supersymmetric ones, which is the main reason why they are so
interesting and useful, from a theoretical perspective.

6.1 The Wess-Zumino model at one loop

Consider the original Wess-Zumino model, which consists of a single chiral multi-
plet, Φ, with canonical Kähler potential and a cubic superpotential:

W =
m

2
Φ2 +

λ

3
Φ3 . (6.1)

For simplicity of notation, we take m ∈ R and λ ∈ R. After integrating out the
auxiliary fields F, F̄ , the full Lagrangian takes the form:

L = −∂µφ̄∂µφ−m2φ̄φ− iψ̄σ̄µ∂µψ −
m

2
(ψψ + ψ̄ψ̄)

− λ2φ̄2φ2 −mλ(φ̄2φ+ φ̄φ2)− λ(ψψφ+ ψ̄ψ̄φ̄) .
(6.2)

We would like to analyse this QFT in perturbation theory, in the regime λ� 1.

23We could consider target spaces of different topologies, too.
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+ = 0

Figure 1: Tadpole Feynman diagrams for the scalar φ. The bosons and fermions in
the loop cancel each other due to supersymmetry, so that the tadpole vanishes.

6.1.1 Feynman rules for the WZ model

The scalar propagator is given by:

φ̄ φ =
−i

p2 +m2 − iε
, (6.3)

as usual, and the fermions propagators are given by:

ψ̄ ψ =
−iσ̄µpµ

p2 +m2 − iε
, ψ ψ̄ =

−iσµpµ
p2 +m2 − iε

,

ψ ψ =
−im

p2 +m2 − iε
, ψ̄ ψ̄ =

−im
p2 +m2 − iε

.

Here, the momentum always flow from left to right. Note that the 〈ψψ〉 and 〈ψ̄ψ̄〉
propagators reverse the fermion (chirality) arrow. 24

The propagators are easily derived from the first line of (6.2), which can be
written as:

L = φ̄(∂µ∂
µ −m2)φ+

1

2
(ψα, ψ̄α̇)

(
−mδαβ −iσµ

αβ̇
∂µ

−iσ̄µα̇β∂µ −mδα̇β̇

)(
ψβ

ψ̄β̇

)
, (6.4)

up to a total derivative. From the second line in (6.2), we also read off the interac-
tion vertices. There are two types of cubic vertices, the scalar cubic vertex:

φ

φ

φ̄
= −imλ ,

φ̄

φ̄

φ
= −imλ , (6.5)

24In your QFT course, you have probably seen Feynman rules for fermions in Dirac notation,
while we are using the two-component Weyl notation. It is relatively straightforward to translate
expression between the two languages. For a (very) detailed discussion of this point, see [20].
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and the Yukawa interaction:

ψ

ψ

φ
= −iλ ,

ψ̄

ψ̄

φ̄
= −iλ . (6.6)

There is a unique quartic vertex:

φ̄

φ̄ φ

φ

= −iλ2 (6.7)

Using these Feynman rules, one can study the 4d N = 1 Wess-Zumino model in
perturbation theory, as we would do for any particular quantum field theory.

6.1.2 Some one-loop corrections

Recall that there are, roughly, two types of “quantum corrections” to the quantum
effective action, 25 at some renormalisation group (RG) scale µ:

• Wavefunction renormalisation. The quantum correction to the (massless)
kinetic terms take the form:

Leff = −Zφ ∂µφ̄∂µφ− Zψ iψ̄σ̄µ∂µψ , (6.8)

where Zφ = Zφ(µ) and Zψ = Zψ(µ) are known as the “wavefunction renor-
malisation” factors. One often defines the renormalised fields:

φR =
√
Zφ φ , ψR =

√
Zψ ψ , (6.9)

to rescale the kinetic term back to its canonical form. The so-called anomalous
dimension of the field φ is defined by:

γφ = −µ ∂

∂µ
logZφ , (6.10)

and it is itself a function of µ. In term of γφ, the “quantum dimension” ∆ of
the field φ is then:

∆[φ] = 1 +
1

2
γφ , (6.11)

25We will be interested in the so-called Wilsonian effective action, although for the following
discussion can we equivalently consider the 1PI effective action. We’ll come back to this point
soon.
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Indeed, by constuction, φR =
√
Zφφ has dimension 1. Then, the dimension-

less field:

φ̃ = µ−1Z
1
2
φ φ , (6.12)

scales as:

µ
∂φ̃

∂µ
= −∆[φ] φ̃ . (6.13)

A similar discussion holds for the fermions, with:

∆[ψ] =
3

2
+

1

2
γψ , γψ = −µ ∂

∂µ
logZψ . (6.14)

• Coupling constant renormalisation. The various coupling constants g in
the Lagrangian, for a term L = gO(x), can be renormalised independently
of the wavefunction renormalisation:

Lg = gZgO(x) = g(1 + · · · )O(x) , (6.15)

where the ellipsis denotes the loop corrections.

Absence of tadpole. The one-loop contributions to the scalar tadpole (the one-
point function of φ), are shown in Figure 1. The contribution from the scalar
running in the loop is:

φ

q

= (−imλ)

∫
d4q

(2π)4

−i
q2 +m2 − iε

. (6.16)

The contribution from the fermion loop reads:

q

φ = (−1)(−iλ)

∫
d4q

(2π)4

−im
q2 +m2 − iε

, (6.17)

where the used the 〈ψψ〉 propagator in the loop. Note the overall −1 in (6.17),
because of the fermion loop. The two (divergent) tadpole contributions cancel out
precisely. The same holds, of course, for the φ̄ tadpole.

Let us insist on the fact that this cancellation relies on the precise values of the
cubic vertices (6.5) and (6.6) (−imλ and −iλ, respectively), which is a consequence
of supersymmetry. In a non-supersymmetric theory, the two divergences would not
cancel, and we would have to renormalise this term to zero “by hand.”

The vanishing of the tadpole also means that the vacuum expectation value
(5.88) in a supersymmetric vacuum is not renormalised at one loop (and in fact the
same holds at all orders).
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Scalar self-energy at zero external momentum. Consider the one-loop con-
tribution to the self-energy of the scalar φ—in other words, the 〈φ̄φ〉 two-point
function. Diagrammatically, it is given by a sum of three contributions:

Πφ̄φ(p2) =

+ + .

(6.18)

This expression vanishes in the limit of zero external momentum:

lim
p2→0

Πφ̄φ(p2) = 0 . (6.19)

At a formal level, this is easy to check, without the need of any regularisation.
From the three diagrams (6.18) with pµ = 0, we have:

Πφ̄φ(0) = (−imλ)2

∫
d4q

(2π)4

(
−i

q2 +m2

)2

− (−iλ)2 1

2

∫
d4q

(2π)4

tr(−σµσ̄ν)qµqν
(q2 +m2)2

+ (−iλ2)

∫
d4q

(2π)4

−i
q2 +m2

= 0 .

(6.20)

This “miraculous” cancelation should give us pause. What vanishes, here, is the
potential divergence that would renormalise the scalar mass, m2. For instance, if
we had a fermion-fermion-scalar vertex with some random coupling y ∈ R, namely:

L = y(ψψφ+ ψ̄ψ̄φ̄) , (6.21)

the fermion in the loop would give a contribution:

= −(−iy)2

∫
d4q

(2π)4

q2

(q2 +m2)2
∝ y2 Λ2 + · · · , (6.22)

if we use a hard cut-off regulator |q| ≤ Λ (the ellipsis denotes a lower-order, loga-
rithmic divergence). Whatever the chosen regularisation method, there is a para-
metrically large parameter that one must cancel “by hand” to fix the scalar mass
m2 at its physical value. In the Standard Model of particle physics, for instance,
this is the one-loop contribution from fermions to the mass of the Higgs boson.
That quadratic divergence cancels out in a supersymmetric theory, due to exact
and opposite contributions from the other two diagrams.

Vertex corrections. One can similarly check, with some more work, that the
total one-loop corrections to the vertices 〈φ̄φφ〉 and 〈φ̄φ̄φφ〉 are also trivial, in the
limit of vanishing external momenta.
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6.1.3 A simpler perturbation theory

One can better understand the nature of the cancellations due to supersymmetry by
considering an (equivalent) theory where we keep the auxiliary fields F̄ , F . Then,
the WZ Lagrangian:

L = −∂µφ̄∂µφ− iψ̄σ̄µ∂µψ + F̄F +m(Fφ+ F̄ φ̄− 1

2
ψψ +

1

2
ψ̄ψ̄)

+ λ(Fφ2 + F̄ φ̄2 − ψψφ− ψ̄ψ̄φ̄) .
(6.23)

In this formulation, we have the scalar propagators:

〈φ̄φ〉 =
−i

p2 +m2
, 〈F̄F 〉 =

ip2

p2 +m2
, 〈φF 〉 = 〈φ̄F̄ 〉 =

im

p2 +m2
, (6.24)

while the fermion propagator are unchanged. The second line in (6.23) only gives
two types of cubic vertices. In this language, one finds that [11]:

• The only renormalisation needed at one loop is due to the divergent contribu-
tion to the two-point functions. These give rise to a non-trivial wavefunction
renormalisation (proportional to |λ|2—namely, Zφ = 1 + c0(µ)|λ|2 + · · · ),
which is the same for all the chiral multiplet field components:

Zφ = Zψ = ZF ≡ ZΦ . (6.25)

• The mass m and coupling constant λ are not independently renormalised.
Instead, in a convenient renormalisation scheme, the renormalised quantities
can be written entirely in terms of ZΦ:

mR = Z−1
Φ m , λR = (ZΦ)−

3
2λ . (6.26)

In summary, there is a unique divergence that appears at one-loop in the WZ
model, corresponding to the anomalous dimension γφ of the chiral multiplet Φ.
That anomalous dimension is the same for all field components—that is:

∆[φ] = 1 +
1

2
γφ , ∆[ψ] =

3

2
+

1

2
γφ , ∆[F ] = 2 +

1

2
γφ . (6.27)

All order result. These one-loop results generalise to all order in perturbation
theory [21]. In fact, it turns out that one can always write down the effective action
as:

Leff = ZΦ

(
−∂µφ̄∂µφ− iψ̄σ̄µ∂µψ + F̄F

)
+m(Fφ+ F̄ φ̄− 1

2
ψψ + ψ̄ψ̄)

+ λ(Fφ2 + F̄ φ̄2 − ψψφ− ψ̄ψ̄φ̄) ,
(6.28)

where the only non-trivial renormalisation factor is the wavefunction renormalisa-
tion factor ZΦ, in front of the (massless) kinetic term. Then, the coupling constants
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m and λ are only renormalised in the sense that, when we write down the effective
Lagrangian in term of the renormalized fields

ΦR = Z
1
2
ΦΦ , (6.29)

we simply have:

Leff =
(
−∂µφ̄R∂µφR − iψ̄Rσ̄µ∂µψR + F̄RFR

)
+mR(FRφR + F̄Rφ̄R −

1

2
ψRψR + ψ̄Rψ̄R)

+ λR(FRφ
2
R + F̄Rφ̄

2
R − ψRψRφR − ψ̄Rψ̄Rφ̄R) ,

(6.30)

with the renormalised mass mR and coupling constant λR defined in (6.26).

6.2 Wilsonian effective action and the power of holomorphy

The above discussion of the Wess-Zumino model can be generalised to any field
theory of n chiral multiplets with canonical kinetic term. In the effective action,
we always have:

Leff =

∫
d2θd2θ̄

∑
i

ZΦiΦ̄iΦ
i +

∫
d2θW (Φ) +

∫
d2θ̄W̄ (Φ) . (6.31)

with just a wavefunction renormalisation factor for each chiral multiplet. The
simple slogan is that:

the superpotential W (Φ) is not renormalised, at all!

This is the famous non-renormalisation theorem of 4d N = 1 supersymmetry. In
the early 1990’s, Seiberg gave a very simple proof of it, based entirely on symmetry
arguments [22].

6.2.1 Wilsonian effective action, in one word

At this point, we should mention, a bit more explicitly, that we are thinking of
quantum corrections in the so-called Wilsonian framework. In short, the idea of
the Wilsonian renormalisation group (RG) flow is to start with a field theory, with
an action S, defined at a scale µ0 = ΛUV (which might be sent to infinity, if the
theory is renormalisable), and to compute the effective action Seff(µ) at a scale
µ < µ0 by “integrating out” all degrees of freedom from µ0 down to µ. That is, in
momentum space, one splits the fields into into high and low momentum modes:

ϕ(q) =

{
ϕH(q) if µ < |q| ≤ µ0

ϕL(q) if |q| ≤ µ ,
(6.32)

so that the path integral takes the form:

Z =

∫
[Dϕ] exp

(
iS[ϕ]

)
=

∫
[DϕL][DϕH ] exp (iS[ϕL, ϕH ]) . (6.33)
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Then, the Wilsonian action is defined by integration over the high-momentum
modes:

exp (iSeff,µ[ϕL]) =

∫
[DϕH ] exp (iSeff [ϕL, ϕH ]) . (6.34)

In general, the effective action at “low” energy µ is a very complicated (and
generally unknown) sum over many operators:

Seff,µ =

∫
d4x

∑
O
gO(µ)O(x) . (6.35)

Moreover, the fundamental fields of the UV description might not be the most
natural variables to describe the low-energy effective theory. For instance, the low-
energy effective action for real-world QCD is well-approximated by the so-called
chiral Lagrangian describing interactions amongst mesons. This is a very different
low-energy effective description from the “fundamental” quarks and gluon of QCD
in the UV.

If the RG flow is reliably perturbative, we have more control. For a theory
without massless excitations, the Wilsonian effective action is essentially the same
as the 1PI effective action of standard textbook, in the limit µ → 0 (in that case,
since there are no massless excitations, we can essentially “stop integrating” below
the scale of the lowest excitation). One advantage of the Wilsonian framework is
that we do not take the strict IR limit (µ→ 0), which would correspond to “doing
the full path integral”—instead, we stop “path integrating” at some intermediate
“low energy” but finite energy scale µ, and obtain an “effective” QFT (i.e. a
path integral) for the remaining low-energy modes (which may include massless
particles).

For a pedagogical introduction to the Wilsonian approach to renormalisation,
you are invited to read, for instance, chapter 12 of Peskin & Shroeder [23].

6.2.2 Holomorphy and non-renormalisation of the superpotential

In QFT, as in quantum mechanics, symmetries lead to selection rules. In the
Wilsonian framework, this means that they constraint the form of the operators
that can appear in the effective action.

A powerful way to make such selection rules manifest is often to treat all cou-
pling constants g as “background fields,” g(x), which are frozen to some constant
value g = 〈g〉—for instance, we can think that they appear as very massive fields
in some larger theory; it is also perfectly fine to think of background fields only as
a convenient bookkeeping device.

Then, consider a theory with global symmetry G = U(1), for simplicity, and
consider adding the perturbation:

Lg = gO , (6.36)

which breaks that U(1) explicitly, because the operator O has charge a q[O] = qO.
If we think of the coupling g as a background field, we can assign it a charge
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q[g] = −qO, so that the Lagrangian term (6.36) is actually invariant. In that
formulation, the U(1) symmetry is now spontaneously broken by the “VEV” g of
the background field g(x). Then, the quantum corrections to any observable after
the deformation must depend on g in a way that respects the symmetry.

When dealing with the superpotential of a supersymmetric theory, we apply the
same logic. Consider:

W = λO , (6.37)

with O a chiral superfield. Then, by supersymmetry, λ should also be thought as a
chiral superfield, with lowest component a complex scalar. The coupling constant
is then a VEV λ ∈ C of that scalar. Now, we directly have a very powerful
constraint: since the superpotential is holomorphic in the chiral superfields, any
quantum correction can only appear holomorphically in λ, as well.

Thus, a correction:

W = λO + λ2O′ + · · · , (6.38)

may be allowed, but any correction involving λ̄ is ruled out. Moreover, an holomor-
phic function is entirely determined by its singularities and its asymptotics. Thus,
it is not too surprising that analyticity combined with our knowledge of the weak
coupling limit often completely determines the effective superpotential.

The WZ model, revisited. For illustration purpose, let us again specialise to
our simple WZ model:

Wµ0 =
m

2
Φ2 +

λ

3
Φ3 = µ0

m̃

2
+
λ

3
Φ3 . (6.39)

Here, we introduced the dimensionless coupling:

m̃ =
m

µ0
,

while λ is already dimensionless. The free theory at W = 0 has a U(1) × U(1)R
symmetry. Treating m̃ and λ as background fields, we assign the charges:

U(1) U(1)R
Φ 1 1
m̃ −2 0
λ −3 −1

(6.40)

Then, the most general form allowed for the effective superpotential as a scale
µ < µ0 is:

Wµ = µm̃Φ2 f

(
λΦ

µm̃
,
µ

µ0

)
, (6.41)

with f an arbitrary function of its dimensionless, neutral parameters. The function
f should be analytic in its first argument, and regular in the λ→ 0 limit. Therefore,
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expanding out f , we find:

Wµ =

∞∑
n=0

cn
λn

(µm̃)n−1
Φn+2 . (6.42)

We should also have a regular m̃→ 0 limit, so the terms with n > 1 are disallowed.
Thus, we find:

Wµ = c0µm̃Φ2 + c1λΦ3 , (6.43)

for c0 and c1 some functions of µ/µ0. Consider now the limit λ → 0; then, the
theory is free and the mass terms at the scales µ0 and µ can be matched. This fixes
c0 = 1

2 when λ = 0. Indeed, in a free theory we simply have a classical running of
the mass coupling m̃, which is just dimensional analysis:

Wµ =
1

2
µm̃(µ)Φ2 , m̃(µ) =

m

µ
=
µ0

µ
m̃(µ0) . (6.44)

At λ 6= 0, we can match the term c1 in (6.43) by comparing to perturbation theory.
We can just consider the tree-level approximation, which fixes c1 = 1

3 .
In conclusion, we find:

Wµ = µ
m̃(µ)

2
Φ2 +

λ

3
Φ3 , (6.45)

where the only “renormalisation” of the couplings between the UV scale µ0 and
the IR scale µ is through the classical scaling of the coupling constants. This sort
of analysis can be generalised to any W (Φ) in a theory of only chiral multiplet.
We can then conclude that the superpotential is not renormalised at any order in
perturbation theory (and even, in fact, non-perturbatively).

6.3 “Exact” β-functions for the physical couplings

The above discussion was valid in a choice of renormalisation scheme as in (6.31),
where the wavefunction renormalisation factor appears explicitly in front of the
Kähler potential. Thus, the precise statement of the non-renormalisation theorem
is that there exists a (supersymmetry-preserving) renormalisation scheme, which
we might call the “holomorphic scheme,” in which the superpotential is not renor-
malised, and the only renormalisation is through wave-function renormalisation
that only affects the Kähler potential.

Classical β-functions. Recall that the β-function of any coupling g is defined
as:

β(g) = µ
∂g(µ)

∂µ
. (6.46)

These first order equations determine how the coupling constants “flow” as we
change the scale µ.
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In the holomorphic scheme, the running of the superpotential coupling constants
is purely classical. Consider a coupling:

W = λO = λ
∏
i

(Φi)di , (6.47)

with O an operator of classical dimension ∆ ≡
∑

i di, so that λ has classical di-
mension 3−∆. We define the dimensionless coupling, at any scale µ, to be:

λ̃ = µ∆−3λ . (6.48)

This obviously gives the “classical” β-function:

β(λ̃) = (∆− 3)λ̃ . (6.49)

Recall that, from this (classical) β function, we classify the possible operators O
into:

• Relevant operators, if the β function is negative. That is, if ∆ < 3. These
couplings—which, for ∆ = 2, are just mass terms—go to zero in the UV, but
dominate in the IR.

• Irrelevant operators, if the β function is positive. That is, if ∆ > 3.
Such couplings blow up in the UV and they make the theory power-counting
non-renormalisable.

• Marginal operators, if β = 0. These are the classically marginal operators
of dimension ∆ = 3.

This is just a fancy way to do dimensional analysis.

Physical coupling constants. While the so-called holomorphic superpotential
couplings, that appear in W , are not renormalised in the holomorphic scheme, does
that mean that a physical observer in, say, the WZ model, would conclude that the
quartic vertex (6.7) does not change as we vary the energy of incoming particles
in some scattering experiment? Indeed, no. The point is that, in computing such
physical observables, we would consider the canonically normalised fields:

Φi
R = Z

1
2

Φi
Φi . (6.50)

In term of these, the superpotential coupling (6.47) takes the form:

W = λROR = λR
∏
i

(Φi
R)di , λR ≡

(∏
i

(ZΦi)
− di

2

)
λ . (6.51)

with λR the “physical” coupling constant. We again define the dimensionless cou-
pling:

λ̃R = µ∆−3

(∏
i

(ZΦi)
− di

2

)
λ . (6.52)
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Its β-function is then given by:

β(λ̃R) =

(
−3 +

∑
i

(
1 +

1

2
γφi

)
di

)
λ̃R , (6.53)

with γφi the anomalous dimension of Φi, as defined in (6.10) The equation (6.53)
is an “exact” expression for the β-function of λR, in the sense that the running
of the physical coupling λR is entirely determined if we know the exact quantum
dimensions (6.11) of the chiral fields Φi. Of course, unlike the superpotential,
the anomalous dimensions γφ (or, equivalently, the wavefunction renormalisation
factors ZΦ) receive corrections at every order in perturbation theory.

6.4 General comment on non-renormalisation theorems

This concludes this discussion of supersymmetric theories of chiral multiplets. It is
worth pausing to absorb the main lesson. We have seen that superpotential terms,
often reffered to as “F-terms,” are not renormalised. This is a very general lesson
that apply to other supersymmetric theories, and even to string theory: supersym-
metry often allows us to consider some “holomorphic sector” of the larger theory,
which contains observables that are not renormalised at all, or only renormalised at
one-loop order. Such non-renormalisation theorems are very powerful, since they
often allow us to reach interesting conclusions about supersymmetric QFTs which
are otherwise in a strong coupling regime.

However, we should always keep in mind that the “holomorphic sector” is not
the full theory. To answer many finer questions—or, indeed, many basic questions
such as “what are the physical Yukawa coupling constants?”—, we will inevitably
need some knowledge of the quantum corrections to the Kähler potential—often
referred to as “D-terms.” That remains a very hard problem beyond perturbation
theory, just like in any other non-supersymmetric QFT.

7 4d N = 1 supersymmetry, part II: gauge theories

In this section, we discuss how to write down 4d N = 1 supersymmetric theories
that contain gauge fields.

7.1 Classical and quantum gauge theory: executive summary

Let us first briefly review (non-supersymmetric) gauge theories, mostly to set up
our notation.
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7.1.1 Classical gauge theory

We denote by G a Lie group, with g = Lie(G) its Lie algebra. Let T a denote the
Hermitian generators, which satisfy: 26

[Ta, Tb] = ifab
cTc , (7.1)

with fab
c the structure constants. We normalise the generators such that, in the

adjoint representation, we have:

Tr(T aT b) = kδab , k > 0 . (7.2)

Let Aµ denote a gauge field for some “gauge group” G. This is a covector field
valued in the adjoint representation of g—that is, g itself (or rather, ig):

Aµ(x) = Aaµ(x)Ta . (7.3)

For many purposes, it is more convenient to view Aµ as a Lie-algebra-valued one-
form:

A ≡ Aµ(x)dxµ , (7.4)

although we will not emphasise that geometric viewpoint in the following.

Non-abelian gauge field. Mathematically, a gauge field A is a connection on
a principal G-bundle over space-time, P → R1,3. For physicists, that essentially
means that we declare that two gauge fields Aµ and A′µ are physically equivalent if
they are related as:

A′µ = g(x) (Aµ + i∂µ) g−1(x) , (7.5)

with g(x) some group-valued function:

g(x) : R1,3 → G . (7.6)

This is called a gauge transformation. We mostly care about infinitesimal gauge
transformations connected to the identity. Consider:

g(x) = eiα(x) , α(x) ≡ αa(x)Ta ∈ ig . (7.7)

Then, we have:
δαAµ = ∂µα+ i[α,Aµ] , (7.8)

with δαAµ ≡ A′µ −Aµ at first order in α.
We define the field-strength of the gauge field (a.k.a. the curvature of the

connection A) by:
Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] . (7.9)

26Note that the actual generator of the Lie algebra g is iTa, which we denote by Ta ∈ ig.
We follow the usual physics notation where Ta are Hermitian generators. Mathematicians would
consider the anti-Hermitian generator Tmath

a = iTa ∈ g, so that the commutator of two generators
is a generators, instead of i times a generators in the “physics” convention.
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By construction, we have:

F ′µν = gFµνg
−1 , ↔ δαFµν = i[α, Fµν ] , (7.10)

under gauge transformation.

Abelian gauge field. An abelian gauge field is a special case of the above,
when G = U(1)n. For each U(1) factor, we have an abelian gauge field Aµ which
transforms simply as:

δαAµ = ∂µα . (7.11)

In that case, the field strength:

Fµν = ∂µAν − ∂νAµ , (7.12)

is gauge-invariant.

Yang-Mills action. Consider G a simple gauge group. The Yang-Mills (YM)
action reads:

SYM =

∫
d4x tr

(
− 1

4g2
FµνF

µν

)
. (7.13)

This is obviously gauge invariant—that is, invariant under any gauge transforma-
tion (7.5) of the gauge field Aµ. Here, g2 is the Yang-Mills gauge coupling. The
YM action is the canonical kinetic term for a gauge field.

Matter fields. Given a gauge field Aµ, we can introduced charged matter fields
ϕ (which might be scalars or spinors) in some representation R of G. By definition,
the matter field ϕ transforms in the representation R if we have: 27

ϕ′ = R(g)ϕ , R(g) ∈ R , (7.14)

under the gauge transformation (7.5). Note that R(g), like g itself, depends on the
space-time coordinates. At the level of the Lie algebra, we have:

δαϕ = iα(R)ϕ = iαaT (R)
a ϕ , (7.15)

with T
(R)
a the the Lie algebra generators in the representation R. For instance, if

ϕ is in the adjoint representation, we simply have δαϕ = i[α,ϕ].

The gauge-covariant derivative (or covariant derivative, for short) is defined as:

Dµϕ = (∂µ − iAµ)ϕ , (7.16)

27Mathematically, a charged field is a section of a vector bundle V → E → R1,3 associated to
the principal G-bundle G→ P → R1,3, with V the representation vector space.
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with the gauge field acting in the appropriate representation, Aµ = AaµT
(R)
a . By con-

struction, Dµϕ transforms covariantly, in the same representation as ϕ: δαDµϕ =
iαDµϕ. Note also that we have:

[Dµ, Dν ]ϕ = −iFµνϕ . (7.17)

In term of the covariant derivative, the gauge transformation of the gauge field
itself can be written as:

δαAµ = Dµα . (7.18)

We can easily write down gauge-invariant kinetic terms, by replacing the deriva-
tives with covariant derivatives—for instance:

L = −Dµφ̄D
µφ , (7.19)

for a scalar field. Here, we assume that φ and φ̄ transform in conjugate represen-
tations.

7.1.2 Quantum gauge theory: running of the gauge coupling

To properly quantise a gauge theory, recall that one has to carefully “fix a gauge.”
There are various methods to do that, at various levels of mathematical sophis-
tication. Then, the gauge-fixed quantum theory makes perfect sense, at least in
perturbation theory.

In our discussion of supersymmetric gauge theories, we will need to keep in
mind two important aspects of the quantum theory: 28

• The YM gauge coupling constants undergo RG flow—they vary as we vary
the RG scale µ. Depending on the sign of the β-function, the theory is either
asymptotically free (free in the UV, and strongly-coupled in the IR), or IR
free. Only asymptotically free theories are believed to be “fully consistent
QFTs,” but any gauge theory can be considered as an effective QFT, in the
Wilsonian framework.

• Gauge theories can be anomalous. This means that the gauge invariance of
the classical action is violated by the quantum effective action (due to a non-
trivial transformation of the path-integral measure). When that is the case,
the theory is inconsistent.

In the following, we review some key results, without derivation.

28This will be useful for the ‘Advanced Supersymmetry’ lectures. The discussion of gauge theo-
ries in these lectures will be mostly classical.
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One-loop β function. Consider a four-dimensional YM gauge theory coupled
to complex scalars φ and Weyl fermions ψ in representation Rφ and Rψ of the
gauge group, respectively. (The representations can be reducible.) Schematically,
the “minimal-coupling” Lagrangian reads:

L = − 1

4g2
FµνF

µν −Dµφ̄D
µφ− iψ̄σ̄µDµψ + · · · , (7.20)

where the trace over the gauge indices is left implicit. Here, the YM coupling only
appears in the front of the first term. The physical (or “canonical”) normalisation,

however, corresponds to rescaling the gauge field as Aµ = gA
(c)
µ , so that positive

powers g appears in interactions vertices, including through the covariant derivative

Dµ = ∂µ − igA(c)
µ .

The Yang-Mills coupling g2 runs with energy. At one-loop, the β-function is
given by:

β

(
1

g2

)
=

b0
8π2

, b0 =
11

6
T (adj)− 1

6
T (Rφ)− 1

3
T (Rψ) , (7.21)

thus 1/g2 runs logarithmically in µ:

1

g(µ)2
=

1

g(µ0)2
+

b0
8π2

log
µ

µ0
. (7.22)

In (7.21), T (R) denotes the quadratic index of the representation R, defined by:

tr
(
T (R)
a T

(R)
b

)
= T (R)

δab
2

. (7.23)

(If R is reducible, T (R) is the sum of the indices of its irreducible representations.)
In the following, we will only deal with G = U(1) or G = SU(N). We normalise the
generators so that the index is equal to 1 for the fundamental and antifundamental
representations of SU(N):

T (N) = T (N) = 1 , for g = su(N) . (7.24)

Then, we have:
T (adj) = 2N , for g = su(N) , (7.25)

for the adjoint representation. Note that, for G = U(1), we have T (adj) = 0 and
thus (7.21) specialises to:

b
G=U(1)
0 = −1

6

∑
φ

(qφ)2 − 1

3

∑
ψ

(qψ)2 , (7.26)

a sum over the U(1) charges, q, of the matter fields. Note that b
G=U(1)
0 < 0, so

that the U(1) gauge coupling (i.e. the effective “electric charge”) goes to zero at
low energy, 29 and blows up at high energy (that is called a Landau pole).

29If all the matter fields are massless. Matter fields with a non-zero mass m decouple from the
RG flow at scales µ < m. That is what happens in the real-world QED, since the electron has a
mass.
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For G a simple Lie group without too many matter fields, we can have b0 > 0.
In that case, the theory is asymptotically free, meaning that the YM coupling g2

goes to zero in the UV limit. Conversely, it becomes large at low energy. One
defines the dynamically-generated scale by:

Λ = µe
− 8π2

b0g
2(µ) . (7.27)

This scale is independent of µ; more precisely, if we fix g2(µ0) in the UV, then
Λ(µ) = Λ(µ0) at any scale, in the one-loop approximation, due to (7.21). This is
the (infrared) scale at which the gauge coupling blows up, and perturbation theory
become unreliable.

Anomaly-free conditions. Consistency of the quantum theory requires that the
gauge symmetry G be non-anomalous. Four-dimensional anomalies are only due
to chiral (Weyl) fermions. The potential gauge anomaly is proportional to the
following numerical coefficients:

Aabc = tr
(
T

(Rψ)
a {T (Rψ)

b , T
(Rψ)
c }

)
=

1

2
A
(
R(Rψ

)
dabc , (7.28)

where dabc is a symmetric invariant tensor. Amongst simple Lie groups, it is non-
trivial only for g = SU(N) with N ≥ 3. In that case, we have the cubic index
coefficients:

A(N) = 1 , A(N) = −1 , A(adj) = 0 , (7.29)

for the (anti)fundamental, anti-fundamental and adjoint representations, respec-
tively. In particular, a QCD-like gauge theory with G = SU(N) with N+

f fermions

in the fundamental representation and N−f fermions in the anti-fundamental repre-
sentations (and possibly a number of fermions in the adjoint) will be anomaly-free
if and only if:

A
(
R(Rψ

)
= N+

f −N
−
f = 0 . (7.30)

Thus, we must have as many fundamental as anti-fundamental fermions, so that the
total gauge anomaly vanishes. The number Nf = N+

f = N−f is called the “number
of flavors.” In QCD, for instance, we have G = SU(3) and Nf = 6 (called up,
down, strange, charm, top, bottom).

Similarly, in an abelian gauge theory with G = U(1), we have the anomaly-free
conditions: ∑

ψ

(qψ)3 = 0 ,
∑
ψ

qψ = 0 . (7.31)

The first condition is the vanishing of the cubic anomaly (7.28), while the second
one is the vanishing of the so-called gravitational-gauge mixed anomaly.
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7.2 Abelian vector multiplet

Let us now consider the 4d N = 1 supersymmetric version of a gauge theory. The
first ingredient is the vector multiplet, which combines the gauge fields Aµ with a
fermionic superpartner λ, λ̄ called the gaugino.

We first consider the supersymmetric version of an abelian theory, G = U(1).
That is, we want to build a supersymmetric version of Maxwell theory, with a gauge
field (i.e. an ‘electromagnetic potential’) Aµ subject to the gauge invariance:

Aµ(x)→ Aµ(x) + ∂µα(x) . (7.32)

Looking at the general multiplet (5.17), we see that it contains a four-vector vµ,
which we would like to identify with Aµ. In fact, the gauge field is real, so a natural
guess is that it will sit in a real multiplet, which satisfies S† = S.

A massless gauge field Aµ has 2 degrees of freedom off-shell—recall the helicity
states λ = ±1 from the discussion around equation (3.45). On the other hand, an
off-shell gauge field should have 4 − 1 = 3 degrees of freedom—that is, 4 degrees
of freedom modulo one degree of freedom which is pure gauge, due to (7.32). The
fermion superpartner consists of one Weyl fermion, which we denote by λ, λ̄, for a
total of 4 off-shell degrees of freedom. Thus, we would like to introduce one real
auxiliary field, which we denote D, to preserve the fermion-boson degeneracy.

The real superfield seems to contain too many fields, but there is a simply way
out. To combine gauge invariance with supersymmetry, one should really find a
superfield generalisation of the gauge transformation (7.32).

Definition: An abelian 30 vector superfield, V , is a real superfield,

V † = V , (7.33)

subject to the gauge equivalence relation:

V → V +
i

2

(
Ω− Ω̄

)
, (7.34)

where Ω, Ω̄ are chiral and anti-chiral multiplets, respectively, conjugate to each
other.

This is obviously compatible with the reality condition (7.33). We write the corre-
sponding infinitesimal gauge transformation as:

δΩV =
i

2

(
Ω− Ω̄

)
. (7.35)

The supersymmetric gauge transformation (7.34) gives us the expected counting of
off-shell degrees of freedom. The real multiplets has 8 + 8 real degrees of freedom,
but the Ω-valued gauge equivalence removes 4 + 4 degrees of freedom.

30Here, for G = U(1). Of course, for any abelian gauge group G = U(1)n, we would just have n
distinct vector superfields.
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The expansion of the superfield V in components is given by:

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θθM(x)− i

2
θ̄θ̄M̄(x)

− θσµθ̄Aµ(x) + iθθθ̄

(
λ̄(x) +

i

2
(σ̄µ∂µχ(x))

)
− iθ̄θ̄θ

(
λ(x) +

i

2
σµ∂µχ̄(x)

)
+

1

2
θθθ̄θ̄

(
D(x) +

1

2
∂2C(x)

)
,

(7.36)
just like in (5.18), with vµ = Aµ. It is easy to work out the form of the gauge
transformation (7.34) in component. Let us denote by:

Ω = (ω, ψΩ, FΩ) , Ω̄ = (ω̄, ψ̄Ω̄, F̄ Ω̄) , (7.37)

the chiral multiplet component fields. Then, we have

C → C +
i

2
(ω − ω̄) , Aµ → Aµ + ∂µ

(
ω + ω̄

2

)
,

χ→ χ+
1√
2
ψΩ , λ→ λ

χ̄→ χ̄+
1√
2
ψ̄Ω̄ , λ̄→ λ̄

M →M + FΩ , D → D .

M̄ → M̄ + F̄ Ω̄ ,

(7.38)

Thus, the field Aµ transforms like an abelian gauge field (7.32), as needed, with the
real gauge function:

α(x) =
ω(x) + ω̄(x)

2
. (7.39)

We also see that the field components C,χ, χ̄,M and M̄ are pure gauge—that is,
they are gauge-equivalent to zero.

7.2.1 Supersymmetry in the Wess-Zumino gauge

For many purposes, it will be useful to fix the so-called Wess-Zumino (WZ) gauge,
defined by:

C = χ = χ̄ = M = M̄ = 0 . (7.40)

Note that the WZ gauge is not compatible with supersymmetry. Indeed, even
if we start from the WZ gauge (7.40), we see from (5.16) that a supersymmetry
transformation will generate the new components:

δC = 0 , δχα = i(σµε̄)αAµ , δM = 2ε̄λ̄ ,

δχ̄α̇ = −i(εσµ)α̇Aµ , δM̄ = 2ελ .
(7.41)
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However, one can compensate (7.41) with another gauge transformation, to restore
the WZ gauge. Namely, let us define the gauge transformation:

δΩWZ
V =

i

2
(ΩWZ − Ω̄WZ) , (7.42)

with the gauge parameters:

ωΩWZ = 0 , ω̄Ω̄WZ = 0 ,

ψΩWZ
α = −i

√
2(σµε̄)αAµ , ψ̄Ω̄WZ

α̇ = i
√

2(εσµ)α̇Aµ ,

FΩWZ = −2ε̄λ̄ , F̄ Ω̄WZ = −2ελ .

(7.43)

Then, by construction, the modified supersymmetry transformation:

δ̂ ≡ δ + δΩWZ
(7.44)

preserves the WZ gauge.

Supersymmetry transformations. A vector multiplet in WZ gauge only con-
tains the physical fields:

VWZ = (Aµ, λ, λ̄,D) . (7.45)

The corresponding superfield reads:

V = −θσµθ̄Aµ + iθθθ̄λ̄− iθ̄θ̄θλ+
1

2
θθθ̄θ̄ D , (7.46)

After fixing the WZ gauge, we still have the residual gauge invariance with param-
eters:

Ω = Ω̄ = (α, 0, 0) , (7.47)

which just gives the U(1) gauge transformation (7.32). Note that λ, λ̄ and D are
gauge-invariant. The supersymmetry transformations of VWZ are:

δ̂Aµ = iεσµλ̄+ iε̄σ̄µλ ,

δ̂λα = iεαD + (σµνε)αFµν ,

δ̂λ̄α̇ = −iε̄α̇D − (ε̄σ̄µν)α̇Fµν ,

δ̂D = −εσµ∂µλ̄+ ε̄σ̄µ∂µλ ,

(7.48)

with Fµν the (gauge-invariant) field strength defined in (7.12). Note that we have:

δ̂Fµν = iε(σν∂µλ̄− σµ∂ν λ̄) + iε̄(σ̄ν∂µλ− σ̄µ∂νλ) . (7.49)
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7.2.2 The abelian field-strength multiplet

The fields:
λα , λ̄α̇ , Fµν , D , (7.50)

form a gauge-invariant supersymmetry multiplet on their own. In fact, looking at
the supersymmetry variation of λ in (7.48), we see that it is proportional to a ε
only, without ε̄ contribution. Thus, we may suspect that we can organise the fields
(7.50) into a pair of chiral and anti-chiral multiplets, which we will call Wβ and
W̄β̇—they are just like any chiral multiplet, except that they have an overall spinor
index:

φWβ = λβ ,

ψWαβ = − i√
2
εαβD −

1√
2

(σµν)αβFµν ,

FWβ = i(σµ∂µλ̄)α .

(7.51)

Note that the bispinor ψWαβ has a natural decomposition into a scalar (the field D)
and an self-dual two-form (namely, the self-dual part of Fµν), in agreement with
(2.25).

Definition: Given an abelian vector superfield V , the field strength chiral and
anti-chiral superfields are defined as:

Wα = − i
4

D̄D̄DαV , W̄α̇ = − i
4

DDD̄α̇V . (7.52)

The superfields W and W̄, defined in this way, are fully gauge invariant under the
gauge transformation (7.34). Indeed, a gauge transformation gives:

δΩWα =
1

8
D̄D̄Dα(Ω− Ω̄) = −1

8
D̄α̇{D̄α̇,Dα}Ω = 0 , (7.53)

where we used D̄α̇Ω = 0, DαΩ̄ = 0 and (5.7). From the definition (7.52), it also
follows that:

D̄β̇Wα = 0 , DβW̄α̇ = 0 . (7.54)

We also have the non-trivial identity:

DαWα − D̄α̇W α̇ = 0 . (7.55)

This is the superspace generalisation of the Bianchi identity:

εµνρσ∂νFρσ = 0 . (7.56)

In components, we have:

Wβ(z, θ) = λβ − θα ((σµν)αβFµν + iεαβD) + iθθ(σµ∂µλ̄)β , (7.57)

and similarly for W̄β̇. Here, we used the chiral coordinate zµ for simplicity.
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7.3 Non-abelian vector multiplet

Consider now a non-abelian vector superfield:

V : R1,3|4 → ig , (7.58)

with g the Lie algebra of some compact gauge group G.

Definition: For any g, a vector superfield V is a real superfield subject to the
gauge equivalence:

e−2V → eiΩ̄e−2V e−iΩ , (7.59)

with Ω, Ω̄ some chiral and anti-chiral multiplet valued in the adjoint representation
of g, and conjugate to each other.

The corresponding infinitesimal gauge transformation is given by:

δΩV =
i

2

(
Ω− Ω̄

)
+
i

2
[Ω + Ω̄, V ] , (7.60)

generalising (7.35) to the non-abelian case.

7.3.1 Supersymmetry in the Wess-Zumino gauge

We can again make use of the large gauge invariance and go to a Wess-Zumino
gauge, exactly as in (7.40). In WZ gauge, the vector superfield reads:

V = −θσµθ̄Aµ + iθθθ̄λ̄− iθ̄θ̄θλ+
1

2
θθθ̄θ̄ D , (7.61)

where all the fields are valued in the adjoint representation of g. We can again
define modified supersymmetry transformations compatible with the WZ gauge,

δ̂ ≡ δ + δΩWZ
(7.62)

with the compensating gauge parameters given in (7.43). We have:

i

2
(ΩWZ + Ω̄WZ) = θσµε̄Aµ + θ̄σ̄µεAµ − iθθε̄λ̄− iθ̄θ̄ελ+ · · · , (7.63)

where the ellipsis denotes higher-order terms in θ, θ̄. Then, a direct computation
shows that, in the WZ gauge, the supersymmetry transformations of the vector
multiplet take the form:

δ̂Aµ = iεσµλ̄+ iε̄σ̄µλ ,

δ̂λα = iεαD + (σµνε)αFµν ,

δ̂λ̄α̇ = −iε̄α̇D − (ε̄σ̄µν)α̇Fµν ,

δ̂D = −εσµDµλ̄+ ε̄σ̄µDµλ ,

(7.64)

where Fµν is the non-abelian field strength, and Dµ is the covariant derivative—for
instance, Dµλ = ∂µλ− i[Aµ, λ]. The new Lie-algebra commutators terms in (7.64)
arise from the commutator in:

δΩWZ
V =

i

2

(
ΩWZ − Ω̄WZ

)
+
i

2
[ΩWZ + Ω̄WZ, V ] .
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7.3.2 Non-abelian field-strength superfield

The non-abelian field-strength superfield should transform covariantly under gauge
transformations, namely:

Wα → eiΩWαe
−iΩ , W̄α̇ → eiΩ̄W̄α̇e

−iΩ̄ , (7.65)

Note that these gauge transformations are compatible with the chirality conditions:

D̄α̇Wβ = 0 , DαW̄β̇ = 0 . (7.66)

This can be achieved with the following definition:

Wα =
i

8
D̄D̄e2V Dαe

−2V , W̄α̇ = − i
8

DDe−2V D̄α̇e
2V . (7.67)

which reduces to (7.52) in the abelian case. Expanding out the superfield, we find:

Wβ(z, θ) = λβ − θα ((σµν)αβFµν + iεαβD) + iθθ(σµDµλ̄)β ,

W̄β̇(z̄, θ̄) = λ̄β̇ − θ̄
α̇
(

(σ̄µν)α̇β̇Fµν − iεα̇β̇D
)
− iθ̄θ̄(Dµλσ

µ)β̇ ,
(7.68)

in the chiral and anti-chiral coordinates, respectively.

7.4 The super-Yang-Mills Lagrangian

Given the field-strength superfield, it is very easy to build a supersymmetric La-
grangian. A very important property of the vector multiplet of 4d N = 1 super-
symmetry is that the field-strength sits inside a chiral superfield. Indeed, one can
easily check that the Yang-Mills term can be build from a F-term:

− 1

2g2

∫
d2θ tr (WαWα) = − 1

4g2
Tr (FµνF

µν) + · · · , (7.69)

where the ellipsis denotes the supersymmetric completion. Here, we introduced
the real YM coupling constant, g2, as in (7.13). However, recall that the coupling
constants appearing in F -terms are naturally seen as complex couplings, which
enter holomorphically. In super-Yang-Mills (SYM) theory, it is customary to define
the holomorphic gauge coupling:

τ ≡ θ

2π
+

4πi

g2
. (7.70)

We will discuss the meaning of θ, the so-called θ-angle, momentarily. Then, the full
Lagrangian of SYM can be written in superspace simply as:

LSYM = − τ

16πi

∫
d2θ tr WαWα +

τ̄

16πi

∫
d2θ̄ tr W̄α̇W̄ α̇ . (7.71)
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This gives:

LSYM =
1

g2
tr

(
−1

4
FµνF

µν − iλ̄σ̄µDµλ+
1

2
D2

)
− θ

64π2
tr (εµνρσFµνFρσ) . (7.72)

The term proportional to 1/g2 is the expected supersymmetric completion of the
YM kinetic, with a standard kinetic term for the gaugino λ, a Weyl fermion (that
is, a Majorana fermion) in the adjoint representation, and a quadratic term for the
auxiliary field D.

Note that, in the above, we implicitly assumed that the gauge group G was
simple (or U(1)). In the case when G is the product of several simple factors and
U(1)’s—for instance, G = SU(3)×SU(2)×U(1) as in the Standard Model—, there
is an independent gauge coupling constant τ for each gauge group.

Gaugino R-charge. As we can see from (7.61), the gaugino λ has R-charge 1:

R[λ] = 1 , R[λ̄] = −1 . (7.73)

Therefore, the chiral superfield Wα also has R-charge 1, so that the SYM La-
grangian preserves U(1)R.

7.5 Charged matter fields and supersymmetric Lagrangians

Matter fields in 4d N = 1 supersymmetric gauge theories sit in chiral multiplets,
Φ. We take Φ to transform in some (generally reducible) representation R of G.
Therefore, Φ̄ transforms in the conjugate representation R̄.

A gauge transformation acts on the matter superfields as:

Φ→ eiΩΦ , Φ̄→ Φ̄e−iΩ̄ . (7.74)

The minimal coupling to the vector multiplet takes the form:

LΦ̄Φ =

∫
d2θd2θ̄ Φ̄e−2V Φ . (7.75)

This Lagrangian is obviously gauge invariant under supersymmetric gauge transfor-
mations, (7.59) together with (7.74). In the Wess-Zumino gauge, using the explicit
expression (7.61) for V and the fact that:

V 3 = 0 , (7.76)

it is easy to check that:

LΦ̄Φ = −Dµφ̄D
µφ− iψ̄σ̄µDµψ + F̄F − φ̄Dφ− i

√
2φ̄λψ + i

√
2λ̄ψ̄φ . (7.77)

Note the coupling to the D term, as well as the Yukawa coupling involving the
chiral fermion and the gaugino.
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7.6 Scalar potential and classical vacuum equations

Using the above, we can write down the supersymmetric Lagrangian for a com-
pletely general renormalizable supersymmetric gauge theory.

For simplicity, let us choose G to be a simple compact Lie group, and consider
some matter field in chiral multiplet, Φ, in some (generally reducible) representa-
tion R. The full Lagrangian for the vector and chiral multiplets can be written
compactly, in superspace, as: 31

L =

∫
d2θd2θ̄ Φ̄e−2V Φ− τ

16πi

∫
d2θ tr(WW) +

τ̄

16πi

∫
d2θ̄ tr(W̄W̄)

+

∫
d2θW (Φ) +

∫
d2θ̄W̄ (Φ̄) .

(7.78)

Here, W (Φ) is some gauge invariant holomorphic polynomial in Φ (which we take
to be at most cubic in the renormalisable theory).

Note that the Lagrangian of any renormalisable 4d N = 1 supersymmetric gauge
theory is fully determined by the data of:

• The gauge group G with gauge coupling(s) τ = θ
2π + 4πi

g2 .

• The representation R for the chiral multiplets.

• The superpotential W (Φ).

All the various interactions terms are then determined by the combination of gauge
invariance and supersymmetry, as well as by W .

7.6.1 Classical scalar potential and vacuum manifold

By looking at the classical Lagrangian in components, it is easy to study the classical
scalar potential of the gauge theory. The adjoint-valued auxiliary field D enters as:

L ⊃ 1

2g2
D2 − φ̄Dφ , (7.79)

in the WZ gauge. The equations of motions for the auxiliary fields D = DaTa give:

Da = g2 φ̄T (R)
a φ , a = 1, · · · ,dim(G) . (7.80)

Integrating out D, we then find the scalar potential:

V0 =
∑
φ

∣∣∣∣∂W∂φ
∣∣∣∣2 +

g2

2

dim(G)∑
a=1

(
φ̄T (R)

a φ
)2

. (7.81)

31The generalization to a general gauge group G =
∏
sGs ×

∏
I U(1)I , which is a product of

simple and abelian factors, is straightforward. We just introduce a gauge coupling g2
s for each

simple group Gs and e2
I for each U(1)I factor.
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The first term is the contribution from the superpotential, which we discussed in
previous sections, while the second term can be viewed as a contribution from the
gauge interactions themselves. The real operators:

µa(φ, φ̄) ≡ φ̄T (R)
a φ (7.82)

are often called the “moment map operators.”

Since the scalar potential is again a sum of perfect squares, the classical vacuum
equations of a supersymmetric gauge theory are:

∂φW = 0 , ∀φ , µa(φ, φ̄) = 0 , ∀a . (7.83)

Any two solutions to (7.83) related by a (constant) gauge transformations are phys-
ically equivalent. So, we introduce the equivalence relation on the space of constant
field values:

φ′ ∼ φ if ∃ (αa) ∈ Rdim(G) such that φ′ = eiα
aT

(R)
a φ . (7.84)

The constant values of the scalar field φ ∈ Φ span the vector space:

VR ∼= Cn , n ≡ dim(R) , (7.85)

on which the representation R acts. Then, the vacuum manifold of the gauge theory
takes the general form:

M = {φ ∈ VR | ∂φW = 0 , µa = 0}/G , (7.86)

where the quotient by the gauge group corresponds to the equivalence relation
(7.84). In our discussion of theories with only chiral multiplets, we saw that the
vacuum moduli space was a purely algebraic object—in particular, everything was
holomorphic in φ. This is apparently not the case in a gauge theory, since the
formula (7.86) is non-holomorphic in two ways: the moment maps µa are real, and
the gauge equivalence (7.84) is in terms of real gauge parameters αa.

Nonetheless, there is a simple-looking (although by no mean obvious) way to
rewrite (7.86) more algebraically. It turns out that imposing the vanishing of the
moment maps, µa = 0, and then dividing by G, is equivalent to dividing by the
complexified gauge group:

M = {φ ∈ VR | ∂φW = 0}/GC . (7.87)

In this approach, we are considering the space of complexified gauge orbits (or,
more precisely, their closure), under the GC action:

φ′ ∼ φ if ∃ (ωa) ∈ Cdim(G) such that φ′ = eiω
aT

(R)
a φ . (7.88)
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The fact that the two approaches (7.86) and (7.87) reproduce the same moduli
space was shown explicitly in [24]. 32

Conceptually, this was to be expected: the fact that we only divide by real gauge
transformations in (7.86) is an artefact of the WZ gauge. The supersymmetric gauge
transformations on chiral superfields,

δΩΦ = eiΩΦ , (7.89)

are really GC-valued gauge transformations. More generally, the F -term contribu-
tions to the Lagrangian of any supersymmetric gauge theory are invariant under
the complexified gauge group GC, while the total Lagrangian (in particular, the
D-term kinetic term for matter fields) is only G-invariant.

Finally, it is non-obvious but nonetheless true that the vacuum moduli space
M of a gauge-theory is also a Kähler manifold, just like in the case without gauge
fields.

8 Spontaneous supersymmetry breaking

The “real world” is not supersymmetric—we clearly do not observe a massless
“photino,” the fermionic superpartner of a photon, nor an electrically charged
scalar, the “selectron” at 0.5 MeV, which would be the scalar superpartner of the
electron.

Thus, if supersymmetry is part of a more fundamental theory of Particle Physics,
it should be spontaneously broken. There should be a supersymmetry-breaking mass
scale, MSUSY, which is likely larger than the TeV scale. In any such theory, this
scale gives the approximate mass-splitting between supersymmetric partners:

|mboson −mfermion| = MSUSY . (8.1)

At very high energy, µ�MSUSY, the mass splitting can be neglected and the theory
looks supersymmetric, while the vacuum of the theory (our world, presumably) is
not supersymmetric.

In this section, we give a brief theoretical discussion of supersymmetry breaking
in general. In the next section, we will discuss attempts to apply supersymmetry
to Particle Physics.

8.1 The supercurrent multiplet

In any local 4d N = 1 supersymmetric QFT, the supercharges are the integral of
conserved supersymmetry currents over a space-like slice:

Qα =

∫
Σ
d3xS0

α , Q̄α̇ =

∫
Σ
d3x S̄0

α̇ . (8.2)

32Mathematically, it is a non-trivial equivalence between Kähler quotients (corresponding to
(7.86)) and Geometric Invariant Theory (GIT) quotients (corresponding to (7.87)).
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The supersymmetric current—or supercurrent—is of a Majorana-spinor worth of
conserved currents:

Sµα(x) , Sµα̇(x) , ∂µS
µ
α = 0 , ∂µS

µ
α̇ = 0 , (8.3)

for a total of 12 independent real fermionic local operators. In any given theory,
defined by a Lagrangian, the supercurrent can computed explicitly by the usual
Noether procedure. For instance, consider the theory of a free massless chiral
multiplet:

L = −∂µφ̄∂µφ− iψ̄σ̄µ∂µψ + F̄F . (8.4)

One easily finds:

Sµα =
√

2∂ν φ̄ (σν σ̄µψ)α , S̄µα =
√

2
(
ψ̄σ̄µσν

)
α
∂νφ , (8.5)

which is conserved upon using the equations of motion, ∂µ∂
µφ = 0 and σ̄µ∂µψ = 0.

Note that the supercurrent is not fully determined by the Noether procedure—it
can be “improved” by adding a term which is automatically conserved:

Sµα → Sµα + (σµν)α
β∂νηβ , (8.6)

for some spinor η.

Like any local operator in a supersymmetry theory, Sµα must be part of a su-
persymmetric multiplet, which is called the supercurrent multiplet. From the su-
persymmetry algebra, it is clear that the supercurrent is in the same multiplet as
the energy-momentum tensor, Tµν . Indeed, Tµν is itself the local current for the
conserved momentum:

Pµ =

∫
Σ
d3x T 0

µ , ∂µT
µν = 0 . (8.7)

and we must therefore have:

{Qα, S̄µβ̇} = 2σν
αβ̇
Tµν , (8.8)

in order to reproduce the 4d N = 1 supersymmetry algebra. (The relation (8.8)
holds modulo terms that do not contribute upon integration over space.) The
energy-momentum tensor itself contains only 6 independent real bosonic operator.
Thus, we need at least 6 more real bosonic operators to match the fermionic degrees
of freedom of the supercurrent.

The most general supercurrent multiplet actually contains 16+16 real operators,
and is called the S-multiplet [25, 26]. Here, we will focus on a special case, that
contains 12 + 12 operators and was first derived by Ferrara and Zumino (FZ) [27].

In superspace, the FZ supercurrent multiplet is a superfield Jµ that satisfies:

D̄α̇Jαα̇ = DαX , D̄α̇X = 0 . (8.9)
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In components, we have [26]:

Jµ = jµ − iθ
(
Sµ +

1

3
σµσ̄νS

ν

)
+ iθ̄

(
S̄µ +

1

3
σ̄µσν S̄

ν

)
+
i

2
θθ∂µX̄

− i

2
θ̄θ̄∂µX + 2θσν θ̄

(
Tνµ −

1

3
ηµνT

ρ
ρ +

1

4
εµνρσ∂

ρjσ
)

+ · · · ,
(8.10)

where the ellipsis denotes higher-order terms in θ, θ̄. Here, the operators jµ, X, X̄
provides 6 real operators (here jµ is not a conserved current, in general, despite the
notation).

8.2 Spontaneous supersymmetry breaking and goldstino

Classical argument. Consider now the situation when the vacuum is not invari-
ant under supersymmetry. The scalar potential of a supersymmetric gauge theory
reads:

V0 =
∑
φ

∣∣∣∣∂W∂φ
∣∣∣∣2 +

g2

2

dim(G)∑
a=1

(
φ̄T

(R)
a φ

)2
. (8.11)

Supersymmetry is spontaneously broken, at the classical level, if the vacuum has
non-zero energy. Let us define by:

f̄i ≡
∂W

∂φi
, da ≡ φ̄T (R)

a φ , (8.12)

the values of the “F-terms” and “D-terms” in the vacuum, with VEVs φ = 〈φ〉 for
the fundamental scalars. Here, the index a runs over the generators of G, and i is
an index for the (generally reducible) representation R. Supersymmetry is broken
is some fi or da are non-vanishing. Consider, then, any (classical) vacuum:

∂V

∂φi
= 0 ,

∂V

∂φ̄i
= 0 , (8.13)

which gives:
∂W

∂φi∂φj
f j + g2φ̄j(Ta)j id

a = 0 , ∀i . (8.14)

and its Hermitian conjugate. Moreover, the gauge-invariance of the superpotential
gives:

δΩW = 0 ⇒ f̄j(Ta)j iφ
i = 0 ,

δΩ̄W̄ = 0 ⇒ φ̄j ¯(Ta)j if
i = 0 .

(8.15)

We can write the conditions (8.14) and (8.15) as:

M 1
2

(
f i

d̃a

)
= 0 , M 1

2
≡

(
∂W

∂φi∂φj
i
√

2φ̄k(Ta)kj
i
√

2φ̄k(Tb)ki 0

)
, (8.16)
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where we also defined:

d̃a ≡ − ig
2

√
2
da , (8.17)

for convenience of notation. By inspection of the fermion mass terms:

Lm = −1

2

∂W

∂φi∂φj
ψiψj − i

√
2φ̄kλ

a(Ta)kiψ
i + h.c. , (8.18)

we see that M 1
2

is just the fermion mass matrix:

Lm = −1

2

(
ψ λ

)
M 1

2

(
ψ
λ

)
+ h.c. . (8.19)

Incidentally, note that the gaugino mass terms are consistent with the Higgs mechanism—
they vanish for 〈φ〉 = 0, and otherwise are equal to the mass of the massive W -
bosons.

Any non-supersymmetric vacuum satisfy:

M 1
2

(
f i

d̃a

)
= 0 ,

(
f i

d̃a

)
6= 0 . (8.20)

Thus, the fermion mass matrix has at least one vanishing eigenvalue. In other
words, there is necessarily a massless fermion in the spectrum of low-energy ex-
citations around the vacuum. This is the analogue of the Goldstone theorem for
bosonic symmetries, here in the case of supersymmetry, and the massless fermion
is called the goldstino.

Non-perturbative argument. While we the above argument for the existence
of a Goldstino was only in the tree-level approximation, the existence of a massless
Golstino is actually true in the full QFT, similarly to the case of a Goldstone boson.
It follows from the supersymmetric Ward identity:〈

∂µSµα(x)S̄νβ̇(0)
〉

= −δ4(x)
〈
i{Qα, Sνβ̇}

〉
. (8.21)

Using (8.8), we have:

pµ
〈
Sµα(p)S̄νβ̇(−p)

〉
= −2σµ

αβ̇
〈Tνµ〉 = −2σµ

αβ̇
ηµν E0 (8.22)

in momentum space. In the last line, we used that:

〈Tµν〉 = ηµνE0 , (8.23)

in a Poincarŕe-invariant vacuum (with E0 ≥ 0, with E0 = 0 if the vacuum is
supersymmetric). 33 This implies that: 34〈

Sµα(p)S̄νβ̇(−p)
〉
⊃ (σµσ̄

ρσν)αβ̇
pρ
p2

. (8.24)

33We assumed that Tµν is symmetric, which can always be achieved by an improvement trans-
formation.

34Indeed, we have: pµ(σµσ̄
ρσν)pρ = −p2σν , as one can easily check using (A.1).
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We therefore see the necessary appearance of a pole in the two-point function of
the supercurrent, whenever the vacuum energy E0 is non-zero. This corresponds to
the presence of a massless fermion ψGα , which is created out of the vacuum by Qα.

At this point, we might worry that the existence of a Goldstino precludes any re-
alistic model of supersymmetry in the real world, since we do not observe such a
massless particle. The way out is that supersymmetry, ultimately, must be also
coupled to gravity; this makes supersymmetry “gauged” (with space-time depen-
dent supersymmetry parameters ε, ε̄), in which case the Goldstino is “eaten” by the
gravitino, in a supersymmetric version of the Higgs mechanism, and is then safely
of the order of the supersymmetry-breaking scale MSUSY.

8.3 Supersymmetric mass sum rule

In the tree-level approximation—that is, by looking at the classical Lagrangian—,
one can derive additional constraints on the spectrum in a vacuum of a supersym-
metric theory with spontaneously broken supersymmetry. Let ms denote the mass
of (mass eigenstates) particles of spin s. We must always have that the supertrace
over the full mass matrix vanishes:

STr(M2) ≡
∑

scalars

(m0)2 − 2
∑

Weyl fermions

(m 1
2
)2 + 3

∑
vectors

(m1)2 = 0 . (8.25)

The factors 2 and 3 accounts for the helicities of the fermions and vectors, respec-
tively.

(The case with only chiral multiplet is discussed on a problem sheet. The general
case with gauge field included is similar; see chapter 27 of [2] for details.)

In a supersymmetric vacuum, the spectrum is perfectly degenerate between bosons
and fermions. The supersymmetric mass sum rule implies that, when supersym-
metry is spontaneously broken, the fermion and bosons masses can differ but still
organise themselves around some “average,”∑

bosons

m2 =
∑

fermions

m2 . (8.26)

Furthermore, by symmmetry or gauge invariance, this same sum rule holds in-
dependently in each sector with a given set of charges under global and gauge
symmetries.

8.4 Mechanisms of supersymmetry breaking

Writing down a theory that breaks supersymmetry spontaneously is somewhat of
an art, although there are many examples on the market.

Supersymmetry-breaking models are usually separated into “F -term or D-term
SUSY-breaking,” depending on whether fi or da in (8.12) is non-zero. (Of course,
both could also be non-zero.) Let us briefly discuss some examples.
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8.5 F-term supersymmetry breaking

For some superpotential W (Φ), whether in a theory of chiral multiplet or in a larger
gauge theory, it might happen that the F-terms are non-zero at the minimim of V0,
namely:

f̄i =
∂W

∂φi
6= 0 , (8.27)

as we discussed earlier. Then, the vacuum is non-supersymmetric with energy
V0 = |f |2.

O’Raifeartaigh model. One of the first such models, historically speaking, was
the O’Raifeartaigh model, which has a three chiral fields and a superpotential:

WO′R = αY + βY X2 + γXZ , (8.28)

which has no supersymmetric vacua. At the minimum of the superpotential, we
have:

f̄X = 0 , f̄Y = α 6= 0 , f̄Z = 0 . (8.29)

We studied this one on a problem sheet. Classically, any VEV for Y is allowed in
this vacuum, while X = Z = 0. Quantum mechanically, that “pseudo-modulus”
Y is lifted at one-loop. (In the absence of supersymmetry, the moduli space is
no longer protected; the one-loop corrected potential is known as the Coleman-
Weinberg effective potential.)

One can cook up many models of F-term supersymmetry breaking, although it is
a surprisingly hard thing to do. The essential mechanism is always similar.

One general comment one can make about these models is that they often
look fined-tuned. For instance, in the O’Raifeartaigh model, there are many small
deformations of the superpotential that would lead to supersymmetry restoration.
In particular, adding a mass term for Z:

W = WO′R +mZ2 , (8.30)

we can now find supersymmetric vacua (two of them). However, this particu-
lar deformation breaks the R-symmetry of the model (which was r = 0, 2, 2 for
X,Y, Z). It is a folk-theorem that you need an R-symmetry in order to have F -
term supersymmetry-breaking.

8.6 D-term supersymmetry breaking and Fayet-Iliopoulos model

In general, the F -terms are the only genuine source of supersymmetry breaking.
By gauge invariance, setting f̄i = 0 implies that one can always set:

da = φ̄Taφ = 0 , (8.31)

too. Therefore it seems that we cannot have “genuine” D-term breaking with f̄i = 0
and da 6= 0.
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8.6.1 The Fayet-Iliopoulos term

There is an interesting exception, however, when (part of) the gauge group is
abelian. For each U(1) ⊂ G, we can add another supersymmetric term in the
Lagrangian, which is simply:

LFI = 2

∫
d2θd2θ̄ ξ VU(1) = ξD , (8.32)

with ξ ∈ R a real coupling of mass dimension 2, called an Fayet-Iliopoulos (FI)
parameters. This FI term is obviously gauge and supersymmetry invariant, and
can only be written for an abelian vector multiplet.

The FI term corrects the D-term of an abelian theory is an important way.
Consider a G = U(1) theory with n chiral multiplets of charges qi, such that:∑

i

q3
i = 0 ,

∑
i

qi = 0 , (8.33)

to cancel the gauge anomaly. The D-term equations are now:

1

g2
Da =

∑
i

qi|φi|2 − ξ = 0 . (8.34)

(In term of the “moment map” operator defined in (7.82), we have µ = ξ, and the
FI parameter ξ is known mathematically as the “level” of the moment map.)

8.6.2 FI-term-induced supersymmetry breaking

The simplest “D-term supersymmetry breaking model” is a U(1) theory with a
non-zero FI term and two chiral multiplets Φ± of charge ±1 and a Dirac mass
term:

W = mΦ+Φ− . (8.35)

In other words, this is a supersymmetric version of QED with a massive electron.
We have the F -term and D-term conditions:

mφ+ = mφ− = 0 , |φ+|2 − |φ−|2 − ξ = 0 . (8.36)

Obviously this system has not solution. The scalar potential has a minimum at
φ± = 0, with:

〈V0〉 = g2ξ2 > 0 . (8.37)

8.6.3 Further comments

This conclude our brief introduction to spontaneous supersymmetry breaking (SSB).
Note that the above models of SSB are essentially semi-classical: one finds semi-
classical vacua, and then one can study the perturbative corrections around them.
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It is also possible to have supersymmetry breaking in a non-perturbative regime.
This is particularly true in asymptotically-free gauge theories, which are strongly
coupled in the infrared (IR). Then, supersymmetry can sometimes be broken spon-
taneously due to non-trivial superpotential terms that are generated, by strong
quantum effect, in the IR. Supersymmetric quantum field theories that realise this
scenario are known as ‘dynamical supersymmetry breaking’ (DSB) models [18].

9 Supersymmetry and the Standard Model

Supersymmetry has long been the leading contender for Beyond the Standard Model
(BSM) physics, although so far there has been no hint of it from the LHC.

In some narrow sense, BSM supersymmetry refers to any theory of Particle
Physics generalising the standard model at high-enough energy, whose particle spec-
trum would include the superpartners of the known fundamental particles:

quarks → sqarks (scalars)

leptons (e−, µ−, τ−, ν) → sleptons (scalars)

SU(3) gauge bosons (gluons) → gluinos (fermions)

SU(2)× U(1) gauge bosons W 3,W±, Bµ → winos and bino (fermions)

Higgs boson(s) → Higgsinos (fermions)

If the superpartners are heavy enough, they might have avoided detection to this
day. On the other hand, the general expectation from “naturalness” was that the
superpartners should appear at the electroweak (EW) scale, to stabilise the Higgs
mass.

In the following, we discuss some elementary aspects of the supersymmetric “com-
pletion” of the Standard Model. One important point is that the corresponding
“minimally supersymmetric Standard Model” (MSSM) is not a supersymmetric
theory with spontaneous supersymmetry breaking. Indeed, that possibility is ruled
out by the mass sum rule (8.25), which would imply that at least some of the
superpartners are rather light, and should have been detected.

Instead, the MSSM is a supersymmetric Lagrangian complemented by terms
that break supersymmetry explicitly. These terms, called “soft terms,” are chosen
so that the theory still protects the mass of the scalars from quadratic divergences.
(We say that the UV behaviour remains “soft.”)

9.1 The Standard Model (lightning review)

Let us first review the Standard Model itself. It is a gauge theory based on the
gauge group:

G = SU(3)× SU(2)× U(1)Y . (9.1)

The SU(3) gives the “colored” interactions of the strong force (mediated by 8 gauge
bosons, the gluons). The SU(2)×U(1)Y gauge group governs the electroweak force
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SU(3) SU(2) U(1)Y U(1)EM U(1)L U(1)B

qi = (ui, di) 3 2 1
6 (2

3 ,−
1
3) 0 1

3

ũi 3 1 −2
3 −2

3 0 −1
3

d̃i 3 1 1
3

1
3 0 −1

3
ˆ̀
i = (νi, `i) 1 2 −1

2 (0,−1) 1 0

ν̃i 1 1 0 0 −1 0˜̀i 1 1 1 1 −1 0

Φ = (Φ+,Φ0) 1 2 1
2 (1, 0) 0 0

Table 3: The matter content of the SM, including the hypothetical gauge-singlet
“right-handed” neutrinos ν̃i, and the Higgs scalar Φ. Here, all the fermions are
given as left-chiral Weyl spinors ψα; their anti-particles are the right-chiral spinors
ψ̄α̇ of opposite charges. The “flavor” index i runs over the SM “generations,”
i = 1, 2, 3. The last two columns give the lepton and baryon numbers, respectively.

(mediated by 3+1 gauge bosons, W±µ ,W
3
µ for SU(2) and Bµ for U(1)Y ). The

charge Y of the abelian factor U(1)Y is called the weak hypercharge. 35 The U(1)
of electromagnetism is obtained after electroweak symmetry breaking:

SU(2)× U(1)Y → U(1)EM , (9.2)

with the electric charge given by:

QEM = T 3
SU(2) + Y . (9.3)

The matter content of the standard model is summarised in Table 3, in two-
component Weyl spinor notation. Note that we give the fermionic content in Weyl
notation. The corresponding Dirac fermions, in the more usual four-component
spinor notation, are:

Ui =

(
ui
¯̃ui

)
, Di =

(
di
¯̃
di

)
, Li =

(
`i
¯̃
`i

)
, (9.4)

for the up and down quarks (that is the name for the first generation, i = 1; for
i = 2, 3, they are called the charm and strange quarks, and top and bottom quarks,
respectively), and for the charged leptons (electron, muon and tau). Note that the
Dirac fermions (9.4) transform covariantly under SU(3) × U(1)EM but not under
the full SM gauge group—in other words, the SM is a chiral theory.

In Table 3, we also indicated the lepton and baryon numbers, which are U(1)
symmetries of the SM Lagrangian.

35Conventionally, it is given in units of 1
6
, namely we have Y [ψ] ∈ 1

6
Z for every fermion.
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Note: The following discussion assumes some working knowledge of anomalies in
QFT, but you can ignore that part of the discussion on a first reading. Further
background on anomalies will be provided in the ‘Advanced supersymmetry’ lectures.

Anomaly cancellation. The general anomaly-free condition has to be satisfied,
namely:

Aabc = tr
(
T

(Rψ)
a {T (Rψ)

b , T
(Rψ)
c }

)
= 0 , (9.5)

for G = SU(3) × SU(2) × U(1)Y , where the trace is over all the fermions in the
(reducible) representation Rψ of G. It is easy to check that all the gauge anomalies
cancel, as needed for consistency. For each generation, we have:

tr(SU(3)3) = 2− 2 = 0 ,

tr(SU(3)2U(1)Y ) = 2
1

6
− 2

3
+

1

3
= 0 ,

tr(SU(2)2U(1)Y ) = 3
1

6
− 1

2
= 0 ,

tr(U(1)3
Y ) = 6(

1

6
)3 + 3(−2

3
)3 + 3(

1

3
)3 + 2(−1

2
)3 + 13 = 0 ,

(9.6)

and similarly tr(U(1)Y ) = 0 for the mixed U(1)Y -gravitational anomaly.

Chiral anomalies. The baryons and lepton number symmetries are separately
anomalous, with the chiral anomalies:

tr(SU(2)2U(1)L) = tr(SU(2)2U(1)B) = 1 ,

tr(U(1)2
Y U(1)L) = tr(U(1)2

Y U(1)B) = −1

2
,

(9.7)

but the difference:
L−B (9.8)

is non-anomalous, and therefore an exact symmetry of the Standard Model.

The Higgs sector. The Higgs field Φ is a scalar doublet of the SU(2) gauge
group:

Φ ≡
(

Φ+

Φ0

)
, (9.9)

which acquires a VEV:

〈Φ〉 =

(
0
v

)
, v ∈ R , (9.10)

breaking the electroweak gauge group as in (9.2). The SM vacuum therefore sees
one real scalar excitation, the Higgs boson hSM, which appears as:

Φ+ = G+ , Φ̄+ = G− , Φ0 = v +
1√
2

(hSM + iG0) . (9.11)
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The other three real scalars G0, G±, corresponding to the three broken SU(2)×U(1)
generators, become part of the massive vector bosons W± and Z0.

Most of the Standard Model Lagrangian is fully determined by gauge invariance.
The crucial exception is the Higgs sector. Firstly, we do not know for sure what is
the self-coupling of the Higgs; one usually assume a simple potential that leads to
the Higgs VEV (9.10).

More importantly for our purpose, the coupling of the Higgs field to fermions
arise from Yukawa interactions, which are not fully determined by gauge invariance:

LYukawa = (Yu)ijεrsΦ
rqsi ũ

j − (Yd)
i
jΦ̄rq

r
i d̃
j − (Y`)

i
jΦ̄r

ˆ̀r
i
˜̀j + h.c. . (9.12)

Here, the indices r = 1, 2 and s = 1, 2 are SU(2) gauge indices, and Yu, Yd, Y` are
the Yukawa coupling constants, which must be determined experimentally. After
electroweak symmetry breaking, these terms provide the Dirac masses M = vY to
the quarks and leptons (9.4).

9.2 The supersymmetric SM

Let us now consider the supersymmetric version of the Standard Model. None of the
fermions (quarks and leptons) and bosons (gauge fields and Higgs) of the SM can
be paired by supersymmetry, due to the gauge representations. Instead, we need
to introduce superpartners for every known particles—whose conventional names
were given at the beginning of this section.

The supersymmetric SM consists of SU(3)×SU(2)×U(1) multiplets multiplets,
which contains fermions (the gauginos) in the corresponding adjoint representations.
All the left-chiral fermions of Table 3 also become part of chiral multiplets, denoted
by:

Qi = (Qi, qi) , Ũ i = (Ũ i, ũi) , Ũ i = (U i, ũi) ,

L̂i = (L̂i, ˆ̀
i) , Ñ i = (Ñ i, ν̃i) , L̃i = (L̃i, ˜̀i) , (9.13)

with the curly letter denoting the chiral multiplets (or superfields), the capital let-
ters denoting the complex scalar superpartners, and the lowercase letters denoting
the left-chiral fermions.

Finally, any supersymmetric version of the SM must have two Higgs fields dis-
tinct Higgs fields. This is apparent, firstly, from the SM Yukawa Lagrangian (9.12),
which cannot arise from a superpotential term, since it contains both the scalar φ
and its complex conjugate φ̄ coupling to bilinears in the left-chiral fermions. In-
stead, in a supersymmetric version of (9.12), we need at least two Higgs doublets
to give their masses to the up and down quarks separately.

Another reason we need at least two Higgs doublets (and, in fact, an even
number of doublets) is because of anomaly cancellations. The superpartner of the
Higgs field Φ is a fermion in the 2 1

2
of SU(2)×U(1)Y , which has a gauge anomaly.

We need a second Higgs doublet with charges 2− 1
2

in order to have an anomaly-

free supersymmetric version of the SM. (The gauginos do not introduce additional
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SU(3) SU(2) U(1)Y U(1)EM U(1)L U(1)B ΠR

Qi = (Ui,Di) 3 2 1
6 (2

3 ,−
1
3) 0 1

3 −1

Ũ i 3 1 −2
3 −2

3 0 −1
3 −1

D̃i 3 1 1
3

1
3 0 −1

3 −1

L̂i = (Ni,Li) 1 2 −1
2 (0,−1) 1 0 −1

Ñ i 1 1 0 0 −1 0 −1

L̃i 1 1 1 1 −1 0 −1

Φ1 = (Φ0
1,Φ

−
1 ) 1 2 −1

2 (0,−1) 0 0 1

Φ2 = (Φ+
2 ,Φ

0
2) 1 2 1

2 (1, 0) 0 0 1

Table 4: Chiral superfields in the supersymmetric SM. We denote by Φ both the
Higgs superfields and the Higgs scalar components. The last column denotes the
R-parity of the chiral multiplet.

gauge anomalies because they are in adjoint representations—in particular, they
have zero weak hypercharge.)

The chiral multiplet content of the supersymmetric SM is summarised in Ta-
ble 4. The Higgs sector interactions follow from the following gauge-invariant su-
perpotential:

W = −(yu)ijΦ2QiŨ j + (yd)
i
jΦ1QiD̃j + (y`)

i
jΦ1L̂iL̃j , (9.14)

with the Yukawa coupling constants y corresponding to Y in (9.12). Here, we used
the shorthand notation:

ΦX = εrsΦ
rXs = Φ2X1 − Φ1X2 , (9.15)

for the contraction of two SU(2) doublets. (The contraction of color indices is left
implicit.) We thus have:

W = − (yu)ij(Φ
0
2Ui − Φ+

2 Di)Ũ
j − (yd)

i
j(Φ

0
1Ui − Φ−1 Ui)D̃

j

− (y`)
i
j(Φ

0
1Li − Φ−1 Ni)L̃

j .
(9.16)

We can obtain Dirac masses for the quarks and leptons from the VEVs of Φ0
1 and

Φ0
2, namely:

〈Φ1〉 =

(
v1

0

)
, 〈Φ2〉 =

(
0
v2

)
. (9.17)

In phenomenological studies of the MSSM, one often encounters the ratio:

tanβ ≡ v2

v1
. (9.18)
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Another F -term that one can write down, which preserves both baryons and fermion
number, is a mass term for the Higgs field:

Wµ = µΦ1Φ2 = µ(Φ−1 Φ+
2 − Φ0

1Φ0
2) , (9.19)

which is known as the “µ-term.” By itself, this term would forbid the VEV (9.17);
however, it turns out to be necessary for phenomenological reason. In the actual
MSSM, including supersymmetry-breaking soft-terms, the electroweak symmetry is
broken well below MSUSY, and the SUSY-breaking terms are essential in obtaining
the EW-breaking vacuum observed in the real world. (We refer to chapter 28 of
Weinberg [2] for the gory details.)

R-parity. One can also write various renormalisable superpotential terms that
break the lepton and baryon numbers (and, in particular, the anomaly-free L−B):

Wα,β,γ = αijkQiL̂jD̃k + βijkL̂iL̂jL̃k + γijkD̃iD̃kŨk . (9.20)

The last term is a “supersymmetric baryon superfield,” with the SU(3) gauge
indices contracted with εabc. These terms cannot appear in any realistic theory,
since they would lead to experimentally excluded processes, such as proton decay
(p → π0 + e+ through exchange of squarks and sleptons), at a dramatic rate. Of
course, these terms are in fact excluded if L − B is an exact U(1) symmetry of
physics beyond the SM—the superpotential (9.20) has charge L−B = 1.

There are strong theoretical reasons to believe, however, that the “ultimate
theory,” including quantum gravity, does not have any exact continuous symmetry.
In the study of supersymmetric BSM physics, a weaker assumption is usual made,
that we need to preserve a Z2 discrete symmetry, called R-parity defined as:

ΠR = (−1)F (−1)3(L−B) , (9.21)

with (−1)F the fermion number. This is a Z2 ⊂ U(1)R discrete R symmetry in
the supersymmetric SM. The R-parity of the chiral multiplets is shown in Table 4.
Note that if a scalar has R-parity ±1, then its fermion partner has parity ∓. Thus,
R-parity assign even parity (+1) to the non-supersymmetric SM fields (including
the two Higgs scalars Φ1 and Φ2), and odd parity (−1) to the superpartners. The
superpotential terms (9.14) and (9.19) are consistent with R-parity, while (9.20) is
not. 36

An interesting consequence of R-parity, if it is indeed a good symmetry of
supersymmetric BSM physics, is that the lightest supersymmetric particle (often
called the “LSP”) has to be stable (since it could only decay into another R-parity-
odd particle). This provides a natural candidate for dark matter.

36As we understand it today, quantum gravity would probably not allow even exact discrete
symmetry such as R-parity. Then, for our purposes, we may just declare that R-parity is conserved
in the “low-energy” theory well below the quantum-gravity scale.



104 9 Supersymmetry and the Standard Model

9.3 The MSSM: supersymmetry-breaking soft terms

What is called the minimal supersymmetric Standard Model (MSSM) is not actually
a supersymmetric theory. It is the supersymmetric SM (SSM) corrected with “soft
terms” that break supersymmetry explicitly:

LMSSM = LSSM + Lsoft . (9.22)

The soft terms denote all the possible R-parity invariant terms that are super-
normalisable and break supersymmetry explicitly—that is, of engineering dimension
< 4. They are given by:

Lsoft = − (M2
Q)i

j
Q̄jQi − (M2

Ũ
)j
i

¯̃
U jŨ

i − (M2
D̃

)j
i

¯̃
DjD̃

i − (M2
L̂

)i
j

¯̂
LjL̂i

− (M2
L̃

)j
i

¯̃
LjL̃

i − (λmgauginoλ) + h.c.

− (Au)ijΦ2QiŨ
j + (Ad)

i
jΦ1QiD̃

j + (A`)
i
jΦ1L̂iL̃

j

− (Cu)ijΦ̄1QiŨ
j + (Cd)

i
jΦ̄2QiD̃

j + (C`)
i
jΦ̄2L̂iL̃

j

−BµΦ1Φ2 + h.c.

(9.23)

The first two lines are explicit mass terms for the scalar superpartners and for the
SU(3)× SU(2)×U(1)Y gauginos. The A-terms, C-terms and Bµ-terms introduce
further interactions amongst scalars. In phenomenological studies of the MSSM,
the C-terms are usually set to zero, although not for especially good reasons [2].

The MSSM soft terms (9.23) introduce over 100 new parameters, which is not
a particularly economical extension of the Standard Model. It should be thought
as the minimal low energy effective field theory below the supersymmetry-breaking
scale. The fundamental theory would hopefully look elegant; the detailed mech-
anism of supersymmetry breaking then determines the MSSM parameters at low
energy.

In any case, the MSSM is usually the starting point for phenomenological
studies—that is, to extract concrete predictions for collider experiments. Due to the
large number of free parameters, one often focusses on special parameter subspace
(for instance setting all the scalar masses M2 in (9.23) equal and diagonal), for
simplicity. We will not discuss the MSSM phenomenology further in these lectures.

9.4 Hidden sector and supersymmetry-breaking mediation

To conclude this brief introduction to “supersymmetry and the real world,” we
should give a rough idea of how the MSSM can be embedded in a more fundamental
theory.

Since supersymmetry cannot be broken spontaneously in the SM itself, we need
some “auxiliary” mechanism. The idea is that there exists an “hidden sector” which
breaks supersymmetry spontaneously. A popular assumption is that supersym-
metry is broken dynamically by strong-coupling effects, in some strongly-coupled
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supersymmetric gauge theory. The point is that this supersymmetry-breaking dy-
namics, whatever it is, must happen amongst quantum fields that are completely
decoupled from the ordinary matter of the Standard Model. (This is not completely
crazy. We know from astronomical observation that we do not understand most of
the matter content of the Universe, anyway.)

At first approximation, we would have a “tensor product” fundamental theory
at high energy:

T = (SUSY SM)⊗ T̃hidden , (9.24)

with T̃hidden the hidden-sector QFT, which is supersymmetric but breaks supersym-
metry spontaneously at a scale M̃SUSY.

Then, one assumes a mediation mechanism that “transmits” the supersymmetry-
breaking effects from T̃hidden to the supersymmetric SM, thereby generating soft
terms as in (9.23) (as well as many other non-renormalisable terms supressed by

1/M̃SUSY to some power).

There are two well-studied mediation mechanisms, which can be summarised as
follows:

9.4.1 Gauge mediation

One possibility is that there exists (very massive) messenger superfields X which
are charged under the SM gauge group and also couple to the hidden sector:

(SUSY SM)
X←→ T̃hidden . (9.25)

The messenger fields must be in a pseudo-real representation of the SM gauge
group, so that they can obtain a very large mass MX . (This also ensures that they
do not introduce any gauge anomalies). Then, perturbative processes involving the
messenger fields induces the MSSM soft terms. For instance, the gaugino masses
are proportional to the SM gauge couplings, g2 = g2

s , g
2
SU(2), g

2
Y :

mgaugino ∝ g2MX , (9.26)

while the squarks and slepton masses are proportional to:

M2 ∝ g4M2
X , (9.27)

very schematically. This is an attractive scenario since it is very predictive, giving
us many precise relations amongst the soft terms of the MSSM, which must all be
proportional the SM gauge couplings.

9.4.2 Supergravity mediation

Another popular mediation mechanism is supergravity mediation, in which the only
“messenger particles” are the gravitational interactions:

(SUSY SM)
gravity←→ T̃hidden . (9.28)
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More precisely, the dominant supersymmetry-breaking “messengers” would be su-
persymmetric partners of the graviton, in a supergravity theory. Since gravity cou-
ples universally to every type of energy-momentum, supergravity mediation is al-
ways present. “Supergravity mediation” denotes the situation where this is the
dominant contribution, in the absence of any gauge-mediation mechanim.

Suppose, for instance, that supersymmetry is broken by a non-zero F -term,
〈FX〉 6= 0, in the hidden sector, so that the SUSY-breaking scale is MSUSY =√
〈FX〉—that is, we have some hidden-sector field X such that X = 0 and FX 6= 0

in the supersymmetry-breaking vacuum.. Then, all the soft masses of the MSSM
are proportional to:

mgaugino ∼M ∼
〈FX〉
MP

=
M2

SUSY

MP
, (9.29)

with MP the Planck mass. These soft terms simply arise from power-supressed
higer-dimensional operators such as:∫

d2θd2θ̄
1

M2
P

X̄XQ̄Q+ · · · , (9.30)

which would arise at scales µ < MP , in an effective field theory approach, from
“integrating out” the gravitational interactions.

9.5 Concluding comments

There has been a huge amount of literature on supersymmetry-breaking mediation
mechanisms. The general motivation was to provide theoretically well-motivated
predictions for the physics ‘beyond the Standard Model’ (BSM), if BSM physics
is supersymmetric. In the absence of any hint of TeV-scale BSM physics from the
LHC at CERN, however, this kind of theoretical work has slowed down significantly
in recent years.

Note also that, from a phenomenological (i.e. experiment-based) perspective,
one can remain agnostic about any ‘mediation mechanism’ and just deal with the
MSSM, a non-supersymmetry theory, as a possible scenario for physics at the TeV
scale—a scenario with many free parameters, which must be fitted experimentally.
This is what the physicists working on the LHC data are doing, among other things:
they are slowly putting (more and more) stringent constraints on the parameters
of the MSSM.

To conclude with a note of cautious optimism, we should also say that the
fact that supersymmetry is not apparent in accelerator experiments today does not
mean it is not a symmetry of Nature at even higher energies. Of course that is one
possibility: supersymmetry is a beautiful theoretical construct without relevance to
the real world. The second possibility is simply that humans in the XXIst century do
not have the tools to probe experimentally the relevant (astonishingly small) length
scales. Certainly, String Theory, as understood today, suggests that supersymmetry
is needed to formulate quantum gravity; yet, the scale of supersymmetry breaking
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could then be more naturally tied to the string length, which may be closer to the
Planck length (1019 GeV) than to the TeV (103 GeV) scale.

10 A brief introduction to supergravity

Supergravity refers to any classical theory that combines General Relativity (GR)
and supersymmetry. We insist on the fact that supergravity theories are classical.
The difficulties in “quantising” supergravity theories are as severe as in GR.

Nonetheless, if supersymmetry is part of the physical world, it has to be com-
bined with gravity, and supergravity then provides something like the “tree level”
approximation for the coupling of supersymmetric QFTs to gravity.

The other main motivation to study supergravity is that it appears as the low-
energy effective field-theory description of String Theory, which is believed to be a
consistent theory of Quantum Gravity.

10.1 Gauging the supercurrent: 4d N = 1 linearised supergravity

It is sometimes useful to think of General Relativity (GR) as a “gauge theory”
for Poincaré invariance. In this approach, we start with a Poincaré-invariant field
theory on R1,d−1, which then admits an energy-momentum tensor, which we can
choose to be symmetric:

Tµν = Tνµ . (10.1)

This Tµν encodes all the conserved currents for Poincaré invariance, ISO(1, d− 1),
in flat space. Then, naively, we could attempt to “gauge” ISO(1, d−1) by allowing
the Poincaré transformations to depend on the space-time point. This correspond
to adding a “gauge field” for ISO(1, d− 1), denoted by ∆gµν , which couples to the
energy-momentum tensor as:

L = ∆gµνT
µν , (10.2)

at first order in ∆gµν . This is really equivalent to considering a non-trivial metric
on space-time:

gµν = ηµν + ∆gµν . (10.3)

Of course, in GR, the energy-momentum tensor can be defined as the reaction of the
system to a variation of the metric. The “gauge group” of GR correspond to the dif-
feomorphisms of the space-time manifold. At the linearised level, differomorphisms
act on the metric as:

δξgµν = ∂µξν + ∂νξµ , (10.4)

for some arbitrary covector ξµ.

Then, as in the notion of “gauging” in QFT, we should also introduce a kinetic
term for the metric. This is provided by the Einstein-Hilbert action, which is
essentially fixed by the requirement of diff invariance.
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10.1.1 Linearised old-minimal supergravity

Consider now 4d N = 1 supersymmetry. We have seen in section 8.1 that Tµν sits
together with the supercurrent in a supermultiplet (known as the FZ multiplet):

Jµ =
(
jµ , S

µ
α , S̄

µ
α̇ , Tµν , X , X̄

)
. (10.5)

Then, as in GR, we would like to understand supergravity as a gauging of super-
Poincaré invariance. The fields that couple to the supercurrent operators (10.5)
are:

Hµ =
(
bµ , Ψµ

α , Ψ̄µ
α̇ , gµν ,M , M̄

)
. (10.6)

This is known as the “old minimal supergravity multiplet” [28, 29, 30], for historical
reasons. (There exists another N = 1 supregravity theory called “new minimal,”
which couples to a slightly different current multiplet.)

At first order in the supergravity fields, we can understand the supersymmetric
coupling between (10.5) and (10.6) in ordinary superspace. Consider the supercur-
rent superfield Jαα̇ = σµαα̇Jµ. The first-order coupling to “sources” must be of the
form:

LHJ =

∫
d2θd2θ̄Hαα̇J αα̇ . (10.7)

Due to the superspace definition (8.9) of the FZ multiplet, we have a gauge invari-
ance:

Hαα̇ → Hαα̇ + DαL̄α̇ + D̄α̇Lα . (10.8)

with the superfield Lα satisfying the constraint:

D̄D̄DαLα −DDD̄α̇L̄
α̇ = 0 . (10.9)

Using the gauge freedom (10.8), one can fix a WZ-type gauge for the (linearised)
supergravity multiplet Hµ, so that only the components (10.6) survive. After fix-
ing the WZ gauge, there are still residual gauge transformations, which include
linearized diffeomorphism and a spinor-valued gauge transformation for the grav-
itino:

δLgµν = ∂µξν + ∂νξµ , δLΨµα = ∂µηα , · · · (10.10)

In the WZ gauge, the Lagrangian (10.8) is simply:

LHJ = ∆gµνT
µν + ΨµS

µ + Ψ̄µS̄
µ + bµj

µ +MX + M̄X̄ . (10.11)

We see that the gravitino Ψµα couples to the supercurrent, as expected. Note that
the gravitino variation in (10.10) is dual to the conservation of the supercurrent:

δL

(∫
d4x ΨµS

µ

)
=

∫
d4x ∂µη S

µ = −
∫
d4x ε ∂µS

µ = 0 . (10.12)
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10.2 Full N = 1 supergravity: general strategy

The supergravity fields bµ and X in (10.6) turn out to be auxiliary in old-minimal
supergravity (similarly to the auxiliary field D in the vector multiplet of an N = 1
supersymmetric gauge theory). Their presence allows us to write down off-shell
supergravity transformations. This is very useful, since it allows to consider N = 1
supergravity theories in two-steps, similarly to what we did for rigid supersymme-
try:

1. Write down off-shell supergravity transformations, which generalise the su-
persymmetry transformation to include diff invariance and local supersymme-
try transformations, wherein the supersymmetry-transformation parameters
ε become functions of space-time, ε(x). In particular, we have the gravitino
variation:

δεΨµ = Dµε , (10.13)

with Dµ a supergravity-covariant derivative, which itself depends on Ψ. 37

Note that, in the linearized limit around flat space, the gravitino gauge-
transformation parameter η in (10.10) is independent of the constant spinor ε
of flat-space supersymmetry. Once we go to the non-linear theory and make
supersymmetry into a local (gauge) transformation, however, one has to iden-
tify ε(x) = η(x).

2. Write down supergravity-invariant actions. In particular, the kinetic term for
the supergravity fields is often called calls ‘the’ supergravity action, SSUGRA.
This action should generalise the Einstein-Hilbert action of GR to a diff-
invariant and locally-supersymmetric action:

SSUGRA =
1

8πG

∫
d4x
√
g
(
R+ Ψ̄6DΨ + · · ·

)
, (10.14)

very schematically, with G denoting Newton’s constant. Thus, we also need
to understand better the gravitino kinetic term, Ψ̄6DΨ.

There are no real conceptual problems in carrying out these two steps in detail
for old-minimal 4d N = 1 supergravity (or any other supergravity theory with an
off-shell formulation). It just gets rather technical.

In the rest of this section, we give some more details about the minimal super-
symmetry action and its off-shell presentation. We will focus, in particular, on the
truly new ingredient in supergravity, compared to either GR or flat-space QFT:
this is the presence of the gravitino Ψµ, which should be understood as the “gauge
field” for local supersymmetry transformations.

37This is similar to the gauge transformation δαAµ = Dµα for a non-abelian gauge field.
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10.3 Veirbein, spin connection, and curved-space spinors

To discuss supergravity, we need to first set our notation for pseudo-Riemannian ge-
ometry. Let us consider the pseudo-Riemannian manifoldM with local coordinates
xµ, and the metric gµν with signature (−1, 1, 1, 1):

ds2 = gµν(x)dxµdxν . (10.15)

In curved space, classical scalar fields φ are functions M → C (or M → R, for a
real scalar). We can also consider various tensors, such as, for instance, the abelian
field-strength Fµν , which transforms covariantly under diffeomorphisms (in other
words, it is a 2-form: F = 1

2Fµνdx
µ ∧ dxν).

Recall that a vector Xµ(x) is, by definition, a vector in the tangent space TxM
at x. The vector field X = Xµ∂µ is then a section of the tangent bundle TM,
which we denote by: 38

X ∈ Γ(TM) . (10.16)

Similarly, a one-form ω = ωµdx
µ is a section of the cotangent bundle, T ∗M. In

general, we may consider any tensor T ν1···νn
µ1···µm , namely:

T ∈ Γ(TM⊗ · · · ⊗ TM︸ ︷︷ ︸
n times

⊗T ∗M⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
m times

) . (10.17)

Therefore, given any classical field theory in R1,3 that contains only bosons—more
precisely, fields of integer spin or helicity. 39—, we can easily define the theory
coupled to gravity by writing all the fields as appropriate tensors, as we learned in
elementary GR.

Fermions—or rather, any fields of half-integer spin—are a bit more subtle in
curved space-time. This is because spinors are not ordinary tensors. This is related
to the fact they they transform in representations of the spin group Spin(1, 3) ∼=
Sl(2,C) that are not representations of SO(1, 3)—the representations ‘of half-
integer spin’. Mathematically, we say that a Dirac spinor Ψ = (ψ, χ̄) is a section of
a spin bundle:

Ψ ∈ Γ(S+ ⊕ S−) . (10.18)

Here, S± are two-dimensional complex vector bundles corresponding to the left-
chiral and right-chiral Weyl spinors, respectively—that is, S± is the data of a vector
space V = C2 to every point x ∈M, with the fields (ψα) ∈ Γ(S+) and (χ̄α̇) ∈ Γ(S+),
and transition functions between coordinate patches that are precisely Sl(2,C)
transformations, acting just like the flat-space spin-1

2 Lorentz transformations on
spinors.

38A ‘section’ of a bundle over M is essentially a ‘nice’ continuous choice of vector in TxM over
every point x. We will not review differential geometry here. Let us just say that the tangent
bundle is a special case of the concept of ‘vector bundle’, which assigns a vector space to every
point on x.

39In a unitary relativistic QFT, they are then boson, by the spin-statistic theorem.
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10.3.1 Veirbein

To deal with spinors in GR, it is most convenient to introduce an auxiliary construc-
tion, called a ‘vierbein’ (in four dimensions). This is a choice of an orthonormal
frame at every point inM—that is, we pick four distinct co-vectors ea ∈ Γ(T ∗M),
with a = 0, · · · , 3, such that:

eaebηab = gµνdx
µdxν ↔ ds2 = gµνdx

µdxν = ηab e
aeb , (10.19)

where we sum over all repeated indices. Here, ηab = diag(−1, 1, 1, 1) is the Minkowski
metric. Note that the veirbein eaµ is a sort of ‘square root’ of the metric tensor:

gµν = ηab e
a
µe
b
ν . (10.20)

Since the metric is invertible, we also have the inverse veirbein, denoted by eaµ.
All frame indices are raised and lowered with the flat metric ηab. Here and in the
following, µ, ν, · · · denote the ‘curved’ local coordinate indices, and a, b, · · · denote
the ‘flat’ frame indices. We can write any tensor on M in terms of coordinate
indices—and vice-versa—, using the veirbein and its inverse:

Xa = eaµX
µ , ωa = eµaωµ , etc. (10.21)

Given a choice of frame, we can now write spinors as if we were in flat space—indeed,
we are always locally in flat space, by the equivalence principle. In particular,
we define the γa matrices as before, and the corresponding σa, σ̄a matrices as
in section 2.2. The only difference is that, in curved space, we must distinguish
between flat and curved indices. For instance, while the matrices (σa) = (σ0, σi)
are defined as before (they are the constant matrices (2.26)), the matrices σµ would
denote:

σµ ≡ eµaσa , (10.22)

which do depend non-trivially on the coordinates xµ, through the veirbein. In
particular, for the 4d γ-matrices, we have:

{γa, γb} = 2ηab ↔ {γµ, γν} = 2gµν . (10.23)

Now, the spinors ψα and η̄α̇ are defined as in flat space, using the orthonormal
frame basis. They transforms in the appropriate Sl(2,C) ‘Lorentz’ representations
according to:

ψα → (Mabψ)α = −i(σab)αβψβ , η̄α̇ → (Mabψ̄)α̇ = −i(σ̄ab)α̇β̇ η̄
β̇ . (10.24)

Beware of the notation: In this section, the indices a, b, · · · are frame indices,
not spinor indices. We will only deal with 2-component spinors in the following,
with Weyl-spinor indices α, α̇.
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10.3.2 Covariant derivatives, spin connection and curvature

Consider any field ϕ, which may carry any combination of frame, coordinate and
spinor indices. To compare the field at two different points, ϕ(x) and ϕ(x + ∆x),
we need a notion of parallel transport, just like for the vectors.

Recall that, for vectors and covectors, we have a particularly ‘nice’ connection
which is torsion-free, the Levi-Civita connection, denoted by Γρµν , which can be
written directly in terms of the first derivatives of the metric tensor:

Γρµν =
1

2
gρλ(∂µgνλ + ∂νgµλ − ∂λgµν) (10.25)

Then, the covariant derivatives are given by:

∇µXν = ∂µX
ν − ΓνµρX

ρ , ∇µων = ∂µων + Γρµνωρ , (10.26)

and similarly for any tensor. Let us assume for a moment that our general field
ϕ only has frame and spinor indices—this can always be done by absorbing all
coordinate indices with the veirbein, as in (10.21). This means that ϕ transforms
in some (generally reducible) representation R of the Lorentz group. Then, the
appropriate covariant derivative takes the form:

∇µϕ = ∂µϕ−
i

2
ωµ

abM
(R)
ab ϕ , (10.27)

where ωµab is the so-called spin connection, and M
(R)
ab is the Lorentz matrix in the

representation R. In particular, the covariant derivatives on Weyl spinors are given
by:

∇µψ = (∂µ −
1

2
ωµabσ

ab)ψ ,

∇µη̄ = (∂µ −
1

2
ωµabσ̄

ab)η̄ .

(10.28)

By comparing (10.27) with ϕ = ω with (10.26), one can show that the spin connec-
tion is related to the Levi-Civita connection by:

ωµa
b = eνae

b
ρ Γρµν − ebν∂µeνa . (10.29)

This is equivalent to the statement that the covariant derivative of the veirbein
vanishes—that is:

∇µeaν = ∂µe
a
ν + Γρµνe

a
ρ − ωµbaeaν = 0 . (10.30)

Finally, the curvature tensor of the spin connection is given by:

Rµνa
b(ω) = ∂µωνa

b − ∂νωµab + ωνa
cωµc

b − ωµacωνcb . (10.31)

This is simply the ordinary Riemann tensor with two frame indices:

Rµνa
b = eρae

b
λRµνρλ . (10.32)

Finally, the Ricci scalar is defined as:

R = eaµe
ν
b R

µ
νa
b(ω) . (10.33)
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10.4 Gravitino and the Rarita-Schwinger equation

The gavitino field, Ψαµ, Ψ̄
α̇
µ, is a massless spin-3

2 field, and we need to understand
better how it propagates—that is, what is the analogue of the Dirac equation for
spin-1

2 fermions?

First of all, we note that the ‘spinor-tensor’ field Ψαa = eµaΨαµ, by itself, does
transforms in an irreducible Lorentz representation. Instead, we have:

(
1

2
, 0)⊗ (

1

2
,
1

2
) = (1,

1

2
)⊕ (0,

1

2
) (10.34)

The irreducible representation corresponding to the first term on the RHS, (1, 1
2),

plus its CPT conjugate (1
2 , 1), will give us the gravitino. The second term, (0, 1

2),
should be eliminated from the physical description, somehow; this corresponds to
a projection:

(σ̄µΨµ)α̇ = 0 . (10.35)

Secondly, as already mentioned, the fact that the gravitino couples to the conserved
current:

∆L = ΨµS
µ , (10.36)

implies the presence of a gauge invariance:

Ψµα → Ψµα + ∂µηα . (10.37)

These two points are related: one can view the constraint (10.35) as a gauge-fixing
condition, which then imposes σ̄µ∂µη = 0 on the gauge parameter (that is, η then
solves the massless Dirac equation). Whatever gauge one picks, the point is that the
(0, 1

2) components in (10.34) correspond to some unphysical ‘pure gauge’ degrees of
freedom.

Any kinetic Lagrangian for the gravitino should be gauge-invariant under (10.37).
For instance, the following “field strength” is obviously gauge invariant:

Ψµν ≡ ∂µΨν − ∂νΨµ . (10.38)

In the linearized theory around flat space, we can take:

LRS = −1

2
εµνρσΨ̄µσ̄ν∂ρΨλ + h.c. . (10.39)

This is gauge invariant up to a total derivative. The corresponding equation of
motion is known as the massless Rarita-Schwinger equation:

εµνρσσ̄ν∂ρΨλ = 0 , εµνρσσν∂ρΨ̄λ = 0 , (10.40)

It describes the propagation of a massless particle of helicity |λ| = 3
2 in flat space.
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10.5 The old-minimal 4d N = 1 supergravity action

Finally, we now briefly describe the structure of 4d N = 1 so-called ‘old minimal’
supergravity. We will state the key results without proof, since the complete deriva-
tion is rather tedious and very technical. For further references, see the original
literature [28, 30, 29], as well as at the books e.g. [2, 1].

10.5.1 Gravitino and local supersymmetry

Before proceeding to the supergravity action, let us emphasize the key role that
the gravitino plays in supergravity theories. It acts as a gauge-field for local su-
persymmetry. A gauge-field for any ‘gauge symmetry’ G is a one-form valued in
the Lie algebra of G. Here, the supersymmetry transformation parameters εα are
spinor-valued, and correspondingly Ψµα can be viewed as a spinor-valued one-form.

Any gauge field allows us to define ‘G-covariant derivatives.’ In the case of
local supersymmetry, this should go as follows. Consider, for simplicity, a multiplet
(ϕ, χ) of bosons and fermions that would be of the form:

δϕ = εχ , δχ = 0 , (10.41)

in flat space. In this toy model, if we wanted to make the supersymmetry trans-
formation local, ε = ε(x), then derivatives of the field ϕ would transform non-
covariantly as:

∂µϕ→ δ(∂µϕ) = ε∂µχ+ (∂µε)χ . (10.42)

Instead, if we define a ‘supersymmetry-covariant’ derivative of the form:

Dµϕ = ∂µϕ−Ψµχ , (10.43)

thne we have:
δ(Dµϕ) = ε∂µχ+ (∂µε)χ− (δΨµ)χ , (10.44)

and one can remove the dependence on the derivatives of ε if we declare that:

δΨµ = ∂µε , (10.45)

under local supersymmetry. All the art of supergravity is to make this kind of
reasoning work at the full non-linear level in the gravitino and in the metric, in
curved space-time.

10.5.2 Gravitino-twisted spin connection

In the non-linear supergravity theory, covariant derivatives should be taken using
a modified spin-connection, which includes pieces quadratic in the gravitino:

ω̂µab = ωµab +
i

4
ecµ
(
ΨaσbΨ̄c −ΨcσbΨ̄a + ΨcσaΨ̄b −ΨbσaΨ̄c −ΨbσcΨ̄a + ΨaσcΨ̄b

)
.

(10.46)
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Then, we define the modified Ricci scalar as in (10.33), namely:

R = eaµe
ν
b R

µ
νa
b(ω̂) . (10.47)

This of course reduces to the Ricci scalar R for Ψµ = Ψ̄µ = 0. We also define a
covariant derivative for the gravitino:

D̃µΨνα = ∂µΨνα −
1

2
ω̂µab(σ

abΨν)α ,

D̃µΨ̄α̇
ν = ∂µΨ̄α̇

ν −
1

2
ω̂µab(σ̄

abΨ̄ν)α̇ .

(10.48)

10.5.3 The 4d N = 1 supergravity action

In terms of these quantities, the full supergravity action reads:

SSUGRA =
1

4πG

∫
d4x
√
−g

[
1

2
R− 1

2
εµνρσ

(
Ψ̄µσ̄νD̃ρΨλ −ΨµσνD̃ρΨ̄λ

)
+

1

3
M̄M − 1

3
bµb

µ

]
.

(10.49)
The auxiliary fields bµ and M,M̄ were introduced in subsection 10.1.1. This ac-
tion is invariant under the full non-linear off-shell local N = 1 supersymmetry
transformations:

δeaµ = i
(
Ψµσ

aε̄− εσaΨ̄µ

)
,

δΨµα = −2Dµεα + iecµ

(
1

3
M(σcε̄)α + bcεα +

1

3
bd(εσdσ̄c)

)
,

δΨ̄α̇
µ = · · · ,

δM = · · · ,
δM̄ = · · · ,
δbµ = · · · .

(10.50)

The full transformatiosn can be found in [1]. They are not particularly illuminating
by themselves. Just note that we indeed have a derivative of the supersymmetry
parameter in the gravitino variation, which now involves the modified covariant
derivative on spinors:

Dµε = (∂µ −
1

2
ω̂µabσ

ab)ε . (10.51)

One can similarly consider coupling the supergravity sector to matter, which gen-
eralizes the minimal coupling (10.11) to the full non-linear theory.

There are also a superspace approach to N = 1 supergravity, to which the Wess and
Bagger book provides a good introduction [1]. The basic idea is to develop a theory
of general covariance in superspace, generalizing the logic of General Relativity.
This allows, in particular, to derive the connection (10.46) from first principle (or
‘almost’) as a component of a superspace connection.
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A Useful identities

In this appendix, we collect some useful identities. The proofs are left as an exercise
for the reader.

A.1 Useful identities

Recall:
(σµσ̄ν + σν σ̄µ)α

β = −2ηµνδα
β ,

(σ̄µσν + σ̄νσµ)α
β = −2ηµνδα̇β̇ .

(A.1)

We also have:

σµαα̇σ̄
β̇
µβ = −2δβαδ

β̇
α̇ ,

Tr(σµσ̄ν) = −2ηµν ,
(A.2)

σµσ̄νσρ + σρσ̄νσµ = 2(ηµρσν − ηνρσµ − ηµνσρ) ,
σ̄µσν σ̄ρ + σ̄ρσν σ̄µ = 2(ηµρσ̄ν − ηνρσ̄µ − ηµν σ̄ρ) ,

(A.3)

Involving θ, θ̄ (or any two spinors):

θαθβ = −1

2
εαβθθ , θ̄α̇θ̄β̇ =

1

2
εα̇β̇ θ̄θ̄ , (A.4)

θ̄α̇θα =
1

2
θσµθ̄ σ̄α̇αµ . (A.5)

θσµθ̄θσν θ̄ = −1

2
θθ θ̄θ̄ ηµν . (A.6)

The matrices (σµν)α
β defined in (2.37) are also (imaginary)-self-dual (SD) two-

forms:
i

2
εµνρσσρσ = σµν , (A.7)

while σ̄µν is (imaginary)-anti-self-dual (ADS):

i

2
εµνρσσ̄ρσ = −σ̄µν . (A.8)

Here, we have ε0123 = +1. Note also that those matrices are traceless with the
natural position of indices, and therefore they are symmetric in the spinor indices
when bringing both indices down: (σµν)αβ = (σµν)βα, and similarly, (σ̄µν)α̇β̇ =
(σ̄µν)β̇α̇.

We also have the useful identity:

Tr(σµνσρσ) = −1

2
(ηµρηνσ − ηµσηνρ)− i

2
εµνρσ . (A.9)
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A.2 Fierz identities for 4d Weyl spinors

A basic identity involving three left-chiral Weyl spinors is:

θχψα = −θψ χα − χψ θα , (A.10)

and similarly for right-chiral Weyl spinors:

θ̄χ̄ ψ̄α̇ = −θ̄ψ̄ χ̄α̇ − χ̄ψ̄ θ̄α̇ . (A.11)

From these follow various other useful identities, such as, for instance:

(σµε̄)α εψ = −εσµε̄ ψα + ε̄σ̄µψ εα , (A.12)

We also have:

θψ χ̄α̇ = −1

2
ψσµχ̄ (θσµ)α̇ ,

χ̄θ̄ ψα = −1

2
ψσµχ̄ (σµθ̄)α .

(A.13)
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