Supersymmetry & Supergravity: Problem sheet 2

MMathPhys, University of Oxford, HT2020, Dr Cyril Closset

Tutor: Dr Cyril Closset. TA: Horia Magureanu

Due by Friday, week 4 (February 14), 4pm.

The starred questions or subquestions, denoted by [*], are optional and will not be marked. They should be useful as part of your exam preparation, and can be discussed in class.

1. The 4d $\mathcal{N} = 1$ super-Poincaré algebra.

The 4d $\mathcal{N} = 1$ supersymmetry algebra reads:

$$\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} = 2\sigma^{\mu}_{\alpha\dot{\beta}}P_{\mu} ,$$

$$\{Q_{\alpha}, Q_{\beta}\} = \{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\} = 0 ,$$

$$[P_{\mu}, Q_{\alpha}] = [P_{\mu}, \bar{Q}_{\dot{\alpha}}] = 0 ,$$

$$[M_{\mu\nu}, Q_{\alpha}] = i(\sigma_{\mu\nu}Q)_{\alpha} ,$$

$$[M_{\mu\nu}, \bar{Q}_{\dot{\alpha}}] = -i(\bar{Q}\bar{\sigma}_{\mu\nu})_{\dot{\alpha}} ,$$

$$(0.1)$$

together with the Poincaré algebra itself:

$$[M_{\mu\nu}, M_{\rho\sigma}] = i \left(\eta_{\mu\sigma} M_{\nu\rho} + \eta_{\nu\rho} M_{\mu\sigma} - \eta_{\mu\rho} M_{\nu\sigma} - \eta_{\nu\sigma} M_{\mu\rho} \right) , [P_{\mu}, P_{\nu}] = 0 , \qquad [M_{\mu\nu}, P_{\rho}] = -i (\eta_{\mu\rho} P_{\nu} - \eta_{\nu\rho} P_{\mu}) .$$
(0.2)

(1.a) Define the supercommutator:

$$[\mathcal{O}_a, \mathcal{O}_b] \equiv \mathcal{O}_a \mathcal{O}_b - (-1)^{\epsilon_a \epsilon_b} \mathcal{O}_b \mathcal{O}_a , \qquad (0.3)$$

where $\epsilon_a \in \{0, 1\}$ is the \mathbb{Z}_2 grading of \mathcal{O}_a . Using the Jacobi identities of a super-algebra:

$$(-1)^{\epsilon_c \epsilon_a} [[\mathcal{O}_a, \mathcal{O}_b], \mathcal{O}_c] + (-1)^{\epsilon_a \epsilon_b} [[\mathcal{O}_b, \mathcal{O}_c], \mathcal{O}_a] + (-1)^{\epsilon_b \epsilon_c} [[\mathcal{O}_c, \mathcal{O}_a], \mathcal{O}_b] = 0 ,$$

show that the 4d $\mathcal{N} = 1$ supersymmetry algebra closes.

Hint: For this computation, a useful identity is:

$$\sigma^{\mu}\bar{\sigma}^{\nu}\sigma^{\rho} + \sigma^{\rho}\bar{\sigma}^{\nu}\sigma^{\mu} = 2(\eta^{\mu\rho}\sigma^{\nu} - \eta^{\nu\rho}\sigma^{\mu} - \eta^{\mu\nu}\sigma^{\rho}) . \tag{0.4}$$

(1.b) [*] Write down the supersymmetry algebra in terms of the Majorana spinor:

$$(\mathbf{Q}_a) = \begin{pmatrix} Q_\alpha \\ \bar{Q}^{\dot{\alpha}} \end{pmatrix} \ . \tag{0.5}$$

2. Supermultiplets of 4d $\mathcal{N} = 2$ supersymmetry.

In this problem, we look at massless multiplets of 4d $\mathcal{N} = 2$ supersymmetry.

We would like to keep track of the $U(2)_R = U(1)_r \times SU(2)_R$ symmetry, which is part of the automorphism group of the 4d $\mathcal{N} = 2$ superalgebra. The supercharges:

$$(Q^I) = (Q^1, Q^2) , \qquad (\bar{Q}_I) = (\bar{Q}_1, \bar{Q}_2) , \qquad (0.6)$$

transform as $SU(2)_R$ doublets.

- (2.a) Write down the 4d $\mathcal{N} = 2$ algebra acting on massless one-particle states with $P^{\mu} = (E, 0, 0, E)$. Give it in terms of creation and annihilation operators, like in the lectures.
- (2.b) Describe the structure of the massless $\mathcal{N} = 2$ supermultiplet with lowest helicity $\lambda = -\frac{1}{2}$ (that is, give the particle content and show how the various particles are related by supersymmetry). This supermultiplet is called the **hypermultiplet**. How does it behave under CPT? In which $SU(2)_R$ representations do the various bosons and fermions transform?
- (2.c) Describe the structure of the massless $\mathcal{N} = 2$ supermultiplet with lowest helicity $\lambda = -1$, adding the CPT conjugate particles if needed. This gives the so-called **4d** $\mathcal{N} = 2$ **vector multiplet**. In which $SU(2)_R$ representations do the various bosons and fermions transform?
- (2.d) [*] Decompose the 4d $\mathcal{N} = 2$ vector multiplet into two 4d $\mathcal{N} = 1$ supermultiplets, after choosing a particular $\mathcal{N} = 1$ subalgebra of the 4d $\mathcal{N} = 2$ supersymmetry algebra.

3. Superspace differential operators.

Consider 4d $\mathcal{N} = 1$ superspace:

$$\mathbb{R}^{3,1|4} = ISO(1,3|4)/SO(1,3) . \tag{0.7}$$

The differential operators representing the supersymmetry algebra on superspace are given by:

$$\begin{aligned} \mathbf{Q}_{\alpha} &= -i(\partial_{\alpha} - i(\sigma^{\mu}\theta)_{\alpha}\partial_{\mu}) ,\\ \bar{\mathbf{Q}}_{\dot{\alpha}} &= i(\bar{\partial}_{\dot{\alpha}} - i(\theta\sigma^{\mu})_{\dot{\alpha}}\partial_{\mu}) ,\\ \mathbf{P}_{\mu} &= -i\partial_{\mu} ,\\ \mathbf{M}_{\mu\nu} &= i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu} - (\theta\sigma_{\mu\nu})^{\alpha}\partial_{\alpha} + (\bar{\sigma}_{\mu\nu}\bar{\theta})^{\dot{\alpha}}\partial_{\dot{\alpha}}) . \end{aligned}$$
(0.8)

(3.a) Derive the expression for $\mathbf{M}_{\mu\nu}$ using the coset manifold construction of superspace.

(3.b) [*] By explicit computation, check that the operators (0.8) satisfy the supersymmetry algebra. For simplicity, check only the two (anti)commutators $\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\}$ and $[M_{\mu\nu}, Q_{\alpha}]$. The following identity may be useful:

$$\sigma^{\mu\nu}\sigma^{\rho} - \sigma^{\rho}\bar{\sigma}^{\mu\nu} = \eta^{\mu\rho}\sigma^{\nu} - \eta^{\nu\rho}\sigma^{\mu}.$$

4. Supersymmetry variations of a chiral multiplet.

Recall the supersymmetry variations for the chiral and anti-chiral multiplets:

$$\begin{split} \delta\phi &= \sqrt{2\epsilon\psi} , & \delta\bar{\phi} &= \sqrt{2\bar{\epsilon}\bar{\psi}} , \\ \delta\psi_{\alpha} &= i\sqrt{2}(\sigma^{\mu}\bar{\epsilon})_{\alpha}\partial_{\mu}\phi + \sqrt{2}\epsilon_{\alpha}F , & \delta\bar{\psi}^{\dot{\alpha}} &= i\sqrt{2}(\bar{\sigma}^{\mu}\epsilon)^{\dot{\alpha}}\partial_{\mu}\bar{\phi} + \sqrt{2}\bar{\epsilon}^{\dot{\alpha}}\bar{F} , \quad (0.9) \\ \deltaF &= i\sqrt{2}\bar{\epsilon}\bar{\sigma}^{\mu}\partial_{\mu}\psi , & \delta\bar{F} &= i\sqrt{2}\epsilon\sigma^{\mu}\partial_{\mu}\bar{\psi} . \end{split}$$

Let us also write down the Lagrangian:

$$\mathscr{L}_{\rm kin} = -\partial_{\mu}\bar{\phi}\partial^{\mu}\phi - i\bar{\psi}\bar{\sigma}^{\mu}\partial_{\mu}\psi + \bar{F}F , \qquad (0.10)$$

and:

$$\mathscr{L}_W = F^i \partial_i W - \frac{1}{2} \psi^i \psi^j \,\partial_i \partial_j W \,, \qquad (0.11)$$

for $W = W(\phi)$ an arbitrary superpotential.

(4.a) By explicit computation using the SUSY variations (0.9), show that the Lagrangian \mathscr{L}_{kin} is supersymmetric:

$$\delta \mathscr{L}_{\rm kin} = \partial_{\mu} (\cdots) \ . \tag{0.12}$$

(4.b) [*] Similarly, show by explicit computation that the interaction Lagrangian \mathscr{L}_W is supersymmetric.

5. Chiral superfields.

Consider the explicit form:

$$\Phi(x,\theta,\bar{\theta}) = \phi(x) + \sqrt{2}\theta\psi(x) + \theta\theta F(x) + i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\phi(x) + \frac{i}{\sqrt{2}}\theta\theta\bar{\theta}\bar{\sigma}^{\mu}\partial_{\mu}\psi(x) + \frac{1}{4}\theta\theta\bar{\theta}\bar{\theta}\partial^{2}\phi(x) .$$
(0.13)

for the chiral superfield, and the differential operators:

(5.a) By explicit computation, check that:

$$D_{\dot{\alpha}}\Phi = 0$$
.

(5.b) Consider the general non-linear kinetic term for a single chiral multiplet:

$$\mathscr{L}_K = \int d^2\theta d^2\bar{\theta} K(\bar{\Phi}, \Phi) , \qquad (0.15)$$

with $K(\bar{z}, z)$ a real function of a single complex variable z, with complex conjugate \bar{z} . Expanding the superfield Φ into component fields and performing the superspace integral, write down the Lagrangian \mathscr{L}_K in components. Check that you recover (0.10) in the special case $K(\bar{z}, z) = |z|^2$.

(5.c) Rederive the chiral multiplet supersymmetry transformation laws (0.9) using the superspace definition:

$$\delta \Phi = i(\epsilon \mathbf{Q} + \bar{\epsilon} \mathbf{Q})\Phi$$

6. Supersymmetric gauge transformations.

Given a real superfield \mathcal{S} ((\mathcal{S})[†] = \mathcal{S}), we may define the transformation:

$$\mathcal{S} \to \mathcal{S} + \Phi + \bar{\Phi} , \qquad (0.16)$$

where Φ and $\overline{\Phi}$ are a chiral multiplet and its Hermitian conjugate.

(6.a) Write down this transformation in terms of the components fields of the real superfields,

$$\mathcal{S} = (C, \chi, \bar{\chi}, M, M, v_{\mu}, \lambda, \lambda, D) ,$$

and of the component fields of Φ and $\overline{\Phi}$. (For instance, for the bottom component, we obviously have: $C \to C + \phi + \overline{\phi}$.) Why is this called a "gauge transformation"?

(6.b) Show that (0.16) leaves the D-term action:

$$S = \int d^4x \int d^2\theta d^2\bar{\theta} \,\mathcal{S} \tag{0.17}$$

invariant.

Additional problems (optional, not marked).

7. [*] Manipulating Grassmann numbers.

Let η^i denote a set of *n* Grassmann coordinates $(i = 1, \dots, n)$, which satisfy the Grassmann algebra:

$$\{\eta^i, \eta^j\} = 0 . (0.18)$$

Let us define the integration over the η coordinates as:

$$\int d^n \eta = \int d\eta^n \cdots d\eta^2 d\eta^1 . \tag{0.19}$$

(7.a) Prove that:

$$\int d^n \eta \; e^{\frac{1}{2}A_{ij}\eta^i \eta^j} = \operatorname{Pf}(A) \; ,$$

where $A_{ij} = A_{ji}$ is an antisymmetric matrix.

(7.b) For a single variable η , let us define the Dirac delta function $\delta(\eta - \theta)$ by:

$$\int d\eta \,\delta(\eta - \theta) f(\eta) = f(\theta) \,, \qquad \forall f \,. \tag{0.20}$$

Show that $\delta(\eta - \theta) = \eta - \theta$.

8. [*] The $\mathcal{N} = 4$ vector multiplet.

Similarly to problem 2 above, let us study the massless representations of the 4d $\mathcal{N} = 4$ supersymmetry algebra. In this case, we keep track of the $SU(4)_R$ R-symmetry; the supercharges (Q^I) and (\bar{Q}_I) transform in the 4 and $\bar{4}$ of SU(4), respectively.

- (8.a) Describe the unique massless 4d $\mathcal{N} = 4$ supermultiplet compatible with *rigid* supersymmetry. How do its components transform under $SU(4)_R$? This multiplet is called the **4d** $\mathcal{N} = 4$ **vector multiplet**. (Why?)
- (8.b) Decompose the $\mathcal{N} = 4$ vector multiplet into 4d $\mathcal{N} = 1$ supermultiplets.

9. [*] $\mathcal{N} = 3$ one-particle multiplet.

Find the most general massless one-particle multiplet of $\mathcal{N} = 3$ rigid supersymmetry in a QFT (without gravity), and organise the states in representations of the $U(3)_R \cong SU(3)_R \times U(1)_R$ R-symmetry. Work out how the $\mathcal{N} = 3$ multiplet is embedded into the $\mathcal{N} = 4$ multiplet. What can you conclude?

[The following mathematical fact may be useful: the branching rules for the Lie algebra decomposition $SU(4) \rightarrow SU(3) \times U(1)$ are:

 $\mathbf{4}
ightarrow \mathbf{1}_{-3} \oplus \mathbf{3}_1 \;, \qquad \mathbf{6}
ightarrow \mathbf{3}_{-2} \oplus \mathbf{\overline{3}}_2 \;, \qquad \mathbf{10}
ightarrow \mathbf{1}_{-6} \oplus \mathbf{3}_{-2} \oplus \mathbf{6}_2 \;,$

for the first few irreducible representations of SU(4).]

10. [*] Coset manifold: a classic example.

Consider the group G = SU(2), with group elements given by:

$$g = e^{i\epsilon_i T^i} \in G , \qquad [T^i, T^j] = i\epsilon^{ij}{}_k T^k . \tag{0.21}$$

(Of course i = 1, 2, 3.) We consider the subgroup H = U(1) with a single generator:

$$h = e^{i\varepsilon T^3} \in H . ag{0.22}$$

Show explicitly that the coset manifold G/H is the two-sphere:

.

$$\mathcal{M} = G/H \cong S^2 \ . \tag{0.23}$$

Hint: One can consider an explicit realisation of SU(2) in terms of $T^i = \frac{1}{2}\sigma^i$, with σ^i the Pauli matrices. Then, the general element g takes the form:

$$g = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} , \qquad a, b \in \mathbb{C} , \quad \text{such that } |a|^2 + |b|^2 = 1 . \tag{0.24}$$

(Check this.) Show that, in this parameterisation, the action $g \rightarrow gh$ is given by:

$$a \to a e^{i\frac{\varepsilon}{2}}$$
, $b \to b e^{-i\frac{\varepsilon}{2}}$. (0.25)

Use this to argue that the coset manifold is indeed S^2 . Can you find a convenient set of coordinates on the coset? How does G = SU(2) act on those coordinates?