
Supersymmetry & Supergravity: Problem sheet 2

MMathPhys, University of Oxford, HT2020, Dr Cyril Closset

Tutor: Dr Cyril Closset. TA: Horia Magureanu

Due by Friday, week 4 (February 14), 4pm.

The starred questions or subquestions, denoted by [∗], are optional and will not
be marked. They should be useful as part of your exam preparation, and can be
discussed in class.

1. The 4d N = 1 super-Poincaré algebra.

The 4d N = 1 supersymmetry algebra reads:

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ ,

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 ,

[Pµ, Qα] = [Pµ, Q̄α̇] = 0 ,

[Mµν , Qα] = i(σµνQ)α ,

[Mµν , Q̄α̇] = −i(Q̄σ̄µν)α̇ ,

(0.1)

together with the Poincaré algebra itself:

[Mµν ,Mρσ] = i (ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ) ,

[Pµ, Pν ] = 0 , [Mµν , Pρ] = −i(ηµρPν − ηνρPµ) .
(0.2)

(1.a) Define the supercommutator:

[Oa,Ob} ≡ OaOb − (−1)εaεbObOa , (0.3)

where εa ∈ {0, 1} is the Z2 grading of Oa. Using the Jacobi identities of a
super-algebra:

(−1)εcεa [[Oa,Ob},Oc}+ (−1)εaεb [[Ob,Oc},Oa}+ (−1)εbεc [[Oc,Oa},Ob} = 0 ,

show that the 4d N = 1 supersymmetry algebra closes.

Hint: For this computation, a useful identity is:

σµσ̄νσρ + σρσ̄νσµ = 2(ηµρσν − ηνρσµ − ηµνσρ) . (0.4)

(1.b) [∗] Write down the supersymmetry algebra in terms of the Majorana spinor:

(Qa) =

(
Qα
Q̄α̇

)
. (0.5)

1



2

2. Supermultiplets of 4d N = 2 supersymmetry.

In this problem, we look at massless multiplets of 4d N = 2 supersymmetry.

We would like to keep track of the U(2)R = U(1)r × SU(2)R symmetry, which is
part of the automorphism group of the 4d N = 2 superalgebra. The supercharges:

(QI) = (Q1, Q2) , (Q̄I) = (Q̄1, Q̄2) , (0.6)

transform as SU(2)R doublets.

(2.a) Write down the 4d N = 2 algebra acting on massless one-particle states with
Pµ = (E, 0, 0, E). Give it in terms of creation and annihilation operators, like
in the lectures.

(2.b) Describe the structure of the massless N = 2 supermultiplet with lowest he-
licity λ = −1

2 (that is, give the particle content and show how the various
particles are related by supersymmetry). This supermultiplet is called the
hypermultiplet. How does it behave under CPT? In which SU(2)R repre-
sentations do the various bosons and fermions transform?

(2.c) Describe the structure of the massless N = 2 supermultiplet with lowest
helicity λ = −1, adding the CPT conjugate particles if needed. This gives
the so-called 4d N = 2 vector multiplet. In which SU(2)R representations
do the various bosons and fermions transform?

(2.d) [*] Decompose the 4d N = 2 vector multiplet into two 4d N = 1 super-
multiplets, after choosing a particular N = 1 subalgebra of the 4d N = 2
supersymmetry algebra.

3. Superspace differential operators.

Consider 4d N = 1 superspace:

R3,1|4 = ISO(1, 3|4)/SO(1, 3) . (0.7)

The differential operators representing the supersymmetry algebra on superspace
are given by:

Qα = −i(∂α − i(σµθ̄)α∂µ) ,

Q̄α̇ = i(∂̄α̇ − i(θσµ)α̇∂µ) ,

Pµ = −i∂µ ,
Mµν = i(xµ∂ν − xν∂µ − (θσµν)α∂α + (σ̄µν θ̄)

α̇∂α̇) .

(0.8)

(3.a) Derive the expression for Mµν using the coset manifold construction of su-
perspace.
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(3.b) [*] By explicit computation, check that the operators (0.8) satisfy the su-
persymmetry algebra. For simplicity, check only the two (anti)commutators
{Qα, Q̄β̇} and [Mµν , Qα]. The following identity may be useful:

σµνσρ − σρσ̄µν = ηµρσν − ηνρσµ.

4. Supersymmetry variations of a chiral multiplet.

Recall the supersymmetry variations for the chiral and anti-chiral multiplets:

δφ =
√

2εψ , δφ̄ =
√

2ε̄ψ̄ ,

δψα = i
√

2(σµε̄)α∂µφ+
√

2εαF , δψ̄α̇ = i
√

2(σ̄µε)α̇∂µφ̄+
√

2ε̄α̇F̄ ,

δF = i
√

2ε̄σ̄µ∂µψ , δF̄ = i
√

2εσµ∂µψ̄ .

(0.9)

Let us also write down the Lagrangian:

Lkin = −∂µφ̄∂µφ− iψ̄σ̄µ∂µψ + F̄F , (0.10)

and:

LW = F i∂iW −
1

2
ψiψj ∂i∂jW , (0.11)

for W = W (φ) an arbitrary superpotential.

(4.a) By explicit computation using the SUSY variations (0.9), show that the La-
grangian Lkin is supersymmetric:

δLkin = ∂µ(· · · ) . (0.12)

(4.b) [∗] Similarly, show by explicit computation that the interaction Lagrangian
LW is supersymmetric.

5. Chiral superfields.

Consider the explicit form:

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) + θθF (x)

+ iθσµθ̄∂µφ(x) +
i√
2
θθθ̄σ̄µ∂µψ(x) +

1

4
θθθ̄θ̄∂2φ(x) .

(0.13)

for the chiral superfield, and the differential operators:

Qα = −i
(
∂α − i(σµθ̄)α∂µ

)
, Q̄α̇ = i

(
∂̄α̇ − i(θασµ)α̇∂µ

)
,

Dα = ∂α + i(σµθ̄)∂µ , D̄α̇ = ∂̄α̇ + i(θσµ)α̇∂µ .
(0.14)

(5.a) By explicit computation, check that:

D̄α̇Φ = 0 .



4

(5.b) Consider the general non-linear kinetic term for a single chiral multiplet:

LK =

∫
d2θd2θ̄K(Φ̄,Φ) , (0.15)

with K(z̄, z) a real function of a single complex variable z, with complex
conjugate z̄. Expanding the superfield Φ into component fields and perform-
ing the superspace integral, write down the Lagrangian LK in components.
Check that you recover (0.10) in the special case K(z̄, z) = |z|2.

(5.c) Rederive the chiral multiplet supersymmetry transformation laws (0.9) using
the superspace definition:

δΦ = i(εQ + ε̄Q)Φ .

6. Supersymmetric gauge transformations.

Given a real superfield S ((S)† = S), we may define the transformation:

S → S + Φ + Φ̄ , (0.16)

where Φ and Φ̄ are a chiral multiplet and its Hermitian conjugate.

(6.a) Write down this transformation in terms of the components fields of the real
superfields,

S =
(
C,χ , χ̄ ,M , M̄ , vµ , λ , λ̄ ,D

)
,

and of the component fields of Φ and Φ̄. (For instance, for the bottom com-
ponent, we obviously have: C → C + φ + φ̄.) Why is this called a “gauge
transformation”?

(6.b) Show that (0.16) leaves the D-term action:

S =

∫
d4x

∫
d2θd2θ̄ S (0.17)

invariant.

Additional problems (optional, not marked).

7. [∗] Manipulating Grassmann numbers.

Let ηi denote a set of n Grassmann coordinates (i = 1, · · · , n), which satisfy the
Grassmann algebra:

{ηi, ηj} = 0 . (0.18)

Let us define the integration over the η coordinates as:∫
dnη =

∫
dηn · · · dη2dη1 . (0.19)
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(7.a) Prove that: ∫
dnη e

1
2
Aijη

iηj = Pf(A) ,

where Aij = Aji is an antisymmetric matrix.

(7.b) For a single variable η, let us define the Dirac delta function δ(η − θ) by:∫
dη δ(η − θ)f(η) = f(θ) , ∀f . (0.20)

Show that δ(η − θ) = η − θ.

8. [∗] The N = 4 vector multiplet.

Similarly to problem 2 above, let us study the massless representations of the 4d
N = 4 supersymmetry algebra. In this case, we keep track of the SU(4)R R-
symmetry; the supercharges (QI) and (Q̄I) transform in the 4 and 4̄ of SU(4),
respectively.

(8.a) Describe the unique massless 4d N = 4 supermultiplet compatible with rigid
supersymmetry. How do its components transform under SU(4)R? This
multiplet is called the 4d N = 4 vector multiplet. (Why?)

(8.b) Decompose the N = 4 vector multiplet into 4d N = 1 supermultiplets.

9. [∗] N = 3 one-particle multiplet.

Find the most general massless one-particle multiplet of N = 3 rigid supersym-
metry in a QFT (without gravity), and organise the states in representations of
the U(3)R ∼= SU(3)R × U(1)R R-symmetry. Work out how the N = 3 multiplet is
embedded into the N = 4 multiplet. What can you conclude?
[The following mathematical fact may be useful: the branching rules for the Lie
algebra decomposition SU(4)→ SU(3)× U(1) are:

4→ 1−3 ⊕ 31 , 6→ 3−2 ⊕ 3̄2 , 10→ 1−6 ⊕ 3−2 ⊕ 62 ,

for the first few irreducible representations of SU(4).]

10. [∗] Coset manifold: a classic example.

Consider the group G = SU(2), with group elements given by:

g = eiεiT
i ∈ G , [T i, T j ] = iεijkT

k . (0.21)

(Of course i = 1, 2, 3.) We consider the subgroup H = U(1) with a single generator:

h = eiεT
3 ∈ H . (0.22)
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Show explicitly that the coset manifold G/H is the two-sphere:

M = G/H ∼= S2 . (0.23)

Hint: One can consider an explicit realisation of SU(2) in terms of T i = 1
2σ

i, with
σi the Pauli matrices. Then, the general element g takes the form:

g =

(
a b
−b̄ ā

)
, a, b ∈ C , such that |a|2 + |b|2 = 1 . (0.24)

(Check this.) Show that, in this parameterisation, the action g → gh is given by:

a→ aei
ε
2 , b→ be−i

ε
2 . (0.25)

Use this to argue that the coset manifold is indeed S2. Can you find a convenient
set of coordinates on the coset? How does G = SU(2) act on those coordinates?


