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1.1 Risk
The Concise Oxford English Dictionary: “hazard, a chance of bad
consequences, loss or exposure to mischance”.
McNeil, Frey, and Embrechts (2005): “any event or action that may
adversely affect an organization’s ability to achieve its objectives and
execute its strategies”.
No single one-sentence definition captures all aspects of risk.
For us: risk = chance of loss ⇒ randomness

1.1.1 Risk and randomness

We will mostly model situations in which an investor holds today an
asset with an uncertain future value.
We use probabilistic notions (random variables, random vectors, distribu-
tions, stochastic processes) and statistical tools. In particular, we assume
to work on a probability space (Ω,F ,P); see Kolmogorov (1933).
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1.1.2 Financial Risk

There are various types of risks. We focus on (those affected by regulation):
Market risk Risk of loss in a financial position due to changes in the

underlying components (e.g. stock/bond/commodity prices)
Credit risk Risk of a counterparty failing to meet its obligations (default),

i.e. the risk of not receiving promised repayments (e.g. loans/bonds).
Operational risk (OpRisk) Risk of loss resulting from inadequate or failed

internal processes, people and systems or from external events (e.g. fraud,
fat-finger trades, earthquakes).

There are many other types of risks such as liquidity risk, underwriting risk,
or model risk (the risk of using a misspecified or inappropriate model for
measuring risk; model risk is always present to some degree).
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1.1.3 Measurement and management

Risk measurement

Suppose we hold a portfolio of d investments with weights w1, . . . , wd.
Let Xj denote the change in value of the jth investment. The change
in value – profit and loss (P&L) – of the portfolio over a given holding
period is then

X =
d∑
j=1

wjXj .

Measuring the risk now consists of determining the distribution function
F (or functionals of it, e.g. mean, variance, α-quantiles F←(α) =
inf{x ∈ R : F (x) ≥ α}).
To this end, we need a properly calibrated joint model for X =
(X1, . . . , Xd). Statistical estimates of F or one of its functionals are
obtained based on historical observations of this model.
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Risk management
What is RM? Kloman (1990) writes:

“RM is a discipline for living with the possibility that future events
may cause adverse effects.”

⇒ It is about ensuring resilience to future events.
Note that financial firms are not passive/defensive towards risk, banks
and insurers actively/willingly take risks because they seek a return. RM
thus belongs to their core competence.
What does managing risks involve?
I Determine the capital to hold to absorb losses, both for regulatory

purposes (to comply with regulators) and economic capital purposes
(to survive as a company).

I Ensuring portfolios are well diversified.
I Optimizing portfolios according to risk-return considerations.
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1.2 Why manage financial risk?
Society (single customers and as a whole (systemic risk)) relies on the
stability of the banking and insurance system.
This is related to systemic importance of the company in question (size
and connectivity to other firms). Considering some firms as too big to
fail creates a moral hazard (should be avoided!) since the management
of such a firm may take more risk knowing that it would be bailed out
in a crisis.
Better risk management can reduce the risk of company failure and
protect customers and policyholders. However, regulation must be
designed with care and should not promote herding, procyclical behaviour
or other forms of endogenous risk that could result in a systemic crisis.
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1.3 Quantitative Risk Management
1.3.1 The Q in QRM

We treat QRM as a quantitative science using the language of mathe-
matics in general, and probability and statistics in particular.
Probability and statistics provide us with a suitable language and with
appropriate concepts for describing financial risks.
We also point out assumptions and limitations of the methodology used.
The Q in QRM is an essential part of the RM process. We believe
it remains (if applied correctly and honestly) a part of the solution to
managing risk (not the problem). See also Shreve (2008):
“Don’t blame the quants. Hire good ones instead and listen to
them.”
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1.3.2 The nature of the challenge

Our approach to QRM has two main strands:
I Put current practice onto a firmer mathematical ground;
I Put together techniques and tools which go beyond current practice

and address some of the deficiencies.
In particular, some of the challenges of QRM are:
I Extremes matter.
I Interdependence and concentration of risks.
I The problem of scale (models for all risk factors may not be feasible).
I Interdisciplinarity.
I Communication and education.
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2 Basic concepts in risk management
2.1 Risk management for a financial firm

2.2 Modelling value and value change

2.3 Risk measurement
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2.1 Risk management for a financial firm
2.1.1 Assets, liabilities and the balance sheet

The risks of a firm (here: bank) can be understood from its balance sheet:

Assets Liabilities
Investments of the firm Obligations from fundraising

Cash £10M Customer deposits £80M
(and central bank balance)
Securities £50M Bonds issued
- bonds, stocks, derivatives - senior bond issues £25M
Loans and mortgages £100M - subordinated bond issues £15M
- corporates Short-term borrowing £30M
- retail and smaller clients Reserves (for losses on loans) £20M
- government
Other assets £20M Debt (sum of above) £170M
- property
- investments in companies Equity £30M
Short-term lending £20M

Total £200M Total £200M
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A stylized balance sheet for an insurer is:

Assets Liabilities

Investments Reserves for policies written £80M
- bonds £50M (technical provisions)
- stocks £5M Bonds issued £10M
- property £5M
Investments for unit-linked £30M Debt (sum of above) £90M
contracts

Other assets £10M Equity £10M
- property

Total £100M Total £100M

Balance sheet equation: Assets = Liabilities = Debt + Equity.
If equity > 0, the company is solvent, otherwise insolvent.
Valuation of the items on the balance sheet is a non-trivial task.
I Amortized cost accounting values a position a book value at its

inception and this is carried forward/progressively reduced over time.
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I Fair-value accounting values assets at prices they are sold and liabili-
ties at prices that would have to be paid in the market. This can be
challenging for non-traded or illiquid assets or liabilities.

There is a tendency in the industry to move towards fair-value accounting.
Market consistent valuation in Solvency II follows similar principles.

2.1.2 Risks faced by a financial firm

Decrease in the value of the investments on the asset side of the balance
sheet (e.g. losses from securities trading or credit risk).
Maturity mismatch (large parts of the assets are relatively illiquid (long-
term) whereas large parts of the liabilities are rather short-term obliga-
tions. This can lead to a default of a solvent bank or a bank run).
The prime risk for an insurer is insolvency (risk that claims of policy
holders cannot be met). On the asset side, risks are similar to those of a
bank. On the liability side, the main risk is that reserves are insufficient
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to cover future claim payments. Note that the liabilities of a life insurer
are of a long-term nature and subject to multiple categories of risk (e.g.
interest rate risk, inflation risk and longevity risk).
So risk is found on both sides of the balance sheet and thus RM should
not focus on the asset side alone.

2.1.3 Capital

There are different notions of capital. One distinguishes:
Equity capital Value of assets − debt;

Measures the firm’s value to its shareholders;
Can be split into shareholder capital (initial cap-
ital invested in the firm) and retained earnings
(accumulated earnings not paid to shareholders).

Regulatory capital Capital required according to regulatory rules;
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For European insurance firms: Minimum (MCR)
and solvency capital requirements (SCR);
A regulatory framework also specifies the capital
quality. One distinguishes Tier 1 capital (i.e.
shareholder capital + retained earnings; can act
in full as buffer) and Tier 2 capital (includes
other positions on the balance sheet).

Economic capital Capital required to control the probability of
becoming insolvent (typically over one year);
Internal assessment of risk capital;
Aims at a holistic view (assets and liabilities) and
works with fair values of balance sheet items.

All of these notions refer to items on the liability side that entail no
obligations to outside creditors; they can thus serve as buffer against
losses.
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2.2 Modelling value and value change
2.2.1 Mapping of risks

We set up a general mathematical model for (changes in) value caused by
financial risks. To this end we work on a probability space (Ω,F ,P) and
consider a risk or loss as a random variable X : Ω→ R (or: L).

Consider a portfolio of assets and possibly liabilities. The value of the
portfolio at time t (today) is denoted by Vt (a random variable; assumed
to be known at t; its df is typically not trivial to determine!).
We consider a given time horizon ∆t and assume:
1) the portfolio composition remains fixed over ∆t;
2) there are no intermediate payments during ∆t
⇒ Fine for small ∆t but unlikely to hold for large ∆t.
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The change in value of the portfolio is given by

∆Vt+1 = Vt+1 − Vt

and we define the (random) loss by the sign-adjusted value change

Lt+1 = −∆Vt+1

(as QRM is mainly concerned with losses).

Remark 2.1
1) The distribution of Lt+1 is called loss distribution.
2) Practitioners often consider the profit-and-loss (P&L) distribution which

is the distribution of −Lt+1 = ∆Vt+1.
3) For longer time intervals, ∆Vt+1 = Vt+1/(1 + r) − Vt (r = risk-free

interest rate) would be more appropriate, but we will mostly neglect
this issue.

© QRM Tutorial Section 2.2.1

http://www.qrmtutorial.org


Vt is typically modelled as a function f of time t and a d-dimensional
random vector Z = (Zt,1, . . . , Zt,d) of risk factors, that is,

Vt = f(t,Zt) (mapping of risks)

for some measurable f : R+ × Rd → R. The choice of f and Zt is
problem-specific (typically known, but possibly difficult to evaluate).
It is often convenient to work with the risk-factor changes

Xt+1 = Zt+1 −Zt.

We can rewrite Lt+1 in terms of Xt+1 via

Lt+1 = −(Vt+1 − Vt) = −(f(t+ 1,Zt+1)− f(t,Zt))
= −(f(t+ 1,Zt +Xt+1)− f(t,Zt)).

We see that the loss df is determined by the loss df ofXt+1. We will thus
also write Lt+1 = L(Xt+1), where L(x) = −(f(t+1,Zt+x)−f(t,Zt))
is known as loss operator .
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If f is differentiable, its first-order (Taylor) approximation (f(y) ≈
f(y0)+∇f(y0)′(y−y0) for y = (t+1, Zt,1 +Xt+1,1, . . . , Zt,d+Xt+1,d
and y0 = (t, Zt,1, . . . , Zt,d)) is

f(t+ 1,Zt +Xt+1) ≈ f(t,Zt) + ft(t,Zt) · 1 +
d∑
j=1

fzj (t,Zt) ·Xt+1,j

We can thus approximate Lt+1 by the linearized loss

L∆
t+1 = −

(
ft(t,Zt)︸ ︷︷ ︸

=: ct

+
d∑
j=1

fzj (t,Zt)︸ ︷︷ ︸
=: bt,j

Xt+1,j

)
= −(ct + b′tXt+1),

a linear function ofXt+1,1, . . . , Xt+1,d (indices denote partial derivatives).
The approximation is best if the risk-factor changes are small in absolute
value.
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Example 2.2 (Stock portfolio)
Consider a portfolio P of d stocks St,1, . . . , St,d (St,j = value of stock j at
time t) and denote by λj the number of shares of stock j in P . In finance
and risk management, one typically uses logarithmic prices as risk factors,
i.e. Zt,j = logSt,j , j ∈ {1, . . . , d}. Then

Vt = f(t,Zt) =
d∑
j=1

λjSt,j =
d∑
j=1

λje
Zt,j .

The one-period ahead loss is then given by

Lt+1 = −(Vt+1 − Vt) = −
d∑
j=1

λj(eZt,j+Xt+1,j − eZt,j )

= −
d∑
j=1

λje
Zt,j (eXt+1,j − 1) = −

d∑
j=1

λjSt,j︸ ︷︷ ︸
=: w̃t,j

(eXt+1,j − 1) (1)

which is non-linear in Xt+1,j (here: L(x) = −
∑d
j=1 w̃t,j(exj − 1)).

© QRM Tutorial Section 2.2.1

http://www.qrmtutorial.org


With fzj (t,Zt) = λje
Zt,j = λjSt,j = w̃t,j , the linearized loss is

L∆
t+1 = −

(
ft(t,Zt) +

d∑
j=1

fzj (t,Zt)Xt+1,j

)
= −

(
0 +

d∑
j=1

w̃t,jXt+1,j
)

= −w̃′tXt+1.

Note that L∆
t+1 = −(ct + b′tXt+1) for ct = 0 and bt = w̃t.

If µ = EXt+1 and Σ = covXt+1 are known, then expectation and
variance of the (linearized) one-period ahead loss are

EL∆
t+1 = −

d∑
j=1

w̃t,jE(Xt+1,j) = −w̃′tµ,

varL∆
t+1 = var(w̃′tXt+1) = w̃′t cov(Xt+1)w̃t = w̃′tΣw̃t.

If Xt+1 is multivariate normal, then L∆
t+1 ∼ N(−w̃′tµ, w̃′tΣw̃t).
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Example 2.3 (European call option)
Consider a portfolio consisting of a European call option on a non-dividend-
paying stock St with maturity T and strike (exercise price) K. The
Black–Scholes formula says that today’s value is

Vt = CBS(t, St; r, σ,K, T ) = StΦ(d1)−Ke−r(T−t)Φ(d2), (2)

where
t is the time in years;
Φ is the df of N(0, 1);
r is the continuously compounded risk-free interest rate;
d1 = log(St/K)+(r+σ2/2)(T−t)

σ
√
T−t and d2 = d1 − σ

√
T − t; and

σ is the annualized volatility (standard deviation) of log(St/St−1).
While (2) assumes r, σ to be constant, this is often not true in real markets.
Hence, besides logSt, we consider rt, σt as risk factors, so
Zt = (logSt, rt, σt) ⇒ Xt+1 = (log(St+1/St), rt+1 − rt, σt+1 − σt).
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This implies that the mapping f (in terms of the risk factors) is given by

Vt = CBS(t, eZt,1 ;Zt,2, Zt,3,K, T ) =: f(t,Zt)

and the linearized one-day ahead loss (omitting the arguments of CBS) is

L∆
t+1 = −

(
ft(t,Zt) +

3∑
j=1

fzj (t,Zt)Xt+1,j
)

= −
(
CBS
t ∆t+ CBS

St StXt+1,1 + CBS
rt Xt+1,2 + CBS

σt Xt+1,3
)
.

If our risk management horizon is 1 d (as opposed to 1 y), we need to
introduce ∆t := 1/250 here. Note that the “Greeks” enter (CBS

t is the
theta of the option; CBS

St
the delta; CBS

rt the rho; CBS
σt the vega).

For portfolios of derivatives, L∆
t+1 can be a rather poor approximation to

Lt+1 ⇒ higher-order (Taylor) approximations such as the delta-gamma-
approximation (second-order) can be used.
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2.2.2 Loss distributions

Having determined the mapping f (may involve valuation models, e.g.
Black–Scholes, or numerical approximation), we can identify the following
key statistical tasks of QRM:
1) Find a statistical model for Xt+1 (typically a model for forecasting
Xt+1, estimated based on historical data);

2) Compute/derive the df FLt+1 (requires the df of f(t+ 1,Zt +Xt+1));
3) Compute a risk measure (see later) from FLt+1 .

There are three general methods to approach these challenges.

1) Analytical method

Idea: Choose FXt+1 and f such that FLt+1 can be determined explicitly.

Prime example: Variance-covariance method , see RiskMetrics (1996):
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Assumption 1 Xt+1 ∼ N(µ,Σ) (e.g. if (Zt) is a Brownian motion, (St)
a geometric Brownian motion)

Assumption 2 FL∆
t+1

is a good approximation to FLt+1 .
L∆
t+1 = −(ct+b′tXt+1) ⇒

Ass. 1
L∆
t+1 ∼ N(−ct−b′tµ, b′tΣbt)

Advantages: FL∆
t+1

explicit (⇒ typically explicit risk measures)
Easy to implement (unless d extremely large)

Drawbacks: Assumption 1 is unlikely to be realistic for daily (probably
also weekly/monthly) data (see later).

2) Historical simulation

Idea: Estimate FLt+1 by its empirical distribution function (edf)

F̂Lt+1,n(x) = 1
n

n∑
i=1

I{Lt−i+1≤x}, x ∈ R, (3)
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based on

Lk = L(Xk) = −(f(t+ 1,Zt +Xk)− f(t,Zt)), (4)

k ∈ {t− n+ 1, . . . , t}. Lt−n+1, . . . , Lt show what would happen to
the current portfolio if the past n risk-factor changes were to recur.

Advantages: Easy to implement
No estimation of the distribution of Xt+1 required

Drawbacks: Sufficient data for all risk-factor changes required
Only past losses considered (“driving a car by looking in
the back mirror”)
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3) Monte Carlo method

Idea: Take any model forXt+1, simulateXt+1, compute the corresponding
losses as in (4) and estimate FLt+1 (typically via edf as in (3)).

Advantages: Quite general (applicable to any model of Xt+1 which is
easy to sample)

Drawbacks: Unclear how to find an appropriate model for Xt+1 (any
result is only as good as the chosen FXt+1)
Computational cost (every simulation requires to evalu-
ate the mapping f ; expensive, e.g. if the latter contains
derivatives which are priced via Monte Carlo themselves
⇒ Nested Monte Carlo simulations)

So-called economic scenario generators used in insurance also fall under
the heading of Monte Carlo methods.
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2.3 Risk measurement
A risk measure for a financial position with (random) loss L is a real
number which measures the “riskiness of L”. In the Basel or Solvency
context, it is often interpreted as the amount of capital required to make
a position with loss L acceptable to an (internal/external) regulator.
Some reasons for using risk measures in practice:
I To determine the amount of capital to hold as a buffer against

unexpected future losses on a portfolio (in order to satisfy a regula-
tor/manager concerned with the institution’s solvency).

I As a tool for limiting the amount of risk of a business unit (e.g. by
requiring that the daily 95% value-at-risk (i.e. the 95%-quantile) of
a trader’s position should not exceed a given bound).

I To determine the riskiness (and thus fair premium) of an insurance
contract.
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2.3.1 Approaches to risk measurement

Existing risk measurement approaches grouped into three categories:
1) Notional-amount approach

oldest approach; “standardized approaches” of Basel II (e.g. OpRisk)
risk of a portfolio = summed notional values of the securities times
their riskiness factor.

2) Risk measures based on loss distributions
Most modern risk measures are characteristics of the underlying loss
distribution over some predetermined time horizon ∆t.
Examples: variance, value-at-risk, expected shortfall (see later)
Advantages: I Makes sense on all levels (from single portfolios to

the overall position of a financial institution).
I Loss distributions reflect netting and diversification.
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3) Scenario-based risk measures
Typically considered in stress testing.
One considers possible future risk-factor changes (scenarios; e.g. a
20% drop in a market index).
Risk of a portfolio = maximum (weighted) loss under all scenarios.
If X = {x1, . . . ,xn} denote the risk-factor changes (scenarios)
with corresponding weights w = (w1, . . . , wn), the risk is ψX ,w =
max1≤i≤n{wiL(xi)}, where L(x) denotes the loss the portfolio
would suffer if the hypothetical scenario x were to occur. Many
risk measures are of this form; see CME SPAN: Standard Portfolio
Analysis of Risk (2010).
Mathematical interpretation:
I Assume L(0) = 0 (okay if ∆t small) and wi ∈ [0, 1] ∀ i.
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I wiL(xi) = wiL(xi)+(1−wi)L(0) = EPi(L(X)) where X ∼ Pi
and Pi is such that Pi(X = xi) = wi and Pi(X = 0) = 1− wi.

Therefore, ψX ,w = max{EP(L(X)) : X ∼ P ∈ {P1, . . . ,Pn}}.
Such a risk measure is known as a generalized scenario.
Advantages: I Useful for portfolios with few risk factors.

I Useful complementary information to risk measures
based on loss distributions (past data).

Drawbacks: I Determining scenarios and weights.

2.3.2 Value-at-risk

Definition 2.4 (Value-at-risk)
For a loss L ∼ FL, value-at-risk (VaR) at confidence level α ∈ (0, 1) is
defined by VaRα = VaRα(L) = F←L (α) = inf{x ∈ R : FL(x) ≥ α}.
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VaRα is simply the α-quantile of FL. As such, FL(VaRα(L)) =
FL(F←L (α)) ≥ α and FL(x) < α for all x < VaRα(L).
VaRα(L) = inf{x ∈ R : F̄L(x) ≤ 1 − α} (F̄L(x) = 1 − FL(x)), so
VaRα is the smallest loss which is exceeded with prob. at most 1− α.
Known since 1994: Weatherstone 415 report (J.P. Morgan; RiskMetrics)
VaR is the most widely used risk measure (by Basel II or Solvency II)
VaRα(L) is not a what if risk measure: It does not provide information
about the severity of losses which occur with probability ≤ 1− α.
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Interlude: Generalized inverses

T ↗ means that T is increasing , i.e. T (x) ≤ T (y) for all x < y. T ↑
means that T is strictly increasing , i.e. T (x) < T (y) for all x < y.

Definition 2.5 (Generalized inverse)
For any increasing function T : R→ R, with T (−∞) = limx↓−∞ T (x)
and T (∞) = limx↑∞ T (x), the generalized inverse T← : R → R̄ =
[−∞,∞] of T is defined by

T←(y) = inf{x ∈ R : T (x) ≥ y}, y ∈ R,

with the convention that inf ∅ =∞. If T is a df, T← : [0, 1]→ R̄ is the
quantile function of T .

If T is continuous and ↑, then T← ≡ T−1 (ordinary inverse).
There are rules for working with T← (often, not always) similar to T−1.
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How to determine T← from T :

x

T (x)

T←(y1) = T←(y2) T←(y3)

y1

y2

y3

y

T←(y)

y1 y2 y3

T←(y1) = T←(y2)

T←(y3)

Flat parts (jumps) of T correspond to jumps (flat parts) of T←.
Assume T to be a df and L ∼ T .
I What is the probability that L falls in the region where T is flat?
I What is P(L = T←(y1))?
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Example 2.6 (VaRα for N(µ, σ2) and tν(µ, σ2))
1) Let L ∼ N(µ, σ2). Then

FL(x) = P(L ≤ x) = P((L− µ)/σ ≤ (x− µ)/σ) = Φ((x− µ)/σ).
This implies that

VaRα(L) = F←L (α) = F−1
L (α) = µ+ σΦ−1(α).

Check: FL(VaRα(L)) = Φ
((

(µ+ σΦ−1(α))− µ
)
/σ
)

= α.
2) Let L ∼ tν(µ, σ2), so (L− µ)/σ ∼ tν = tν(0, 1) and thus, as above,

VaRα(L) = µ+ σt−1
ν (α).

Note that X ∼ tν = tν(0, 1) has density

ftν (x) = Γ((ν + 1)/2)√
νπΓ(ν/2) (1 + x2/ν)−

ν+1
2 .

Furthermore, if ν > 1, EX exists and EX = 0. If ν > 2, then varX
exists and varX = ν

ν−2 ; in particular, Z =
√

ν−2
ν X ∼ tν(0, ν−2

ν ) has
varZ = 1.
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Choices of parameters ∆t, α:

∆t should reflect the time period over which the portfolio is held
(unchanged) (e.g. insurance contracts: ∆t = 1 y)
∆t should be relatively small (more risk-factor change data is available).
Typical choices:
I According to Basel II:

Market risk: α = 0.99, ∆t = 10 d (2 trading weeks)
Credit risk and operational risk: α = 0.999, ∆t = 1 y

I According to Solvency II: α = 0.995, ∆t = 1 y
Backtesting often needs to be carried out at lower confidence levels in
order to have sufficient statistical power to detect poor models.
Be cautious with strictly interpreting VaRα(L) (and other risk measure)
estimates (considerable model/liquidity risk).
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2.3.3 VaR in risk capital calculations

VaR in regulatory capital calculations for the trading book
For banks using the internal model (IM) approach for market risk in Basel II
(similarly but more involved for Basel III), the daily risk capital formula is

RCt = max
{

VaRt,10
0.99,

k

60

60∑
i=1

VaRt−i+1,10
0.99

}
+ c.

VaRs,10
α denotes the 10-day VaRα calculated at day s (t = today).

k ∈ [3, 4] is a multiplier (or stress factor).
c = stressed VaR charge (calculated from data from a volatile market
period) + incremental risk charge (IRC; VaR0.999-estimate of the annual
distribution of losses due to defaults and downgrades) + charges for
specific risks.

The averaging tends to lead to smooth changes in the capital charge over
time unless VaRt,10

0.99 is very large.
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2.3.4 Expected shortfall

Definition 2.7 (Expected shortfall)
For a loss L ∼ FL with E(L+) = E(max{L, 0}) < ∞, expected
shortfall (ES) at confidence level α ∈ (0, 1) is defined by

ESα = ESα(L) = 1
1− α

∫ 1

α
VaRu(L) du. (5)

ESα is the average of VaRu over all u ≥ α ⇒ ESα ≥ VaRα.
ESα looks further into the tail of FL, it is a “what if” risk measure
(VaRα is frequency-based; ESα is severity-based). This also becomes
clear from the following result which shows that under continuity, ex-
pected shortfall equals conditional tail expectation or tail value-at-risk.

Proposition 2.8 (ESα(L) under continuity)
If FL is continuous, ESα(L) = E(L |L > VaRα(L)).
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Proof. If FL is continuous, FL(VaRα(L)) = FL(F←L (α)) = α and thus,
for all x ≥ VaRα(L),

FL|L>VaRα(L)(x) = P(L ≤ x |L > VaRα(L))

= P(L ≤ x, L > VaRα(L))
P(L > VaRα(L)) = P(VaRα(L) < L ≤ x)

P(L > VaRα(L))

= FL(x)− FL(VaRα(L))
1− FL(VaRα(L)) = FL(x)− α

1− α .

Since dFL|L>VaRα(L)(x) = dFL(x)/(1− α),

E(L |L > VaRα(L)) =
∫ ∞

VaRα(L)
x dFL|L>VaRα(L)(x)

= 1
1− α

∫ ∞
VaRα(L)

x dFL(x) = 1
1− α

∫ 1

α
VaRz(L) dz

= ESα(L),

where we substituted x = VaRz(L) = F←L (z) (so FL(x) = z, dFL(x) =
dz).
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ESα is more difficult to estimate and backtest than VaRα (the variance
of estimators is typically larger; larger sample size required).

ESα(L) <∞ requires E(L+) <∞.

Subadditivity and elicitability. One can show:
I In contrast to VaRα, ESα is subadditive (more later).
I In contrast to ESα, VaRα exists if E|L| = ∞ and is elicitable (i.e.

minimizes some expected functional (scoring function); see Gneiting
(2011). This can be used for backtesting, comparing risk measures).
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Example 2.9 (A comparison of VaR and ES for stock returns)
Consider Example 2.2 with a 1-stock portfolio and Vt = St = 10 000. In
this case, L∆

t+1 = −StXt+1, where Xt+1 = log(St+1/St).
Let σ = 0.2/

√
250 (annualized volatility of 20%) and assume

1) Xt+1 ∼ N(0, σ2) ⇒ L∆
t+1 ∼ N(0, S2

t σ
2);

2) Xt+1 ∼ tν(0, σ2 ν−2
ν ), ν > 2 (so that varXt+1 = σ2, too). Then

Xt+1 =
√
σ2 ν − 2

ν
Y for Y ∼ tν ,

⇒ L∆
t+1 = −St

√
σ2 ν−2

ν Y∼ tν(0, S2
t σ

2 ν−2
ν ) (so var(L∆

t+1) = S2
t σ

2,
too).

Consider ν = 4 and note that only for sufficiently large α do we have
VaRt4

α ≥ VaRnormal
α and ESt4α ≥ ESnormal

α .
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⇒ The t4 model is not always “riskier” than the normal model.
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Example 2.10 (Example 2.6 continued; ESα for N(µ, σ2) and tν(µ, σ2))
1) Let L̃ ∼ N(0, 1). Then VaRα(L̃) = 0 + 1 · Φ−1(α) and thus

ESα(L̃) = 1
1− α

∫ 1

α
Φ−1(u) du =

x=Φ−1(u)

1
1− α

∫ ∞
Φ−1(α)

xϕ(x) dx,

where ϕ(x) = Φ′(x) = exp(−x2/2)/
√

2π. Since xϕ(x) = −ϕ′(x),

ESα(L̃) =
−
[
ϕ(x)

]∞
Φ−1(α)

1− α = −(0− ϕ(Φ−1(α))
1− α = ϕ(Φ−1(α))

1− α .

By linearity (or see soon), L ∼ N(µ, σ2) has expected shortfall

ESα(L) = µ+ σESα(L̃) = µ+ σ
ϕ(Φ−1(α))

1− α .

2) Let L ∼ tν(µ, σ2), ν > 1. Similarly as above, one obtains that

ESα(L) = µ+ σ
1

1− α
ν

ν − 1ftν (t−1
ν (α)2)(1 + t−1

ν (α)2/ν),

where ftν denotes the density of tν ; see Example 2.6.
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By l’Hôpital’s Rule (case “0/0”), one can show that

1 ≤ lim
α↑1

ESα(L)
VaRα(L) = ν

ν − 1 .

In finance, often ν ∈ (3, 5). With ν = 3, ESα(L) is 50% larger than
VaRα(L) (in the limit for large α).
For ν ↑ ∞, limα↑1

ESα(L)
VaRα(L) ↓ 1.

For ν ↓ 1, limα↑1
ESα(L)

VaRα(L) ↑ ∞.

Conclusion:
For losses with heavy tails (power-like), the difference between VaR
and ES can be huge (for large α as required by Basel II).
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2.3.5 Coherent and convex risk measures

Artzner et al. (1999) (coherent risk measures) and Föllmer and Schied
(2002) (convex risk measures) propose axioms of a good risk measure.
Assume that risk measures % are defined on a linear space of random
variablesM (including constants; we can thus add rvs, multiply them
with constants etc.), so % :M→ R.
There are two possible interpretations of elements ofM:
1) Elements of M are net asset values Vt+1: %̃(Vt+1) denotes the

capital to be added to a position with future value Vt+1 to make it
acceptable to a regulator.

2) Elements ofM are losses Lt+1 = −(Vt+1−Vt): %(Lt+1) denotes
the total amount of capital necessary to back a position with loss L.

1) and 2) are related via %(Lt+1) = Vt + %̃(Vt+1) (total capital =
available capital + additional capital). We focus on 2) and drop “t+ 1”.
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Axioms of coherence
Axiom 1 (monotonicity) L1, L2 ∈M, L1 ≤ L2 (a.s., i.e. almost surely)

⇒ %(L1) ≤ %(L2)
Interpr.: Positions which lead to a higher loss in every state

of the world require more risk capital.
Criticism: None

Axiom 2 (translation invar.) %(L+ l) = %(L) + l for all L ∈M, l ∈ R

Interpr.: By shifting a position with loss L, we alter the
capital requirements accordingly.
If %(L) > 0, and l = −%(L), then %(L− %(L)) =
%(L+ l) = %(L) + l = 0 so that adding %(L) to a
position with loss L makes it acceptable.

Criticism: Most people believe this to be reasonable.
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Axiom 3 (subadditivity) %(L1 + L2) ≤ %(L1) + %(L2) for all L1, L2 ∈M

Interpr.: Reflects the idea of diversification. Using a non-
subadditive (that is, a superadditive) % encourages
institutions to legally break up into subsidiaries to
reduce regulatory capital requirements.
Subadditivity makes decentralization possible: As-
sume L = L1 + L2 and that we want to bound
%(L) by M . Choose Mj such that %(Lj) ≤ Mj ,
j ∈ {1, 2}, and M1 + M2 ≤ M . Then %(L) ≤

subadd.
%(L1) + %(L2) ≤M1 +M2 ≤M .

Criticism: VaR is ruled out under certain scenarios (see later).
VaR is monotone, translation invariant, and positive
homogeneous, but in general not subadditive.
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Axiom 4 (positive homogeneity) %(λL) = λ%(L) for all L ∈M, λ > 0
Interpr.: (or motivation): For L1 = · · · = Ln = L, sub-

additivity implies %(nL) ≤ n%(L), but there is no
diversification, so equality should hold.

Criticism: If λ > 1 is large, liquidity risk plays a role and one
should rather have %(λL) > λ%(L) (also to penalize
risk concentration), but this contradicts subadditivity.
This has led to convex risk measures, i.e. monotone,
translation invariant % satisfying %(λL1+(1−λ)L2) ≤
λ%(L1)+(1−λ)%(L2) for all L1, L2 ∈M, 0 ≤ λ ≤ 1.

Definition 2.11 (Coherent risk measure)
A risk measure % which satisfies Axioms 1–4 is called coherent.

Coherent risk measures are convex. The converse is not true in general
(but for positive homogeneous risk measures %).
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Example 2.12 (Coherence of generalized scenario risk measures)
Let L(x) denote the hypothetical loss under scenario x (risk-factor change).
The generalized scenario risk measure

ψX ,w(L) = max{EP(L(X)) : X ∼ P ∈ {P1, . . . ,Pn}}

is coherent. Monotonicity, translation invariance, positive homogeneity are
clear (by monotonicity and linearity of EP(·)). For subadditivity, note that

ψX ,w(L1 + L2) = max{EP(L1(X) + L2(X))︸ ︷︷ ︸
=EP(L1(X)) +EP(L2(X))

: X ∼ P ∈ {P1, . . . ,Pn}}

≤ ψX ,w(L1) + ψX ,w(L2).

Remark 2.13
One can show that all coherent risk measures can be represented as
generalized scenarios via %(L) = sup{EP(L) : P ∈ P} for a suitable set P
of probability measures.

© QRM Tutorial Section 2.3.5

http://www.qrmtutorial.org


Theorem 2.14 (Coherence of ES)
ES is a coherent risk measure.

Proof. Monotonicity, translation invariance and positive homogeneity follow
from VaR. Subadditivity is more involved but can be shown.

Superadditivity scenarios for VaR

Under the following scenarios, VaRα is typically superadditive:
1) L1, L2 have skewed distributions;
2) Independent, light-tailed L1, L2 and small α;
3) L1, L2 have special dependence;
4) L1, L2 have heavy tailed distributions.
Let’s have a look at examples for 1), 2) and 4); for 3), see later.
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Example 2.15 (Skewed loss distributions)
Consider two independent losses of the form

Lj =

−5, with prob. 1− p = 0.991,
100, with prob. p = 0.009,

j ∈ {1, 2}.

Set α = 0.99. Then VaRα(Lj) = −5, j ∈ {1, 2}. The loss L1 + L2 is

L1 + L2 =


−10, with prob. (1− p)2 = 0.982081,
95, with prob. 2p(1− p) = 0.017838,
200, with prob. p2 = 0.000081.

Therefore, VaRα(L1 + L2) = 95 > −10 = VaRα(L1) + VaRα(L2).
For d such losses, one can show that VaRα is superadditive if and only
if (1− p)d < α ≤ 1− p.
From the money lender’s (investor) view, the losses could be two inde-
pendently defaultable zero-coupon bonds (maturity T = 1 y, face value
100, interest 5%, default probability p = 0.009, no recovery).
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Example 2.16 (Independent, light-tailed L1, L2 and small α)
If L1, L2

ind.∼ Exp(1), VaRα is superadditive ⇐⇒ α < 0.71.
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One can show that (independently of λ) VaRα is superadditive if and only
if (1− α)(1− 2 log(1− α)) > 1.
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Example 2.17 (Heavy tailed loss distributions)
Let L1, L2

ind.∼ F (x) = 1− x−1/2, x ∈ [1,∞). One can show (via density
convolution formula; tedious!) that FL1+L2(x) = 1− 2

√
x− 1/x, x ≥ 2.

By solving a quadratic equation one obtains that VaRα is superadditive
for all α ∈ (0, 1).

Remark 2.18 (Special case of comonotone risks)
L1

a.s.= L2 (special case of “comonotonicity”) does not lead to the largest
VaRα(L1 + L2) since VaRα(L1 + L2) = VaRα(2L1) = 2 VaRα(L1) =
VaRα(L1) + VaRα(L2), so “only” equality (whereas all above scenarios
produced “>”). All previous examples thus gave a larger VaR under
independence than comonotonicity!
ESα is subadditive (see Theorem 2.14) and comonotone additive (same
idea as for VaRα) and thus largest under comonotonicity.
VaRα is subadditive (so coherent) for all elliptical distributitions (strictly
including the multivariate normal and t) when α ≥ 1/2; see later.
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3 Empirical properties of financial data
3.1 Stylized facts of financial return series

3.2 Multivariate stylized facts
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3.1 Stylized facts of financial return series

Stylized facts are a collection of empirical observations and related
inferences, which apply to many time series of risk-factor changes (e.g.
log-returns on equities, indices, exchange rates, commodity prices).
The best-known stylized facts apply to daily log-returns (also to intra-
daily, weekly, monthly). Tick-by-tick (high-frequency) data have their
own stylized facts (not discussed here) and annual return (low-frequency)
data are more difficult to investigate (data sparseness; non-stationarity).
Consider discrete-time risk-factor changes Xt = Zt−Zt−1 for a log-price
or rate Zt = logSt. In this case

Xt = log(St/St−1) ≈ St/St−1 − 1 = (St − St−1)/St−1;

the former is often called a (log-)return, the latter a simple return.
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3.1.1 Volatility Clustering
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show too few extremes.
(c) Simulated iid data from a

fitted t3.8. Better range of
values but still no volatility
clustering (= tendency for
extreme returns to be fol-
lowed by extreme returns).
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Estimated autocorrelation function (ACF) ρ(h) = corr(X0, Xh), h ∈ Z
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(a): Positive ACF at lag 1 would imply
a tendency for returns to be followed
by returns of equal sign⇒ not the case
⇒ predicted returns ≈ 0
(b): Positive ACF at lag 1 would imply
a tendency for large (small) returns to
be followed by large (small) returns ⇒
the case for the DAX data ⇒ returns
cluster (not iid).
(Xt)t∈Z not iid⇒ (Zt)t∈Z not a Brow-
nian motion ⇒ (St)t∈Z not a GBM.
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Concerning clustering of extremes, consider the 100 largest losses of the. . .
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The DAX data shows longer
and shorter waiting times than
the iid data, so clustering of
extremes.
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3.1.2 Non-normality and heavy tails

Formal statistical tests of normality
For general univariate df F :
I Kolmogorov–Smirnov (test statistic Tn = supx |F̂n(x)− F (x)|)
I Cramér–von Mises (Tn = n

∫∞
−∞(F̂n(x)− F (x))2 dF (x))

I Anderson–Darling (Tn = n
∫∞
−∞

(F̂n(x)−F (x))2

F (x)(1−F (x)) dF (x); recommended
by D’Agostino and Stephens (1986))

For F = N(µ, σ2):
I Shapiro–Wilk (idea: quantify Q-Q plot in one number, biased by n)
I D’Agostino (based on skewness and kurtosis, as Jarque–Bera)
I Jarque–Bera test: Compares skewness β = E((X−µ)3)

σ3 and kurtosis
κ = E((X−µ)4)

σ4 with sample versions. The test statistic is Tn =
n
6
(
β̂2 + 1

4(κ̂− 3)2) H0∼
n large

χ2
2.
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Graphical tests
We can also graphically test whether X1, . . . , Xn ∼ F for some df F
based on realizations of iid X1, . . . , Xn.
Let X(1) ≤ · · · ≤ X(n) denote the corresponding order statistics and
note that

F̂n(x) = 1
n

n∑
i=1

I{Xi≤x} = 1
n

n∑
i=1

I{X(i)≤x}, x ∈ R,

i.e. the order statistics contain all relevant information aboutX1, . . . , Xn.
Possible graphical tests:
I P-P plot: For pi =

n>10
i−1/2
n ≈ i

n , plot {(pi, F (X(i))) : i = 1, . . . , n}.

If F ≈ F̂n, F (X(i)) ≈ pi, so the points lie on a line with slope 1.
I Q-Q plot: Plot {(F←(pi), X(i)) : i = 1, . . . , n} (tail differences

better visible).
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Interpreting Q-Q plots (S-shape hints at a leptokurtic distribution, i.e.,
narrower center, heavier tails than N(µ, σ2) (kurtosis κ = 3)):

●

●

● ●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
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Daily returns typically have kurtosis κ > 3.
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To summarize, we can infer the following stylized facts about univariate
financial return series:

(U1) Return series are not iid although they show little serial correlation;

(U2) Series of absolute or squared returns show profound serial correlation;

(U3) Conditional expected returns are close to zero;

(U4) Volatility (conditional standard deviation) appears to vary over time;

(U5) Extreme returns appear in clusters;

(U6) Return series are leptokurtic or heavy-tailed (power-like tails).

© QRM Tutorial Section 3.1.2

http://www.qrmtutorial.org


3.2 Multivariate stylized facts
Consider multivariate (componentwise) log-return data X1, . . . ,Xn.

3.2.1 Correlation between series

By (U1), the returns of stock A at t and t+h show little (auto)correlation.
The returns of stock A at t and stock B at t + h, h > 0, also show
little cross-correlation. However, Stock A and stock B on day t may be
correlated due to factors that affect the whole market (contemporaneous
dependence).
These correlations of returns at t vary over time (difficult to detect
whether changes are continual or constant within regimes; fit different
models for changing correlation, then make a formal comparison).
Periods of high/low volatility are typically common to more than one
stock, so returns of large magnitude in A at t may be followed by returns
of large magnitude in A and B at t+ h.

© QRM Tutorial Section 3.2
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Estimated correlations between/within series:
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Based on 2000 values from period 1985-01-23 to 1994-09-22. Little
autocorrelation, little crosscorrelation (at different lags), contemporaneous
correlation.
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Estimated correlations between/within series of absolute values:
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Autocorrelation of absolute returns (indication of volatility clustering).
Common to more than one stock.
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3.2.2 Tail dependence (for quantifying joint extremes)

(BMW, Siemens) log-returns from 1985-01-23 to 1994-09-22 (n = 2000)
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In volatile/extreme(ly bad) periods, dependence seems stronger (1: 1987-10-
19 Black Monday (DJ drop by 22%); 2: 1989-10-16 Monday demonstrations
(Wende); 3: 1991-08-19 coup against soviet president M. Gorbachev).
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To summarize, we can infer the following stylized facts about multivariate
financial return series:

(M1) Multivariate return series show little evidence of cross-correlation,
except for contemporaneous returns (i.e. at the same t);

(M2) Multivariate series of absolute returns show profound cross-correlation;

(M3) Correlations between contemporaneous returns vary over time (diffi-
cult to infer from empirical correlations due to estimation error in
small samples);

(M4) Extreme returns in one series often coincide with extreme returns in
several other series (e.g. tail dependence).
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4 Financial time series
4.1 Fundamentals of time series analysis

4.2 GARCH models for changing volatility
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4.1 Fundamentals of time series analysis
4.1.1 Basic definitions

A stochastic process is a family of rvs (Xt)t∈I , I ⊆ R, defined on a
probability space (Ω,F ,P). A time series is a discrete-time (I ⊆ Z)
stochastic process.

Definition 4.1 (Mean function, autocovariance function)
Assuming they exist, the mean function µ(t) and the autocovariance
function γ(t, s) of (Xt)t∈Z are defined by

µ(t) = E(Xt), t ∈ Z,
γ(t, s) = cov(Xt, Xs) = E((Xt − EXt)(Xs − EXs)), t, s,∈ Z.
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Definition 4.2 ((Weak/strict) stationarity)
1) (Xt)t∈Z is (weakly/covariance) stationary if E(X2

t ) <∞,
µ(t) = µ ∈ R and γ(t, s) = γ(t+ h, s+ h) for all t, s, h ∈ Z.

2) (Xt)t∈Z is strictly stationary if (Xt1 , . . . , Xtn) d= (Xt1+h, . . . ,

Xtn+h) for all t1, . . . , tn, h ∈ Z, n ∈ N.

Remark 4.3
1) Both types of stationarity formalize the idea that (Xt)t∈Z behaves

similarly in any time period.
2) Strict stationarity ; stationarity (unless also E(X2

t ) exists).
Stationarity ; strict stationarity (E(|Xt|p), p > 2, could change).

3) If (Xt)t∈Z is stationary, γ(0, t − s) = γ(s, t) = γ(t, s) = γ(0, s − t),
so γ(t, s) only depends on the lag h = |t − s|. We can thus define
γ(h) := γ(0, |h|), h ∈ Z.
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Autocorrelation in stationary time series

Definition 4.4 (ACF)
The autocorrelation function (ACF) (or serial correlation) of a stationary
time series (Xt)t∈Z is defined by

ρ(h) := corr(X0, Xh) = γ(h)/γ(0), h ∈ Z.

Stationary?

Time
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White noise processes

Definition 4.5 ((Strict) white noise)

1) (Xt)t∈Z is a white noise process if (Xt)t∈Z is stationary with ρ(h) =
I{h=0} (no serial correlation). If µ(t) = 0, γ(0) = var(Xt) = σ2,
(Xt)t∈Z is denoted by (εt)t∈Z ∼WN(0, σ2).

2) (Xt)t∈Z is a strict white noise process if (Xt)t∈Z is an iid sequence
of rvs with γ(0) = var(Xt) = σ2 < ∞. If µ(t) = 0, we write
(Zt)t∈Z ∼ SWN(0, σ2).

Definition 4.6 (MGDS)
(Xt)t∈Z is a martingale-difference sequence (MGDS) w.r.t. (Ft)t∈Z
(typically the natural filtration Ft = σ({Xs : s ≤ t})) if E|Xt| < ∞,
t ∈ Z, (Xt)t∈Z is adapted to (Ft)t∈Z (i.e. Xt ∈ Ft, t ∈ Z); and
E(Xt+1 | Ft) = 0 for all t ∈ Z.
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4.1.2 ARMA processes

Definition 4.7 (ARMA(p, q))
Let (εt)t∈Z ∼WN(0, σ2). (Xt)t∈Z is a zero-mean ARMA(p, q) process
if it is stationary and satisfies, for all t ∈ Z,

Xt − φ1Xt−1 − · · · − φpXt−p = εt + θ1εt−1 + · · ·+ θqεt−q. (6)

(Xt)t∈Z is ARMA(p, q) with mean µ if (Xt − µ)t∈Z is a zero-mean
ARMA(p, q).

The defining equation (6) can be written as φ(B)Xt = θ(B)εt, t ∈ Z,
where B denotes the backshift operator (such that BkXt = Xt−k) and
φ(z) = 1− φ1z − · · · − φpzp and θ(z) = 1 + θ1z + · · ·+ θqz

q.
For practical purposes, it suffices to consider causal ARMA processes
(Xt)t∈Z satisfying Xt =

∑∞
k=0 ψkεt−k (only depending on past) for

∞∑
k=0
|ψk| <∞ (absolute summability condition; guarantees E|Xt| <∞).
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Theorem 4.8 (Stationary and causal ARMA solutions)
Let (Xt)t∈Z be an ARMA(p, q) process for which φ(z), θ(z) have no
roots in common. Then

(Xt)t∈Z is stationary and causal ⇔ φ(z) 6= 0 ∀ z ∈ C : |z| ≤ 1.

In this case, Xt =
∑∞
k=0 ψkεt−k for

∑∞
k=0 ψkz

k = θ(z)/φ(z), |z| ≤ 1.

If θ(z) 6= 0, |z| ≤ 1 (known as invertibility condition), (Xt)t∈Z is
invertible, i.e. we can recover εt from (Xs)s≤t (via εt = φ(B)Xt/θ(B)),
so εt ∈ Ft = σ({Xs : s ≤ t}).
An ARMA(p, q) process with mean µ can be written as Xt = µt+εt for
µt = µ+

∑p
k=1 φk(Xt−k − µ) +

∑q
k=1 θkεt−k. If (Xt)t∈Z is invertible,

µt ∈ Ft−1. If (εt)t∈Z is a MGDS w.r.t. (Ft)t∈Z, then µt = E(Xt | Ft−1).
Therefore, ARMA processes put structure on the conditional mean µt
given the past. We will see that GARCH processes put structure on
σ2
t = var(Xt | Ft−1) (helpful for modeling volatility clustering).
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4.1.3 Analysis in the time domain

Correlogram

A correlogram is a plot of (h, ρ̂(h))h≥0 for the sample ACF

ρ̂(h) =
∑n
t=1(Xt+h − X̄n)(Xt − X̄n)∑n

t=1(Xt − X̄n)2 , h ∈ {0, . . . , n}.

Theorem 4.9
Let Xt − µ =

∑∞
k=0 ψkZt−k and (Zt) ∼ SWN(0, σ2). Under suitable

conditions,

√
n



ρ̂(1)
...

ρ̂(h)

−

ρ(1)
...

ρ(h)


 d→

(n→∞)
Nh(0,W ), h ∈ N,

for a matrix W depending on ρ; see MFE (2015, Theorem 4.13).
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If the ARMA process is SWN itself,
√
n


ρ̂(1)
...

ρ̂(h)

 d→
(n→∞)

Nh(0, Ih), so that

with probability 1− α,

ρ̂(k) ∈
(n large)

[
−
q1−α/2√

n
,
q1−α/2√

n

]
, k ∈ {1, . . . , h},

where q1−α/2 = Φ−1(1−α/2). This interval is usually shown in correlogram.
As a formal test of the SWN hypothesis, one can use the Ljung–Box
test with test statistic

T = n(n+ 2)
h∑
k=1

ρ̂(k)2

n− k
∼

n large
χ2
h; reject if T > χ2

h
−1(1− α).

If (Xt)t∈Z is SWN, so is (X2
t )t∈Z. It is a good idea to also apply the

correlogram and Ljung–Box tests to (|Xt|)t∈Z or (X2
t )t∈Z.
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4.2 GARCH models for changing volatility
(G)ARCH = (generalized) autoregressive conditionally heteroscedastic
They are the most important models for daily risk-factor returns.

Definition 4.10 (GARCH(p, q))
Let (Zt)t∈Z ∼ SWN(0, 1) (typically Zt

ind.∼ N(0, 1) or Zt
ind.∼ tν(0, (ν −

2)/ν)). (Xt)t∈Z is a GARCH(p, q) process if it is strictly stationary
and satisfies

Xt = σtZt,

σ2
t = α0 +

p∑
k=1

αkX
2
t−k +

q∑
k=1

βkσ
2
t−k,

where α0 > 0, αk ≥ 0, k ∈ {1, . . . , p}, βk ≥ 0, k ∈ {1, . . . , q}.

If one of |Xt−1|, . . . , |Xt−p| or σt−1, . . . , σt−q is large, Xt is drawn from a
distribution with (persistently) large variance.
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Example 4.11 (GARCH(1, 1))
One can show (via stoch. recurrence relations) that a GARCH(1, 1)
process (Xt)t∈Z is strictly stationary if E(log(α1Z

2
t + β1)) <∞. In this

case, Xt = Zt
√
α0
(
1 +

∑∞
k=1

∏k
j=1(α1Z2

t−j + β1)
)
.

(Xt)t∈Z is stationary ⇔ α1 + β1 < 1. In this case, var(Xt) = α0
1−α1−β1

.
GARCH(1, 1) is typically leptokurtic:
Provided that E((α1Z

2
t +β1)2) < 1 (or (α1 +β1)2 < 1−(κ(Zt)−1)α2

1),
one can show that κ(Xt) = κ(Zt)(1−(α1+β1)2)

1−(α1+β1)2−(κ(Zt)−1)α2
1
.

If κ(Zt) > 1 (Gaussian, scaled t innovations), κ(Xt) > κ(Zt).
Parallels with the ARMA(1,1) process:
If E(X4

t ) < ∞, α1 + β1 < 1 and εt = σ2
t (Z2

t − 1), one can show
that (X2

t )t∈Z is an ARMA(1, 1) of the form X2
t − α0

1−α1−β1
= (α1 +

β1)
(
X2
t−1 − α0

1−α1−β1

)
+ εt − β1εt−1.
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a) n = 1000 realization of
a GARCH(1, 1) process
with α0 = 0.5, α1 = 0.1,
β1 = 0.85 and Gaussian
innovations;

b) Realization of the volatil-
ity (σt)t∈Z;

c) Correlogram of (Xt)t∈Z,
can be shown to be I{h=0}

d) Correlogram of (X2
t )t∈Z

(ARMA(1,1)); dashed line
= true ACF

© QRM Tutorial Section 4.2

http://www.qrmtutorial.org


4.2.1 Simple extensions of the GARCH model

Consider stationary GARCH processes as white noise for ARMA processes.

Definition 4.12 (ARMA(p1, q1) with GARCH(p2, q2) errors)
Let (Zt)t∈Z ∼ SWN(0, 1). (Xt)t∈Z is an ARMA(p1, q1) process with
GARCH(p2, q2) errors if it is stationary and satisfies

Xt = µt + εt for εt = σtZt (so Xt = µt + σtZt),

µt = µ+
p1∑
k=1

φk(Xt−k − µ) +
q1∑
k=1

θk(Xt−k − µt−k︸ ︷︷ ︸
= εt−k

),

σ2
t = α0 +

p2∑
k=1

αk(Xt−k − µt−k)2 +
q2∑
k=1

βkσ
2
t−k,

where α0 > 0, αk ≥ 0, k ∈ {1, . . . , p2}, βk ≥ 0, k ∈ {1, . . . , q2},∑p2
k=1 αk +

∑q2
k=1 βk < 1.

© QRM Tutorial Section 4.2.1

http://www.qrmtutorial.org


4.2.2 Fitting GARCH models to data

The most widely used approach is maximum likelihood.

After model fitting, we check residuals. Consider an ARMA model with
GARCH errors Xt = µt + εt = µt + σtZt.
The standardized residuals

Ẑt = ε̂t/σ̂t, σ̂2
t = α̂0 +

p2∑
k=1

α̂kε̂
2
t−k +

q2∑
k=1

β̂kσ̂
2
t−k; (7)

(with starting values for ε̂t as 0 and σ̂t as the sample variances) should
behave like SWN. Check this via correlograms of (Ẑt) and (|Ẑt|) and
by applying the Ljung–Box test of strict white noise.
In case of no rejection (the dynamics have been satisfactorily captured),
the validity of the innovation distribution can also be assessed (e.g. via
Q-Q plots or goodness-of-fit tests).
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Forecasting VaRα and ESα
Suppose we now want to forecast VaRt+1

α , ESt+1
α , risk measures based

on FXt+1|Ft . If Zt
ind.∼ FZ , the Ft-measurability of µt+1 and σt+1, and

Xt+1 = µt+1 + σt+1Zt+1 imply that

FXt+1|Ft(x) = P(µt+1 + σt+1Zt+1 ≤ x | Ft) = FZ
(x− µt+1

σt+1

)
.

Then VaRt+1
α = µt+1 + σt+1F

←
Z (α) and ESt+1

α = µt+1 + σt+1ESα(Z).
If we have estimated σt+1 (and µt+1; often taken as 0) it remains to
estimate F←Z (α) and ESα(Z) (easy for GARCH-type models)
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5 Extreme value theory
5.1 Maxima

5.2 Threshold exceedances
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5.1 Maxima
Consider a series of financial losses (Xk)k∈N.

5.1.1 Generalized extreme value distribution

Convergence of sums

Let (Xk)k∈N be iid with E(X2
1 ) < ∞ (mean µ, variance σ2) and Sn =∑n

k=1Xk. As n → ∞, X̄n
a.s.→ µ by the Strong Law of Large Numbers

(SLLN), so (X̄n − µ)/σ a.s.→ 0. By the CLT,
√
n
X̄n − µ
σ

= Sn − nµ√
nσ

d→
n↑∞

N(0, 1) or lim
n→∞

P
(Sn − dn

cn
≤ x

)
= Φ(x),

where the sequences cn =
√
nσ and dn = nµ give normalization and where

Φ(x) = 1√
2π
∫ x
−∞ e

−z2/2 dz.
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Convergence of maxima

QRM is concerned with maximal losses (worst-case losses). Let (Xi)i∈N
ind.∼

F (can be relaxed to a strictly stationary time series) and F continuous.
Then the block maximum is given by

Mn = max{X1, . . . , Xn}.

One can show that Mn
a.s.→
n→∞

xF (similar as in the SLLN; due to monotone
convergence to a constant) where

xF := sup{x ∈ R : F (x) < 1}= F←(1) ≤ ∞

denotes the right endpoint of F .

Question: Is there a “CLT” for block maxima?
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Idea CLT: What about linear transformations (the simplest possible)?

Definition 5.1 (Maximum domain of attraction)
Suppose we find normalizing sequences of real numbers (cn) > 0 and
(dn) such that (Mn − dn)/cn converges in distribution, i.e.

P((Mn − dn)/cn ≤ x) = P(Mn ≤ cnx+ dn)
= P(Xi ≤ cnx+ dn, i = 1, . . . , n)
= Fn(cnx+ dn) →

n↑∞
H(x),

for some non-degenerate df H (not a unit jump). Then F is in the
maximum domain of attraction of H (F ∈ MDA(H)).

The convergence to types theorem guarantees that H is determined up to
location/scale, i.e. H specifies a unique type of distribution.
Question: What does H look like?
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Definition 5.2 (Generalized extreme value (GEV) distribution)
The (standard) generalized extreme value (GEV) distribution is given by

Hξ(x) =

exp(−(1 + ξx)−1/ξ), if ξ 6= 0,
exp(−e−x), if ξ = 0,

where 1 + ξx > 0 (MLE!). A three-parameter family is obtained by a
location-scale transform Hξ,µ,σ(x) = Hξ((x− µ)/σ), µ ∈ R, σ > 0.

The larger ξ, the heavier tailed Hξ (if ξ > 0, E(Xk) =∞ iff k ≥ 1
ξ ).

ξ is the shape (determines moments, tail). Special cases:
1) ξ < 0: the Weibull df, short-tailed, xHξ <∞;
2) ξ = 0: the Gumbel df, xH0 =∞, decays exponentially;
3) ξ > 0: the Fréchet df, xHξ =∞, heavy-tailed (H̄ξ(x) ≈ (ξx)−1/ξ),

most important case for practice
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Density hξ for ξ ∈ {−0.5, 0, 0.5} (dotted, dashed, solid)
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Theorem 5.3 (Fisher–Tippett–Gnedenko)
If F ∈ MDA(H) for some non-degenerate H, then H must be of GEV
type, i.e. H = Hξ,µ,σ for some ξ ∈ R, µ ∈ R, σ > 0.

Proof. Non-trivial. For a sketch, see Embrechts, Klüppelberg, et al. (1997,
p. 122).

Interpretation: If location-scale transformed maxima of iid random
variables converge in distribution to a non-degenerate limit, the limiting
distribution must be a location-scale transformed GEV distribution (that
is, of GEV type).
One can always choose normalizing sequences (cn) > 0, (dn) such
that Hξ,µ,σ appears in standard form (from a statistical point of view,
(cn) > 0, (dn) can simply be estimated).
All commonly encountered continuous distributions are in the MDA of
some GEV distribution.
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Example 5.4 (Pareto distribution)
For (Xi)i∈N

ind.∼ Par(θ, κ) with F (x) = 1 − ( κ
κ+x)θ, x ≥ 0, θ, κ > 0,

choosing cn = κn1/θ/θ, dn = κ(n1/θ − 1), Fn(cnx+ dn) equals(
1−

( κ

κ+ x(κn1/θ/θ) + (κ(n1/θ − 1))

)θ)n
=
(
1−

( 1
1 + xn1/θ/θ + n1/θ − 1

)θ)n
=
(
1−

( 1
n1/θ(1 + x/θ)

)θ)n
=
(
1 + −(1 + x/θ)−θ

n

)n
→
n↑∞

exp(−(1 + x/θ)−θ) = H1/θ(x) (Fréchet)

Therefore, F ∈ MDA(H1/θ).
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5.1.2 Maximum domains of attraction

All commonly applied continuous F belong to MDA(Hξ) for some ξ ∈ R
and µ, σ can be estimated. But how can we characterize/determine ξ? All
F ∈ MDA(Hξ), ξ > 0, allow for a characterization based on:

Definition 5.5 (Slowly/regularly varying functions)
1) A positive, Lebesgue-measurable function L on (0,∞) is slowly

varying at∞ if lim
x→∞

L(tx)
L(x) = 1, t > 0. The class of all such functions

is denoted by R0; e.g. c, log ∈ R0.
2) A positive, Lebesgue-measurable function h on (0,∞) is regularly

varying at ∞ with index α ∈ R if lim
x→∞

h(tx)
h(x) = tα, t > 0. The class

of all such functions is denoted by Rα; e.g. xαL(x) ∈ Rα.

If F̄ ∈ R−α, α > 0, the tail of F decays like a power function (Pareto
like).
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The Fréchet case

Theorem 5.6 (Fréchet MDA, Gnedenko (1943))
F ∈ MDA(Hξ) for ξ > 0 if and only if F̄ (x) = x−1/ξL(x) for some
L ∈ R0. If F ∈ MDA(Hξ), ξ > 0, the normalizing sequences can be
chosen as cn = F←(1− 1/n) and dn = 0, n ∈ N.

Interpretation: Distributions in MDA(Hξ), ξ > 0, are those whose
tails decay like power functions; α = 1/ξ is known as tail index .
Examples in MDA(Hξ), ξ > 0: Inverse gamma, Student t, log-gamma,
F , Cauchy, α-stable with 0 < α < 2, Burr and Pareto

Example 5.7 (Pareto distribution)
For F = Par(θ, κ), F̄ (x) = (κ/(κ + x))θ = (1 + x/κ)−θ = x−θL(x),
x ≥ 0, θ, κ > 0, where L(x) = (x−1 + κ−1)−θ ∈ R0. We (again) see that
F ∈ MDA(Hξ), ξ > 0.
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5.1.3 The block maxima method (BMM)

The basic idea in a picture based on losses X1, . . . , X12
ind.∼ F ∈ MDA(Hξ):

0 t

Losses

M31

M32
M33

M34

Consider the maximal loss from each block and fit Hξ,µ,σ to them.
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Fitting the GEV distribution

Suppose (xi)i∈N are realizations of (Xi)i∈N
ind.∼ F ∈ MDA(Hξ), ξ ∈ R,

where F is unknown. By Fisher–Tippett–Gnedenko Theorem,

P(Mn ≤ x) = P((Mn − dn)/cn ≤ (x− dn)/cn) ≈
n large

Hξ,µ=dn,σ=cn(x).

For fitting θ = (ξ, µ, σ), divide the realizations into m blocks of size n
denoted by Mn1, . . . ,Mnm (e.g. daily log-returns ⇒ monthly maxima)
Assume the block size n to be sufficiently large so that (regardless of
whether the underlying data are dependent or not), the block maxima
can be considered independent.
The density hξ of Hξ is

hξ(x) =

(1 + ξx)−1/ξ−1Hξ(x)I{1+ξx>0}, if ξ 6= 0,
e−xH0(x), if ξ = 0.
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The log-likelihood is thus

`(θ;Mn1, . . . ,Mnm) =
m∑
i=1

log
( 1
σ
hξ
(Mni − µ

σ

))
.

Maximize w.r.t. θ = (ξ, µ, σ) to get θ̂ = (ξ̂, µ̂, σ̂).

Remark 5.8
1) Sufficiently many/large blocks require large amounts of data.
2) Bias and variance must be traded off (bias-variance tradeoff ):

Block size n ↑ ⇒ GEV approximation more accurate ⇒ bias ↓
Number of blocks m ↑ ⇒ more data for MLE ⇒ variance ↓

3) There is no general best strategy for finding the optimal block size.
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Return levels and return periods

(Approximately) Mn ∼ Hξ̂,µ̂,σ̂, so H̄ξ̂,µ̂,σ̂(r) = P(Mn > r) = 1/k can be
used to estimate the. . .
1) . . . k n-block return level rn,k, that is, the (smallest) r which is expected

to be exceeded (at most) in one out of every k blocks of size n.
e.g., 10 year return level r260,10 = (smallest) level exceeded in (at
most) one out of every 10 years (where 260d ≈ 1y)
rn,k = H←

ξ̂,µ̂,σ̂
(1− 1/k) =̂

ξ 6=0
µ̂+ σ̂

ξ̂
((− log(1− 1/k))−ξ̂ − 1)

2) . . . return period kn,u of the event {Mn > u}, that is, the smallest
number of n-blocks for which we expect to see at least one n-block
exceeding u.
kn,u = 1/H̄ξ̂,µ̂,σ̂(u) =̂

ξ 6=0
1/
(
1− exp(−(1 + ξ̂(x− µ̂)/σ̂)−1/ξ̂)

)
kn,u satisfies rn,kn,u = u
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Example 5.9 (Block maxima analysis of S&P 500)
Suppose it is Friday 1987-10-16; the Friday before Black Monday (1987-
10-19). The S&P 500 index fell by 9.12% this week. On that Friday alone
the index is down 5.16%. We fit a GEV distribution to (bi)annual maxima
of daily negative log-returns Xt = − log(St/St−1) since 1960-01-01.
Analysis 1: Annual maxima (m = 28; including the latest from the in-

complete year 1987): θ̂ = (0.30, 0.02, 0.007) ⇒ Heavy-tailed
Fréchet distribution (infinite fourth moment). The correspond-
ing standard errors are (0.22, 0.002, 0.001)⇒ High uncertainty
(m small) for estimating ξ.

Analysis 2: Biannual maxima (m = 56): θ̂ = (0.34, 0.02, 0.006) with
standard errors (0.15, 0.0008, 0.0005) ⇒ Even heavier tails.
In what follows we work with the annual maxima.

1) What is the probability that next year’s maximal risk-factor change
exceeds all previous ones? 1−Hξ̂,µ̂,σ̂(“previous maxima”)
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2) Was a risk-factor change as on Black Monday foreseeable?
Based on data up to and including Friday 1987-10-16, the 10-year
return level r260,10 is estimated as r̂260,10 = 4.42%.
Index drop Black Monday: 20.47% ⇒ Xt+1 = 22.9%� r̂260,10.
One can show that 22.9% is in the 95% confidence interval of r260,50
(estimated as r̂260,50 = 7.49%), but the 28 maxima are too few to
get a reliable estimate of a once-in-50-years event.

3) Based on the available data, what is the (estimated) return period of a
loss at least as large as on Black Monday?

The estimated return period k260,0.229 is k̂260,0.229 = 1876 years.
One can show that the 95% confidence interval encompasses every-
thing from 45y to essentially never! ⇒ Very high uncertainty!

⇒ On 1987-10-16 we did not have enough data to say anything meaningful
about such an event. Quantifying such events is difficult.
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5.2 Threshold exceedances
The BMM is wasteful of data (only the maxima of large blocks are used).
It has been largely superseded in practice by methods based on threshold
exceedances (peaks-over-threshold (POT) approach), where all data above
a designated high threshold u are used.

5.2.1 Generalized Pareto distribution

Definition 5.10 (Generalized Pareto distribution (GPD))
The generalized Pareto distribution (GPD) is given by

Gξ,β(x) =

1− (1 + ξx/β)−1/ξ, if ξ 6= 0,
1− exp(−x/β), if ξ = 0,

where β > 0, and the support is x ≥ 0 when ξ ≥ 0 and x ∈ [0,−β/ξ]
when ξ < 0.
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ξ is known as shape; β as scale. Special cases:
1) ξ > 0: Par(1/ξ, β/ξ)
2) ξ = 0: Exp(1/β)
3) ξ < 0: short-tailed Pareto type II distribution
The larger ξ, the heavier tailed Gξ,β (if ξ > 0, E(Xk) =∞ iff k ≥ 1

ξ ; if
ξ < 1, then EX = β/(1− ξ)).
Gξ,β ∈ MDA(Hξ), ξ ∈ R, (same ξ)
The density gξ,β of Gξ,β is given by

gξ,β(x) =


1
β (1 + ξx/β)−1/ξ−1, if ξ 6= 0,
1
β exp(−x/β), if ξ = 0,

where x ≥ 0 when ξ ≥ 0 and x ∈ [0,−β/ξ) when ξ < 0 (MLE!).
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Density gξ,1 for ξ ∈ {−0.5, 0, 0.5} (dotted, dashed, solid)
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Definition 5.11 (Excess distribution over u, mean excess function)
Let X ∼ F . The excess distribution over the threshold u is defined by

Fu(x) = P(X − u ≤ x |X > u) = F (x+ u)− F (u)
1− F (u) , x ∈ [0, xF − u).

If E|X| <∞, the mean excess function is defined by

e(u) = E(X − u |X > u) (i.e. the mean w.r.t. Fu)

Interpretation: Fu is the distribution of the excess loss X − u over u,
given that X > u. e(u) is the mean of Fu as a function of u.

One can show the useful formulas e(u) =
∫ xF−u

0 F̄u(x) dx =
∫ xF
u

F̄ (x) dx
F̄ (u) .

Example 5.12 (Fu, e(u) for Exp(λ), Gξ,β)
1) If F is Exp(λ), then Fu(x) = 1− e−λx and e(u) = 1/λ = EX.
2) If F is Gξ,β, then Fu(x) = Gξ,β+ξu(x) and e(u) = β+ξu

1−ξ for all u :
β + ξu > 0, which is linear in u.
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Theorem 5.13 (Pickands–Balkema–de Haan (1974/75))
There exists a positive, measurable function β(u), such that

lim
u↑xF

sup
0≤x<xF−u

|Fu(x)−Gξ,β(u)(x)| = 0.

if and only if F ∈ MDA(Hξ), ξ ∈ R.

Proof. Non-trivial; see, e.g. Pickands (1975) and Balkema and de Haan
(1974).

Interpretation
The GPD is the canonical df for excess losses over high u. This leads to
the peaks-over-threshold method for modeling excess losses.
The result is also a characterization of MDA(Hξ), ξ ∈ R. All F ∈
MDA(Hξ) form a set of df for which the excess distribution converges
to the GPD Gξ,β with the same ξ as in Hξ when u is raised.
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5.2.2 Modelling excess losses

The basic idea in a picture based on losses X1, . . . , X12.

0 t

Losses

X5 − u
X6 − u

X8 − u

X12 − u

u

Consider all excesses over u and fit Gξ,β to them.
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The peaks-over-threshold (POT) method

Given losses X1, . . . , Xn ∼ F ∈ MDA(Hξ), ξ ∈ R, let
1) Nu = |{i ∈ {1, . . . , n} : Xi > u}| denote the number of exceedances

over the (given; see later) threshold u;
2) X̃1, . . . , X̃Nu denote the exceedances; and
3) Yk = X̃k − u, k ∈ {1, . . . , Nu}, the corresponding excesses.
If Y1, . . . , YNu are independent and (roughly) distributed as Gξ,β, the
log-likelihood is given by

`(ξ, β;Y1, . . . , YNu) =
Nu∑
k=1

log gξ,β(Yk)

= −Nu log(β)− (1 + 1/ξ)
Nu∑
k=1

log(1 + ξYk/β)

⇒ Maximize w.r.t. β > 0 and 1 + ξYk/β > 0 for all k ∈ {1, . . . , Nu}.
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Excesses over higher thresholds

Once a model is fitted to Fu, we can infer a model for Fv, v ≥ u.

Lemma 5.14
Assume, for some u, Fu(x) = Gξ,β(x) for 0 ≤ x < xF − u. Then
Fv(x) = Gξ, β+ξ(v−u)(x) for all v ≥ u.

⇒ The excess distribution over v ≥ u remains GPD with the same ξ (and
β growing linearly in v); makes sense for a limiting distribution for u ↑.

If it exists (so if ξ < 1), the mean excess function over v is given by

e(v) = E(Gξ, β+ξ(v−u)) = β + ξ(v − u)
1− ξ = ξ

1− ξ v + β − ξu
1− ξ , v ∈ [u, xF ),

(8)

where xF = ∞ if ξ ∈ [0, 1) and xF = u − β/ξ if ξ < 0. This forms the
basis for a graphical method for choosing u.
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Sample mean excess plot and choice of the threshold

Definition 5.15 (Sample mean excess function, mean excess plot)
For X1, . . . , Xn > 0, the sample mean excess function is defined by

en(v) =
∑n
i=1(Xi − v)I{Xi>v}∑n

i=1 I{Xi>v}
, v < X(n).

The mean excess plot is the plot of {(X(i), en(X(i))) : 1 ≤ i ≤ n− 1},
where X(i) denotes the ith order statistic.

If the data supports the GPD model over u, en(v) should become
increasingly “linear” for higher values of v ≥ u. Select u as the smallest
point where en(v), v ≥ u, becomes linear; rule of thumb: 0.9-quantile.
en(v) is rarely perfectly linear. The choice of a good threshold u is as
difficult as finding an adequate block size for the Block Maxima method.
One should always analyze the data for several u.
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Example 5.16 (Danish fire loss data)
2156 fire insurance losses over 1M Danish kroner from 1980-01-03 to
1990-12-31; combined loss for a building and its contents, in some cases
also a loss of business earnings. The losses are inflation adjusted to
reflect values as of 1985.

The sample mean excess function shows a “kink” below 10; “straighten-
ing out” above 10 ⇒ Our choice is u = 10 (so 10M Danish kroner).

MLE (ξ̂, β̂) = (0.50, 7.0) (with standard errors (0.14, 1.1))
⇒ very heavy-tailed, infinite-variance model

We can then estimate the expected loss given exceedance of 10M kroner
or any higher threshold (via e(v) in (8) based on ξ̂, β̂ and the chosen
u), even beyond the data.
⇒ EVT allows us to estimate “in the data” and then “scale up”.
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(a): Losses (> 1M; in M); (b): en(u) (↑); (c) F̂u,n(x− u), Gξ̂,β̂(x− u)
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⇒ Choose the threshold u = 10.
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Sensitivity of the estimated shape parameter ξ̂ to changes in u:

500 466 433 399 366 332 299 265 232 198 165 132 98 65 31

0.
0

0.
5

1.
0

 3.13  3.38  3.76  4.09  4.49  5.08  5.78  7.24 10.70 17.70

Exceedances

S
ha

pe
 (

xi
) 

(C
I, 

p 
=

 0
.9

5)

Threshold

⇒ The higher u, the wider the confidence intervals (also support u = 10).
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5.2.3 Modelling tails and measures of tail risk
How can the fitted GPD model be used to estimate the tail of the loss
distribution F and associated risk measures?
Assume Fu(x) = Gξ,β(x) for 0 ≤ x < xF − u, ξ 6= 0 and some u.
We obtain the following GPD-based formula for tail probabilities:

F̄ (x) = P(X > x) = P(X > u)P(X > x |X > u)
= F̄ (u)P(X−u > x−u |X > u) = F̄ (u)F̄u(x− u)

= F̄ (u)
(
1 + ξ

x− u
β

)−1/ξ
, x ≥ u. (9)

Assuming we know F̄ (u), inverting this formula for α ≥ F (u) leads to

VaRα = F←(α) = u+ β

ξ

((1− α
F̄ (u)

)−ξ
− 1

)
, (10)

ESα = VaRα

1− ξ + β − ξu
1− ξ , ξ < 1. (11)
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F̄ (x), VaRα and ESα are all of the form g(ξ, β, F̄ (u)). If we have
sufficient samples above u, we obtain semi-parametric plug-in estimators
via g(ξ̂, β̂, Nu/n). We hope to gain over empirical estimators by using a
kind of extrapolation based on the GPD for more extreme tail probabilities
and risk measures.
In this spirit, Smith (1987) proposed the tail estimator

ˆ̄F (x) = Nu

n

(
1 + ξ̂

x− u
β̂

)−1/ξ̂
, x ≥ u (see (9));

also known as the Smith estimator (note that it is only valid for x ≥
u). It faces a bias-variance tradeoff: If u is increased, the bias of
parametrically estimating F̄u(x − u) decreases, but the variance of it
and the nonparametrically estimated F̄ (u) increases.
Similarly, semi-parametric GPD-based V̂aRα, ÊSα for α ≥ 1 −Nu/n

can be obtained from (10), (11).
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Example 5.17 (Danish fire loss data (continued))
Here are ˆ̄F (x), x ≥ u, V̂aR0.99, ÊS0.99 including confidence intervals.

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••• • •••••••••••• • •• • • • ••
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41.6 58.2 154.7

Log-log scale often helpful: If F̄ (x) = x−αL(x), log F̄ (x) = −α log(x) +
logL(x) which is approximately linear in log x.
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5.2.4 Conditional EVT for financial time series

Assume Xt−n+1, . . . , Xt are negative log-returns generated by a strictly
stationary time series process (Xt) of the form

Xt = µt + σtZt,

where µt and σt are Ft−1-measurable and Zt
ind.∼ FZ ; e.g. ARMA model

with GARCH errors. Furthermore, let Z ∼ FZ .
VaRt

α and EStα based on FXt+1|Ft are given by

VaRt
α(Xt+1) = µt+1 + σt+1 VaRα(Z),

EStα(Xt+1) = µt+1 + σt+1 ESα(Z).

To obtain estimates V̂aR
t

α(Xt+1) and ÊS
t

α(Xt+1), proceed as follows:
1) Fit an ARMA-GARCH model ⇒ Estimates of µt+1 and σt+1.
2) Fit a GPD to the excesses corresponding to FZ ⇒ GPD-based

estimates of VaRα(Z) (see (10)) and ESα(Z) (see (11)).
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6 Multivariate models
6.1 Basics of multivariate modelling

6.2 Normal mixture distributions

6.3 Spherical and elliptical distributions
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6.1 Basics of multivariate modelling
6.1.1 Random vectors and their distributions

Joint and marginal distributions

Let X = (X1, . . . , Xd) : Ω → Rd be a d-dimensional random vector
(representing risk-factor changes, risks, etc.).
The (joint) distribution function (df) F of X is

F (x) = FX(x) = P(X ≤ x) = P(X1 ≤ x1, . . . , Xd ≤ xd), x ∈ Rd.

The jth margin Fj of F or jth marginal df Fj of X is

Fj(xj) = P(Xj ≤ xj)
= P(X1 ≤ ∞, . . . , Xj−1 ≤ ∞, Xj ≤ xj , Xj+1 ≤ ∞, . . . , Xd ≤ ∞)
= F (∞, . . . ,∞, xj ,∞, . . . ,∞), xj ∈ R, j ∈ {1, . . . , d}.

(interpreted as a limit).
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Similarly for k-dimensional margins. Suppose we partition X into
(X ′1,X ′2)′, where X1 = (X1, . . . , Xk)′ and X2 = (Xk+1, . . . , Xd)′,
then the marginal distribution function of X1 is

FX1(x1) = P(X1 ≤ x1) = F (x1, . . . , xk,∞, . . . ,∞).
F is absolutely continuous if

F (x) =
∫ xd

−∞
· · ·
∫ x1

−∞
f(z1, . . . , zd) dz1 . . . dzd =

∫
(−∞,x]

f(z) dz

for some f ≥ 0 known as the (joint) density of X (or F ). Similarly, the
jth marginal df Fj is absolutely continuous if Fj(x) =

∫ x
−∞ fj(z) dz for

some fj ≥ 0 known as the density of Xj (or Fj).
Existence of a joint density ⇒ Existence of marginal densities for all
k-dimensional marginals, 1 ≤ k ≤ d−1. The converse is false in general
(counter-examples can be constructed with copulas; see Chapter 7).
We sometimes work with the survival function F̄ of X,

F̄ (x) = F̄X(x) = P(X > x) = P(X1 > x1, . . . , Xd > xd), x ∈ Rd,
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with corresponding jth marginal survival function F̄j

F̄j(xj) = P(Xj > xj)
= F̄ (−∞, . . . ,−∞, xj ,−∞, . . . ,−∞), xj ∈ R, j ∈ {1, . . . , d}.

Note that F̄ (x) 6= 1 − F (x) in general (unless d = 1), since, by the
Law of Total Probability, F̄ (x1, x2) = P(X1 > x1, X2 > x2) = P(X1 >

x1)−P(X1 > x1, X2 ≤ x2) = 1−P(X1 ≤ x1)−(P(X2 ≤ x2)−P(X1 ≤
x1, X2 ≤ x2)) = 1− F1(x1)− F2(x2) + F (x1, x2) 6= 1− F (x1, x2).

Independence

A multivariate model for risks X in the form of a joint df, survival
function or density, implicitly describes the dependence of X1, . . . , Xd.
X1, X2 are independent if F (x1,x2) = FX1(x1)FX2(x2) for all x1,x2
(if F has density f , then X1, X2 are independent if f(x1,x2) =
fX1(x1)fX2(x2) for all x1,x2).
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The components X1, . . . , Xd of X are (mutually) independent if F (x)
=
∏d
j=1 Fj(xj) for all x (if F has density f , then X1, . . . , Xd are

independent if f(x) =
∏d
j=1 fj(xj) for all x).

Moments and characteristic function

If E|Xj | <∞, j ∈ {1, . . . , d}, the mean vector of X is defined by

EX = (EX1, . . . ,EXd).

One can show: X1, . . . , Xd independent⇒ E(X1 · · ·Xd) =
∏d
j=1 E(Xj)

If E(X2
j ) <∞ for all j, the covariance matrix of X is defined by

cov(X) = E((X − EX)(X − EX)′).

If we write Σ = cov(X), its (i, j)th element is

σij = Σij = cov(Xi, Xj) = E((Xi − EXi)(Xj − EXj))
= E(XiXj)− E(Xi)E(Xj);

the diagonal elements are σjj = var(Xj), j ∈ {1, . . . , d}.
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X1, X2 independent ⇒: cov(X1, X2) = 0 (counter-example: X1 ∼
U(−1, 1), X2 = X2

1 ⇒ cov(X1, X2) = E(X3
1 )− 0 · E(X2

1 ) = 0).
If E(X2

j ) <∞, j ∈ {1, . . . , d}, the correlation matrix of X is defined
by the matrix corr(X) with (i, j)th element

corr(Xi, Xj) = cov(Xi, Xj)√
var(Xi) var(Xj)

, i, j ∈ {1, . . . , d},

which is in [−1, 1] with corr(Xi, Xj) = ±1 if and only if Xj
a.s.= aXi + b

for some a 6= 0 and b ∈ R.
Some properties of E(·) and cov(·, ·):
1) For all A ∈ Rk×d, b ∈ Rk:

I E(AX + b) = AEX + b;
I cov(AX + b) = A cov(X)A′ = AΣA′; if k = 1 (A = a′),

a′Σa = cov(a′X) = var(a′X) ≥ 0, a ∈ Rd, (12)
i.e. covariance matrices are positive semidefinite.
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2) If Σ is a positive definite matrix (i.e. a′Σa > 0 for all a ∈ Rd\{0}),
one can show that Σ is invertible.

3) A symmetric, positive (semi)definite Σ can be written as

Σ = AA′ Cholesky decomposition (13)

for a lower triangular matrix A with Ajj > 0 (Ajj ≥ 0) for all j. A
is known as Cholesky factor (and is also denoted by Σ1/2).

Properties of X can often be shown with the characteristic function
(cf)

φX(t) = E(exp(it′X)), t ∈ Rd.

X1, . . . , Xd are independent ⇔ φX(t) =
∏d
j=1 φXj (tj) for all t.

Proposition 6.1 (Characterization of covariance matrices)
A symmetric matrix Σ is a covariance matrix if and only if it is positive
semidefinite.
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6.1.2 Standard estimators of covariance and correlation

Assume X1, . . . ,Xn ∼ F (daily/weekly/monthly/yearly risk-factor
changes) are serially uncorrelated (i.e. multivariate white noise) with
µ := EX1, Σ := covX1 and P = corr(X1).
Standard estimators of µ,Σ, P are

X̄ = 1
n

n∑
i=1
Xi (sample mean)

S = 1
n

n∑
i=1

(Xi − X̄)(Xi − X̄)′ (sample covariance matrix)

R = (Rij) for Rij = Sij√
SiiSjj

(sample correlation matrix)

Under joint normality (F multivariate normal), X̄, S and R are also
MLEs. S is biased, but an unbiased version can be obtained by

Sn = n

n− 1S.
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6.1.3 The multivariate normal distribution

Definition 6.2 (Multivariate normal distribution)
X = (X1, . . . , Xd) has a multivariate normal (or Gaussian) distribution
if

X
d= µ+AZ, (14)

where Z = (Z1, . . . , Zk), Zl
ind.∼ N(0, 1), A ∈ Rd×k, µ ∈ Rd.

Typically k = d

EX = µ+AEZ = µ

cov(X) = cov(µ+AZ) = A cov(Z)A′ = AA′ =: Σ

Proposition 6.3 (Cf of the multivariate normal distribution)
Let X be as in (14) and Σ = AA′. Then the cf of X is

φX(t) = E(exp(it′X)) = exp
(
it′µ− 1

2t
′Σt
)
, t ∈ Rd.
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We see that the multivariate normal distribution is characterized by µ
and Σ, hence the notation X ∼ Nd(µ,Σ).
Characterization (“⇒” via uniqueness of cfs):

X ∼ Nd(µ,Σ) ⇐⇒ a′X ∼ N(a′µ,a′Σa) ∀a ∈ Rd.

Consequences:
I X ∼ Nd(µ,Σ)

a=ej
⇒
:
Xj ∼ N(µj ,Σjj), j ∈ {1, . . . , d}.

I X ∼ Nd(µ,Σ) a=1⇒
∑d
j=1Xj ∼ N(

∑d
j=1 µj ,

∑
i,j Σij).
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Proposition 6.4 (Density)
Let X ∼ Nd(µ,Σ) with rankA = k = d (⇒ Σ pos. definite, invertible).
By the density transformation theorem, X can be shown to have density

fX(x) = 1
(2π)d/2

√
det Σ

exp
(
−1

2(x− µ)′Σ−1(x− µ)
)
, x ∈ Rd.

Consequences:
Sets of the form Sc = {x ∈ Rd : (x − µ)′Σ−1(x − µ) = c}, c > 0,
describe points of equal density. Contours of equal density are thus
ellipsoids.
The components of X ∼ Nd(µ,Σ) are mutually independent if and only
if Σ is diagonal, i.e. if and only if the components of X are uncorrelated.
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The definition of Nd(µ,Σ) in terms of a stochastic representation (X d=
µ+AZ) directly justifies the following sampling algorithm.

Algorithm 6.5 (Sampling Nd(µ,Σ))
Let X ∼ Nd(µ,Σ) with Σ symmetric and positive definite.
1) Compute the Cholesky factor A of Σ; see, e.g. Press et al. (1992).
2) Generate Zj

ind.∼ N(0, 1), j ∈ {1, . . . , d}.
3) Return X = µ+AZ, where Za = (Z1, . . . , Zd).

Further useful properties of multivariate normal distributions
Linear combinations
If X ∼ Nd(µ,Σ) and B ∈ Rk×d, b ∈ Rk, then

BX + b = B(µ+AZ) + b = (Bµ+ b) +BAZ

∼ Nk(Bµ+ b, BA(BA)′) = Nk(Bµ+ b, BΣB′).

Special case (see var.-cov. method): b′X ∼ N(b′µ, b′Σb).
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Marginal dfs
Let X ∼ Nd(µ,Σ) and write X = (X ′1,X ′2), where X1 ∈ Rk, X2 ∈
Rd−k, and µ = (µ′1,µ′2), Σ =

(
Σ11 Σ12
Σ21 Σ22

)
. Then

X1 ∼ Nk(µ1,Σ11) and X2 ∼ Nd−k(µ2,Σ22).

Proof. Choose B = ( Ik 0
0 0 ) and B = ( 0 0

0 Id−k ), respectively.
Quadratic forms
Let X ∼ Nd(µ,Σ) and Σ be positive definite with Cholesky factor A.
Furthermore, let Z = A−1(X − µ). Then Z ∼ Nd(0, Id). Moreover,

(X − µ)′Σ−1(X − µ) = Z ′Z ∼ χ2
d, (15)

which is useful for (goodness-of-fit) testing of Nd(µ,Σ): We can check
whether the squared Mahalanobis distances D2

i = (Xi − X̄)′S−1(Xi −
X̄), i ∈ {1, . . . , n}, form a(n approximate) sample from χ2

d.
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6.1.4 Testing multivariate normality

For testing univariate normality, all tests of Section 3.1.2 can be applied.
Now consider multivariate normality.
X1, . . . ,Xn

ind.∼ Nd(µ,Σ) ⇒ a′X1, . . . ,a
′Xn

ind.∼ N(a′µ,a′Σa).

This can be tested statistically (for some a) with various goodness-of-fit
tests (e.g. Q-Q plots) used for univariate normality . Alternatively, (15)
can be used to test joint normality (see Mardia’s test below).

Multivariate Shapiro–Wilk
Mardia’s test
I According to (15), if X ∼ Nd(µ,Σ) with Σ positive definite, then

(X − µ)′Σ−1(X − µ) ∼ χ2
d (can approx. be used in a Q-Q plot).

I Let D2
i = (Xi − X̄)′S−1(Xi − X̄) denote the squared Mahalanobis

distances and Dij = (Xi − X̄)′S−1(Xj − X̄) the Mahalanobis
angles.
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I Let bd = 1
n2
∑n
i=1

∑n
j=1D

3
ij and kd = 1

n

∑n
i=1D

4
i . Under the null

hypothesis one can show that asymptotically for n→∞,

n
6 bd ∼ χ

2
d(d+1)(d+2)/6,

kd − d(d+ 2)√
8d(d+ 2)/n

∼ N(0, 1),

which can be used for testing; see Joenssen and Vogel (2014).
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Example 6.6 (Simulated data vs BMW–Siemens)
Is the BMW–Siemens data (see Section 3.2.2) jointly normal?
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Considering the first margin only:
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Considering the second margin only:
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Q-Q plot of the simulated (left) or real (right) D2
i ’s against a χ2

2:
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Advantages of Nd(µ,Σ)

Distribution is determined by µ and Σ.

Inference is thus “easy”.

Linear combinations are normal (⇒ VaRα and ESα calculations for
portfolios are easy).

Marginal distributions are normal.

Conditional distributions are normal.

Quadratic forms are (theoretically) chi-squared.

Convolutions are normal.

Sampling is straightforward.

Independence and uncorrelatedness are equivalent.

© QRM Tutorial Section 6.1.4
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Drawbacks of Nd(µ,Σ) for modelling risk-factor changes

1) Tails of univariate (normal) margins are too thin (generate too few
extreme events).

2) Joint tails are too thin (too few joint extreme events). Nd(µ,Σ) cannot
capture the notion of tail dependence (see Chapters 3 and 7).

3) Strong symmetry known as radial symmetry: X is radially symmetric
about µ if X − µ d= µ−X. This is true for Nd(µ,Σ) since Z d= −Z.

Short outlook:
Normal variance mixtures (or, more generally, elliptical distributions)
can address 1) and 2) while sharing many of the desirable properties of
Nd(µ,Σ).
Normal mean-variance mixtures can also address 3) (but at the expense
of ellipticality and thus tractability in comparison to Nd(µ,Σ)).

© QRM Tutorial Section 6.1.4
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6.2 Normal mixture distributions
Idea: Randomize Σ (and possibly µ) with a non-negative rv W .

6.2.1 Normal variance mixtures

Definition 6.7 (Multivariate normal variance mixtures)
The random vector X has a (multivariate) normal variance mixture
distribution if

X
d= µ+

√
WAZ,

where Z ∼ Nk(0, Ik), W ≥ 0 is a rv independent of Z, A ∈ Rd×k, and
µ ∈ Rd. µ is called location vector and Σ = AA′ scale (or dispersion)
matrix .

Observe that (X |W = w) d= µ+
√
wAZ = Nd(µ, wAA′) = Nd(µ, wΣ);

or (X |W ) d= Nd(µ,WΣ). W can be interpreted as a shock affecting the
variances of all risk factors.

© QRM Tutorial Section 6.2
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Properties of multivariate normal variance mixtures

Let X = µ+
√
WAZ and Y = µ+AZ. Assume that rank(A) = d ≤ k

and that Σ is positive definite.
If E
√
W <∞, then E(X) ind.= µ+E(

√
W )AE(Z) = µ+ 0 = µ = EY

If EW <∞, then
cov(X) = cov(

√
WAZ) = E((

√
WAZ)(

√
WAZ)′)

ind.= E(W ) · E(AZZ ′A′) = E(W ) ·AE(ZZ ′)A′

= E(W )AIkA′ = E(W )Σ 6=
in general

Σ (= cov(Y ))

However, if they exist (i.e. if EW <∞) corr(X) = corr(Y ) since

corr(Xi, Xj) = cov(Xi, Xj)√
var(Xi) var(Xj)

= E(W )Σij√
E(W )ΣiiE(W )Σjj

= Σij√
ΣiiΣjj

= corr(Yi, Yj), i, j ∈ {1, . . . , d}.
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Characteristic function: Recall: If Y ∼ Nd(µ,Σ), then φY (t) =
exp(it′µ− 1

2t
′Σt). The cf of a multivariate normal variance mixtures is

φX(t) = E(exp(it′X)) = E(E(exp(it′X) |W ) )
= E(exp(it′µ− 1

2W t
′Σt)) = exp(it′µ)E(exp(−W 1

2t
′Σt)).

This depends on the Laplace-Stieltjes transform F̂W (θ) = E(exp(−θW ))
=
∫∞

0 e−θw dFW (w) of FW . We thus introduce the notation X ∼
Md(µ,Σ, F̂W ) for a d-dimensional multivariate normal variance mixture.
Density: If Σ is positive definite, P(W = 0) = 0, the density of X is

fX(x) =
∫ ∞

0
fX|W (x |w) dFW (w)

=
∫ ∞

0

1
(2π)d/2wd/2|Σ|1/2

exp
(
−(x− µ)′Σ−1(x− µ)

2w

)
dFW (w).

⇒ Only depends on x through (x− µ)′Σ−1(x− µ).
⇒ Multivariate normal variance mixtures are elliptical distributions.

© QRM Tutorial Section 6.2.1

http://www.qrmtutorial.org


If Σ is diagonal and EW <∞,X is uncorrelated (as cov(X) = E(W )Σ)
but not independent unlessW is constant a.s. (see stoch. representation).
Linear combinations: For X ∼ Md(µ,Σ, F̂W ) and Y = BX + b,
where B ∈ Rk×d and b ∈ Rk, we have Y ∼Mk(Bµ+ b, BΣB′, F̂W );
this can be shown via cfs.

Sampling:

Algorithm 6.8 (Simulation of X = µ+
√
WAZ ∼Md(µ,Σ, F̂W ))

1) Generate Z ∼ Nd(0, Id).
2) Generate W ∼ FW (with LS transform F̂W ), independent of Z.
3) Compute the Cholesky factor A (such that AA′ = Σ).
4) Return X = µ+

√
WAZ.
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Examples of multivariate normal variance mixtures

Multivariate normal distribution
W = 1 a.s. (degenerate case)
Two point mixture

W =

w1 with probability p,
w2 with probability 1− p

w1, w2 > 0, w1 6= w2.

Can be used to model ordinary and stress regimes; extends to k regimes.
Symmetric generalised hyperbolic distribution
W has a generalised inverse Gaussian distribution (GIG); see MFE (2015,
p. 187).
Multivariate t distribution
W has an inverse gamma distribution W = 1/V for V ∼ Γ(ν/2, ν/2).
I E(W ) = ν

ν−2 ⇒ cov (X) = ν
ν−2Σ. For finite variances/correlations,

ν > 2 is required. For finite mean, ν > 1 is required.
© QRM Tutorial Section 6.2.1
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I The density of the multivariate t distribution is given by

fX(x) = Γ((ν + d)/2)
Γ(ν/2)(νπ)d/2|Σ|1/2

(
1 + (x− µ)′Σ−1(x− µ)

ν

)− ν+d
2
,

where µ ∈ Rd, Σ ∈ Rd×d is a positive definite matrix, and ν is the
degrees of freedom. Notation: X ∼ td(ν,µ,Σ).

I td(ν,µ,Σ) has heavier marginal and joint tails than Nd(µ,Σ).
I BMW–Siemens data; simulations from fitted Nd(µ,Σ) and td(3,µ,Σ):
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6.2.2 Normal mean-variance mixtures

Radial symmetry implies that all one-dimensional margins of normal
variance mixtures are symmetric.
Often visible in data: joint losses have heavier tails than joint gains.

Idea: Introduce asymmetry by mixing normal distributions with different
means and variances.

X has a (multivariate) normal mean-variance mixture distribution if

X
d= m(W ) +

√
WAZ, (16)

where
Z ∼ Nk(0, Ik);
W ≥ 0 is a scalar random variable which is independent of Z;
A ∈ Rd×k is a matrix of constants;
m : [0,∞)→ Rd is a measurable function.

© QRM Tutorial Section 6.2.2
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Normal mean-variance mixtures add skewness: Let Σ = AA′ and
observe that X |W = w ∼ Nd(m(w), wΣ). In general, they are no
longer elliptical (see later).

Example 6.9
Suppose we have m(W ) = µ+Wγ. Since

E(X |W ) = µ+Wγ,

cov(X |W ) = WΣ
we have

EX = E(E(X |W )) = µ+ E(W )γ if EW <∞,
cov(X) = E(cov(X |W )) + cov(E(X |W ))

= E(W )Σ + var(W )γγ ′ if E(W 2) <∞.

If W has a GIG distribution, then X follows a generalised hyperbolic
distribution. γ = 0 leads to (elliptical) normal variance mixtures; see
MFE (2015, Sections 6.2.3) for details.

© QRM Tutorial Section 6.2.2
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6.3 Spherical and elliptical distributions
Empirical examples (see MFE (2015, Sections 6.2.4)) show that
1) Md(µ,Σ, F̂W ) (e.g. multivariate t) provide superior models to Nd(µ,Σ)

for daily/weekly stock-return data;
2) the more general skewed normal mean-variance mixture distributions

offer only a modest improvement.
We study elliptical distributions, a generalization of Md(µ,Σ, F̂W ).

6.3.1 Spherical distributions

Definition 6.10 (Spherical distribution)
A random vector Y = (Y1, . . . , Yd) has a spherical distribution if for
every orthogonal U ∈ Rd×d (i.e. U ∈ Rd×d with UU ′ = U ′U = Id)

Y
d= UY (distributionally invariant under rotations and reflections)
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Theorem 6.11 (Characterization of spherical distributions)
Let ‖t‖ = (t21 + · · ·+ t2d)1/2, t ∈ Rd. The following are equivalent:
1) Y is spherical (notation: Y ∼ Sd(ψ) for ψ as below).
2) ∃ a characteristic generator ψ : [0,∞) → R, such that φY (t) =

E(eit′Y ) = ψ(‖t‖2), ∀ t ∈ Rd.
3) For every a ∈ Rd, a′Y d= ‖a‖Y1 (lin. comb. are of the same type).
⇒ Subadditivity of VaRα for jointly elliptical losses

Theorem 6.12 (Stochastic representation)
Y ∼ Sd(ψ) if and only if Y d= RS for an independent radial part R ≥ 0
and S ∼ U({x ∈ Rd : ‖x‖ = 1}).

This is the key to understanding the structure of spherical distributions.
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Example 6.13 (Understanding spherical distributions)
n = 500 realizations of S (left) and Y = RS (right) for R ∼

√
dF (d, ν),

d = 2, ν = 4 (as for the multivariate t distribution with ν = 4).
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6.3.2 Elliptical distributions

Definition 6.14 (Elliptical distribution)
A random vector X = (X1, . . . , Xd) has an elliptical distribution if

X
d= µ+AY , (multivariate affine transformation)

where Y ∼ Sk(ψ), A ∈ Rd×k (scale matrix Σ = AA′), and (location
vector) µ ∈ Rd.

By Theorem 6.12, an elliptical random vector admits the stochastic
representation X d= µ+RAS, with R and S as before.

Notation: X ∼ Ed(µ,Σ, ψ)
If X ∼ Ed(µ,Σ, ψ) with P(X = µ) = 0, then Y = A−1(X − µ) ∼
Sd(ψ). One can then show that(√

(X − µ)′Σ−1(X − µ), A−1(X−µ)√
(X−µ)′Σ−1(X−µ)

)
d= (R,S), (17)
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which can be used for testing elliptical symmetry.
Normal variance mixture distributions are elliptical (most useful exam-
ples) since X d= µ+

√
WAZ = µ+

√
W‖Z‖AZ/‖Z‖ = µ+ RAS

with R =
√
W‖Z‖ and S = Z/‖Z‖ (independent).

Example 6.15 (Understanding elliptical distributions)
n = 500 realizations of X = RAS (left) and X = µ+RAS (right) for
R ∼

√
dF (d, ν), d = 2, ν = 4; recycling of samples from Example 6.13.
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6.3.3 Properties of elliptical distributions

Density: Let Σ be positive definite and Y ∼ Sd(ψ) have density
generator g. The density transformation theorem implies that X =
µ+AY has density

fX(x) = 1√
det Σ

g
(
(x− µ)′Σ−1(x− µ)

)
,

which depends on x only through (x− µ)′Σ−1(x− µ), i.e. is constant
on ellipsoids (hence the name “elliptical”).
Linear combinations: For X ∼ Ed(µ,Σ, ψ), B ∈ Rk×d and b ∈ Rk,

BX + b ∼ Ek(Bµ+ b, BΣB′, ψ) (via cfs).

If a ∈ Rd (take b = 0 and B = a′ ∈ R1×d),

a′X ∼ E1(a′µ,a′Σa, ψ) (as for N(µ,Σ)). (18)

From a = ej = (0, . . . , 0, 1, 0, . . . , 0) we see that all marginal distribu-
tions are of the same type.
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Marginal dfs: As for Nd(µ,Σ), it immediately follows that X =
(X ′1,X ′2)′ ∼ Ed(µ,Σ, ψ) satisfies X1 ∼ Ek(µ1,Σ11, ψ) and that X2 ∼
Ed−k(µ2,Σ22, ψ); i.e. margins of elliptical distributions are elliptical.
Quadratic forms: (X − µ)′Σ−1(X − µ) d= R2. If X ∼ Nd(µ,Σ),
R2 ∼ χ2

d; and if X ∼ td(ν,µ,Σ), R2/d ∼ F (d, ν).

Many (but not all) nice properties of Nd(µ,Σ) are preserved. The following
result shows why elliptical distributions are the “Garden of Eden” of QRM.
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Proposition 6.16 (Subadditivity of VaR in elliptical models)
Let Li = λ′iX, λi ∈ Rd, i ∈ {1, . . . , n}, with X ∼ Ed(µ,Σ, ψ). Then
VaRα(

∑n
i=1 Li) ≤

∑n
i=1 VaRα(Li) for all α ∈ [1/2, 1].

Proof. Consider a generic L = λ′X
d= λ′µ+ λ′AY for Y ∼ Sk(ψ). By

Theorem 6.11 Part 3), λ′AY d= ‖λ′A‖Y1, so L
d= λ′µ+‖λ′A‖Y1 (all Li’s

are of the same type). By translation invariance and positive homogeneity,

VaRα(L) = λ′µ+ ‖λ′A‖VaRα(Y1). (19)

Applying (19) once to L =
∑n
i=1 Li = (

∑n
i=1 λi)′X and to each L =

Li = λ′iX, i ∈ {1, . . . , n}, and using that VaRα(Y1) ≥ 0 for α ∈ [1/2, 1],
we obtain VaRα(

∑n
i=1 Li) =

(19)

∑n
i=1 λ

′
iµ+ ‖

∑n
i=1 λ

′
iA‖VaRα(Y1)

≤
∑n
i=1 λ

′
iµ+ (

∑n
i=1‖λ′iA‖) VaRα(Y1) =

∑n
i=1(λ′iµ+ ‖λ′iA‖VaRα(Y1))

=
(19)

∑n
i=1 VaRα(Li). For λi = ei, VaRα(

∑n
i=1Xi) ≤

∑n
i=1 VaRα(Xi).

© QRM Tutorial Section 6.3.3

http://www.qrmtutorial.org


7 Copulas and dependence
7.1 Copulas

7.2 Dependence concepts and measures

7.3 A proof for subadditivity of ES

7.4 Fitting copulas to data
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7.1 Copulas
We now look more closely at modelling the dependence among the
components of a random vector X ∼ F (risk-factor changes).
In short: F = dependence structure C ◦ marginal dfs F1, . . . , Fd

Advantages:
I Most natural in a static distributional context (no time dependence;

apply, for example, to residuals of an ARMA-GARCH model)
I Copulas allow us to understand and study dependence independently

of the margins (first part of Sklar’s Theorem; see later)
I Copulas allow for a bottom-up approach to multivariate model build-

ing (second part of Sklar’s Theorem; see later). This is often useful
for constructing tailored F , for example, when we have more infor-
mation about the margins than C or for stress testing purposes (to
challenge the existing model and see how it performs).
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7.1.1 Basic properties

Definition 7.1 (Copula)
A copula C is a df with U(0, 1) margins.

Characterization
C : [0, 1]d → [0, 1] is a copula if and only if
1) C is grounded , that is,

C(u1, . . . , ud) = 0 if uj = 0 for at least one j ∈ {1, . . . , d}.
2) C has standard uniform univariate margins, that is,

C(1, . . . , 1, uj , 1, . . . , 1) = uj for all uj ∈ [0, 1] and j ∈ {1, . . . , d}.
3) C is d-increasing , that is, for all a, b ∈ [0, 1]d, a ≤ b, ∆(a,b]C =∑

i∈{0,1}d(−1)
∑d

j=1 ijC(ai11 b
1−i1
1 , . . . , aidd b

1−id
d )≥ 0. Equivalently, if it

exists, the density c of C satisfies c(u) ≥ 0 for all u ∈ (0, 1)d.
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2-increasingness explained in a picture:

∆(a,b]C = C(b1, b2)− C(b1, a2)− C(a1, b2) + C(a1, a2)
= P(U ∈ (a, b])

!
≥ 0

0 a1 b1 1 u1

a2

b2

u2
1 C(a1, b2)

C(b1, a2)

C(b1, b2)

⇒ ∆(a,b]C is the probability of a random vector U ∼ C to be in (a, b].
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Preliminaries

Lemma 7.2 (Probability transformation)
Let X ∼ F , F continuous. Then F (X) ∼ U(0, 1).

Proof. P(F (X) ≤ u) = P(F←(F (X)) ≤ F←(u)) = P(X ≤ F←(u)) =
F (F←(u)) = u, u ∈ [0, 1].

Note that F needs to be continuous (otherwise F (X) would not reach all
intervals ⊆ [0, 1]).

Lemma 7.3 (Quantile transformation)
Let U ∼ U(0, 1) and F be any df. Then X = F←(U) ∼ F .

Proof. P(F←(U) ≤ x) = P(U ≤ F (x)) = F (x), x ∈ R.
Probability and quantile transformations are the key to all applications
involving copulas. They allow us to go from Rd to [0, 1]d and back.
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Sklar’s Theorem

Theorem 7.4 (Sklar’s Theorem)

1) For any df F with margins F1, . . . , Fd, there exists a copula C such
that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), x ∈ Rd. (20)

C is uniquely defined on
∏d
j=1 ranFj and given by

C(u1, . . . , ud) = F (F←1 (u1), . . . , F←d (ud)), u ∈
d∏
j=1

ranFj ,

where ranFj = {Fj(x) : x ∈ R} denotes the range of Fj .
2) Conversely, given any copula C and univariate dfs F1, . . . , Fd, F

defined by (20) is a df with margins F1, . . . , Fd.
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Proof.
1) Proof for continuous F1, . . . , Fd only. Let X ∼ F and define Uj =

Fj(Xj), j ∈ {1, . . . , d}. By the probability transformation, Uj ∼ U(0, 1)
(continuity!), j ∈ {1, . . . , d}, so the df C of U is a copula. Since Fj ↑
on ranXj , Xj = F←j (Fj(Xj)) = F←j (Uj), j ∈ {1, . . . , d}. Therefore,

F (x) = P(Xj ≤ xj ∀ j) = P(F←j (Uj) ≤ xj ∀ j) = P(Uj ≤ Fj(xj) ∀ j)

= C(F1(x1), . . . , Fd(xd)), x ∈ Rd.

Hence C is a copula and satisfies (20).

Since Fj(F←j (uj)) = uj for all uj ∈ ranFj , so

C(u1, . . . , ud) = C(F1(F←1 (u1)), . . . , Fd(F←d (ud)))

=
(20)

F (F←1 (u1), . . . , F←d (ud)), u ∈
d∏
j=1

ranFj .
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2) For U ∼ C, define X = (F←1 (U1), . . . , F←d (Ud)). Then

P(X ≤ x) = P(F←j (Uj) ≤ xj ∀ j) = P(Uj ≤ Fj(xj) ∀ j)

= C(F1(x1), . . . , Fd(xd)), x ∈ Rd.

Therefore, F defined by (20) is a df (that ofX), with margins F1, . . . , Fd
(obtained by the quantile transformation).

We say that X (or F ) has copula C if (20) holds.
A copula model for X means F (x) = C(F1(x1), . . . , Fd(xd)) for some
(parametric) copula C and (parametric) marginals F1, . . . , Fd.
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Invariance principle

Theorem 7.5 (Invariance principle)
Let X ∼ F with continuous margins F1, . . . , Fd and copula C. If Tj ↑
on ranXj for all j, then (T1(X1), . . . , Td(Xd)) (also) has copula C.

Interpretation of Sklar’s Theorem (and the invariance principle)
1) Part 1) of Sklar’s Theorem allows one to decompose any df F into

its margins and a copula. This, together with the invariance principle,
allows one to study dependence independently of the margins via the
margin-free U = (F1(X1), . . . , Fd(Xd)) instead of X = (X1, . . . , Xd)
(they both have the same copula!). This is interesting for statistical
applications, e.g. parameter estimation or goodness-of-fit.

2) Part 2) allows one to construct flexible multivariate distributions for
particular applications (credit risk, stress testing, etc.).
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Visualizing Part 1) of Sklar’s Theorem
Left: Scatter plot of n = 1000 samples from (X1, X2) ∼ N2(0, P ),

where P =
( 1 0.7

0.7 1
)
. We mark three points A, B, C.

Right: Scatter plot of the corresponding Gauss copula (after applying the
df Φ of N(0, 1)). Note how A, B, C change.
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Visualizing Part 2) of Sklar’s Theorem
Left: Same Gauss copula scatter plot as before. Apply marginal Exp(2)-

quantile functions (F−1
j (u) = − log(1− u)/2, j ∈ {1, 2}).

Right: The corresponding transformed random variates. Again, note the
three points A, B, C.
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Visualizing Part 1) of Sklar’s Theorem
Left: Scatter plot of n = 1000 samples from (X1, X2) ∼ t2(4,0, P ),

where P =
( 1 0.7

0.7 1
)
. We mark three points I, J, K.

Right: Scatter plot of the corresponding t4 copula (after applying the df
t4). Note how I, J, K change.
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Visualizing Part 2) of Sklar’s Theorem
Left: Same t4 copula scatter plot as before. Apply marginal Exp(2)-

quantile functions (F−1
j (u) = − log(1− u)/2, j ∈ {1, 2}).

Right: The corresponding transformed random variates. Again, note the
three points I, J, K.
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Fréchet–Hoeffding bounds

Theorem 7.6 (Fréchet–Hoeffding bounds)
Let W (u) = max{

∑d
j=1 uj − d+ 1, 0} and M(u) = min1≤j≤d{uj}.

1) For any d-dimensional copula C,

W (u) ≤ C(u) ≤M(u), u ∈ [0, 1]d.

2) W is a copula if and only if d = 2.
3) M is a copula for all d ≥ 2.

It is easy to verify that, for U ∼ U(0, 1),
I (U, . . . , U) ∼M ;
I (U, 1− U) ∼W .
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Plot of W,M for d = 2 (compare with (U, 1− U) ∼W , (U,U) ∼M)
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The Fréchet–Hoeffding bounds correspond to perfect dependence (neg-
ative for W ; positive for M); see Proposition 7.10 later.
The Fréchet–Hoeffding bounds lead to bounds for any df F , via

max
{ d∑
j=1

Fj(xj)− d+ 1, 0
}
≤ F (x) ≤ min

1≤j≤d
{Fj(xj)}.

We will use them later to derive bounds for the correlation coefficient.
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7.1.2 Examples of copulas

Fundamental copulas: important special copulas;
Implicit copulas: extracted from known F via Sklar’s Theorem;
Explicit copulas: closed form, arising from construction principles.

Fundamental copulas

As usual, we assume the appearing margins F1, . . . , Fd to be continuous.
Π(u) =

∏d
j=1 uj is the independence copula since C(F1(x1), . . . , Fd(xd))

=
Sklar

F (x) =
ind.

∏d
j=1 Fj(xj) if and only if C(u) = Π(u) (replace xj by

F←j (uj)). Therefore, X1, . . . , Xd are independent if and only if their
copula is Π; the density is thus c(u) = 1, u ∈ [0, 1]d.
W is the countermonotonicity copula. It is the df of (U, 1− U). It can
be shown that if X1, X2 are perfectly negatively dependent (X2 is a.s.
a strictly decreasing function of X1), their copula is W .
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M is the comonotonicity copula. It is the df of (U, . . . , U). It can be
shown that if X1, . . . , Xd are perfectly positively dependent (X2, . . . ,

Xd are a.s. strictly increasing functions of X1), their copula is M .

Implicit copulas

Elliptical copulas are implicit copulas arising from elliptical distributions
via Sklar’s Theorem. The two most prominent parametric families are the
Gauss copula and the t copula (stemming from normal variance mixtures).

Gauss copulas

Consider (w.l.o.g.) X ∼ Nd(0, P ). The Gauss copula (family) is given
by

CGa
P (u) = P(Φ(X1) ≤ u1, . . . ,Φ(Xd) ≤ ud)

= ΦP (Φ−1(u1), . . . ,Φ−1(ud))

where ΦP is the df of Nd(0, P ) and Φ the df of N(0, 1).
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Special cases: If P = Id then C = Π, and if P = Jd = 11′ then C = M .
If d = 2 and ρ = P12 = −1 then C = W .
Sklar’s Theorem ⇒ The density of C(u) = F (F←1 (u1), . . . , F←d (ud)) is

c(u) = f(F←1 (u1), . . . , F←d (ud))∏d
j=1 fj(F←j (uj))

, u ∈ (0, 1)d.

In particular, the density of CGa
P is

cGaP (u) = 1√
detP

exp
(
−1

2x
′(P−1 − Id)x

)
, (21)

where x = (Φ−1(u1), . . . ,Φ−1(ud)).

t copulas

Consider (w.l.o.g.) X ∼ td(ν,0, P ). The t copula (family) is given by

Ctν,P (u) = P(tν(X1) ≤ u1, . . . , tν(Xd) ≤ ud)
= tν,P (t−1

ν (u1), . . . , t−1
ν (ud))
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where tν,P is the df of td(ν,0, P ) and tν the df of the univariate t
distribution with ν degrees of freedom.
Special cases: P = Jd = 11′ then C = M . However, if P = Id then
C 6= Π (unless ν = ∞ in which case Ctν,P = CGa

P ). If d = 2 and
ρ = P12 = −1 then C = W .
Sklar’s Theorem ⇒ The density of Ctν,P is

ctν,P (u) = Γ((ν + d)/2)
Γ(ν/2)

√
detP

( Γ(ν/2)
Γ((ν + 1)/2)

)d (1 + x′P−1x/ν)−(ν+d)/2∏d
j=1(1 + x2

j/ν)−(ν+1)/2
,

for x = (t−1
ν (u1), . . . , t−1

ν (ud)).
For more details, see Demarta and McNeil (2005).
For scatter plots, see the visualization of Sklar’s Theorem above. Note
the difference in the tails: The smaller ν, the more mass is concentrated
in the joint tails.
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Perspective plots of the densities of CGa
ρ=0.3 (left) and Ct4, ρ=0.3(u) (right).
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Advantages and drawbacks of elliptical copulas:

Advantages:
Modelling pairwise dependencies
(comparably flexible)
Density available
Sampling simple (for Gauss, t)

Drawbacks:
Typically, C is not explicit
Radially symmetric (so the same
lower/upper tail behaviour)
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Explicit copulas

Archimedean copulas are copulas of the form

C(u) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud))

where ψ is the (Archimedean) generator . t0

1 ψ(t)

ψ : [0,∞)→ [0, 1] is ↓ on [0, inf{t : ψ(t) = 0}] and satisfies ψ(0) = 1,
ψ(∞) = limt→∞ ψ(t) = 0.
We set ψ−1(0) = inf{t : ψ(t) = 0}.
The set of all generators is denoted by Ψ.
Not every generator ψ ∈ Ψ generates indeed a proper copula (there are
conditions, e.g. complete monotonicity, i.e. derivatives alternating in
sign).
If ψ(t) > 0, t ∈ [0,∞), we call ψ strict.
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Clayton copulas are obtained for ψ(t) = (1+t)−1/θ, t ∈ [0,∞), θ ∈ (0,∞).
For θ ↓ 0, C → Π; and for θ ↑ ∞, C →M .
Left: Plot of a bivariate Clayton copula (Kendall’s tau 0.5; see later).
Right: Corresponding scatter plot (sample size n = 1000)

Clayton copula ( τ = 0.5)
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Left: Plot of the corresponding density.
Right: Level plot of the density (with heat colors).

Clayton copula density ( τ = 0.5)
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Left: Cloud plot of a trivariate Clayton copula (sample size n = 1000;
Kendall’s tau 0.5).

Right: Corresponding scatter plot matrix.

Clayton copula cloud plot ( n = 1000,  τ = 0.5)
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Gumbel copulas are obtained for ψ(t) = exp(−t1/θ), t ∈ [0,∞), θ ∈ [1,∞).
For θ = 1, C = Π; and for θ →∞, C →M .
Left: Plot of a bivariate Gumbel copula (Kendall’s tau 0.5).
Right: Corresponding scatter plot (sample size n = 1000)

Gumbel copula ( τ = 0.5)
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Left: Plot of the corresponding density.
Right: Level plot of the density (with heat colors).

Gumbel copula density ( τ = 0.5)
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Left: Cloud plot of a trivariate Gumbel copula (sample size n = 1000;
Kendall’s tau 0.5).

Right: Corresponding scatter plot matrix.

Gumbel copula cloud plot ( n = 1000,  τ = 0.5)
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Scatter plot matrix of a Gumbel copula ( n = 1000, τ = 0.5)
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Advantages and drawbacks of Archimedean copulas:

Advantages:
Typically explicit
(if ψ−1 is available)
Useful in calculations:
Properties can typically be ex-
pressed in terms of ψ
Densities of various examples
available
Sampling often simple
Not restricted to radial symmetry

Drawbacks:
All margins of the same dimen-
sion are equal (symmetry or ex-
changeability)
Often used only with a small num-
ber of parameters (some exten-
sions available, but still less than
d(d− 1)/2)

© QRM Tutorial Section 7.1.2
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7.1.3 Meta distributions

Fréchet class: Class of all dfs F with given marginal dfs F1, . . . , Fd;
Meta-C models: All dfs F with the same given copula C.
Example: A meta-t model is a multivariate df F with t copula C and
some margins F1, . . . , Fd.

7.1.4 Simulation of copulas and meta distributions

Copulas are typically sampled via specific stochastic representations.

Sampling implicit copulas

Algorithm 7.7 (Simulation of implicit copulas)

1) SampleX ∼ F , where F is a df with continuous margins F1, . . . , Fd.
2) Return U = (F1(X1), . . . , Fd(Xd)) (probability transformation).

© QRM Tutorial Section 7.1.3
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Example 7.8
Sampling Gauss copulas CGa

P :
1) Sample X ∼ Nd(0, P ) (X d= AZ for AA′ = P , Z ∼ Nd(0, Id)).

2) Return U = (Φ(X1), . . . ,Φ(Xd)).
Sampling tν copulas Ctν,P :

1) Sample X ∼ td(ν,0, P ) (X d=
√
WAZ for W = 1

V , V ∼ Γ(ν2 ,
ν
2 )).

2) Return U = (tν(X1), . . . , tν(Xd)).

Sampling meta distributions
Meta-C distributions can be sampled via Sklar’s Theorem, Part 2).

Algorithm 7.9 (Sampling meta-C models)

1) Sample U ∼ C.
2) Return X = (F←1 (U1), . . . , F←d (Ud)) (quantile transformation).

© QRM Tutorial Section 7.1.4
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2000 samples from (a): CGa
ρ=0.7; (b): CG

θ=2; (c): CC
θ=2.2; (d): Ctν=4, ρ=0.71
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. . . transformed to N(0, 1) margins; all have linear correlation ≈ 0.7!
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7.1.5 Further properties of copulas

Copula densities
By Sklar’s Theorem, if Fj has density fj , j ∈ {1, . . . d}, and C has
density c, then the density f of F satisfies

f(x) = c(F1(x1), . . . , Fd(xd))
d∏
j=1

fj(xj). (22)

This implies
c(u) = f(F−1

1 (u1), . . . , F−1
d (ud))

f1(F−1
1 (u1)) · · · · · fd(F−1

d (ud))
.

It follows from (22) that the log-density splits into

log f(x) = log c(F1(x1), . . . , Fd(xd)) +
d∑
j=1

log fj(xj)

which allows for a two-stage estimation (marginal and copula parameters
separately).
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7.2 Dependence concepts and measures
Measures of association/dependence are scalar measures which summarize
the dependence in terms of a single number. There are better and worse
examples of such measures, which we will study in this section.

7.2.1 Perfect dependence

X1, X2 are countermonotone if (X1, X2) has copula W .
X1, . . . , Xd are comonotone if (X1, . . . , Xd) has copula M .

Proposition 7.10 (Perfect dependence)
1) X2 = T (X1) a.s. with decreasing T (x) = F←2 (1− F1(x)) (counter-

monotone) if and only if C(u1, u2) = W (u1, u2), u1, u2 ∈ [0, 1].
2) Xj = Tj(X1) a.s. with increasing Tj(x) = F←j (F1(x)), j ∈
{2, . . . , d}, (comonotone) if and only if C(u) = M(u), u ∈ [0, 1]d.
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7.2.2 Linear correlation

For two random variables X1 and X2 with E(X2
j ) < ∞, j ∈ {1, 2}, the

(linear or Pearson’s) correlation coefficient ρ is defined by

ρ(X1, X2) = cov(X1, X2)√
varX1

√
varX2

= E((X1 − EX1)(X2 − EX2))√
E((X1 − EX1)2)

√
E((X2 − EX2)2)

.

Classical properties and drawbacks of linear correlation

Let X1 and X2 be two random variables with E(X2
j ) <∞, j ∈ {1, 2}.

Note that ρ depends on the marginal distributions! In particular, second
moments have to exist (not the case, e.g. for X1, X2

ind.∼ F (x) = 1−x−3/2!)

|ρ| ≤ 1. Furthermore, |ρ| = 1 if and only if there are constants
a ∈ R\{0}, b ∈ R with X2 = aX1 + b a.s. with a ≷ 0 if and only
if ρ = ±1. This discards other strong functional dependence such as
X2 = X2

1 , for example.
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If X1 and X2 are independent, then ρ = 0. However, the converse is
not true in general; see Example 7.12 below.
ρ is invariant under strictly increasing linear transformations on ranX1×
ranX2 but not invariant under strictly increasing functions in general.
To see this, consider (X1, X2) ∼ N2(0, P ). Then ρ(X1, X2) = P12, but
(as one can show) ρ(F1(X1), F2(X2)) = 6

π arcsin(P12/2).

Proposition 7.11 (Hoeffding’s formula)
Let Xj ∼ Fj , j ∈ {1, 2}, be two random variables with E(X2

j ) < ∞,
j ∈ {1, 2}, and joint distribution function F . Then

cov(X1, X2) =
∫ ∞
−∞

∫ ∞
−∞

(F (x1, x2)− F1(x1)F2(x2)) dx1dx2.
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Correlation fallacies

Fallacy 1: F1, F2, and ρ uniquely determine F
This is true for bivariate elliptical distributions, but wrong in general. The
following samples both have N(0, 1) margins and correlation ρ = 0.7, yet
come from different (copula) models:
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Another example is this.

Example 7.12 (Uncorrelated ; independent)
Consider the two risks

X1 = Z (Profit & Loss Country A),
X2 = ZV (Profit & Loss Country B),

where V,Z are independent with Z ∼ N(0, 1) and P(V = −1) =
P(V = 1) = 1/2. Then X2 ∼ N(0, 1) and ρ(X1, X2) = cov(X1, X2) =
E(X1X2) =

ind.
E(V )E(Z2) = 0, but X1 and X2 are not independent (in

fact, V makes (X1, X2) switch between counter- and comonotonicity).
Consider (X ′1, X ′2) ∼ N2(0, I2). Both (X ′1, X ′2) and (X1, X2) have
N(0, 1) margins and ρ = 0, but the copula of (X ′1, X ′2) is Π and the
copula of (X1, X2) is the convex combination C(u) = λM(u) + (1−
λ)W (u) for λ = 0.5.
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Fallacy 2: Given F1, F2, any ρ ∈ [−1, 1] is attainable

This is true for elliptically distributed (X1, X2) with E(R2) <∞ (as then
corrX = P ), but wrong in general:

If F1 and F2 are not of the same type (no linearity), ρ(X1, X2) = 1
is not attainable (recall that |ρ| = 1 if and only if there are constants
a ∈ R\{0}, b ∈ R with X2 = aX1 + b a.s.).
What is the attainable range then? Hoeffding’s formula

cov(X1, X2) =
∫ ∞
−∞

∫ ∞
−∞

(C(F1(x1), F2(x2))− F1(x1)F2(x2)) dx1dx2.

implies bounds on attainable ρ:

ρ ∈ [ρmin, ρmax] (ρmin is attained for C = W, ρmax for C = M).
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Example 7.13 (Bounds for a model with LN(0, σ2
j ) margins)

Let Xj ∼ LN(0, σ2
j ), j ∈ {1, 2}. One can show that minimal (ρmin; left)

and maximal (ρmax; right) correlations are given as follows.
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For σ2
1 = 1, σ2

2 = 16 one has ρ ∈ [−0.0003, 0.0137]!
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Fallacy 3: ρ maximal (i.e. C = M) ⇒ VaRα(X1 +X2) maximal
This is true if (X1, X2) is elliptically distributed since the maximal ρ = 1
implies that X1, X2 are comonotone, so VaRα can be shown to be
additive and additivity provides the largest possible bound in this case
as VaRα is subadditive in this case.
Any superadditivity example VaRα(X1 +X2) > VaRα(X1)+VaRα(X2)
serves as a counterexample as the right-hand side under comonotonicity
(so maximal correlation) only equals VaRα(X1 +X2); see Section 2.3.5.

7.2.3 Rank correlation

Rank correlation coefficients are. . .
. . . always defined;
. . . invariant under strictly increasing transformations of the random
variables (hence only depend on the underlying copula).
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Kendall’s tau and Spearman’s rho

Definition 7.14 (Kendall’s tau)
Let Xj ∼ Fj with Fj continuous, j ∈ {1, 2}. Let (X ′1, X ′2) be an
independent copy of (X1, X2). Kendall’s tau is defined by

ρτ = E(sign((X1 −X ′1)(X2 −X ′2)))
= P((X1 −X ′1)(X2 −X ′2) > 0)− P((X1 −X ′1)(X2 −X ′2) < 0),

where sign(x) = I(0,∞)(x)− I(−∞,0)(x) (so −1 for x < 0, 0 for x = 0
and 1 for x > 0).

By definition, Kendall’s tau is the probability of concordance (P((X1 −
X ′1)(X2−X ′2) > 0); probability of two independent points from F to have
a positive slope) minus the probability of discordance (P((X1 −X ′1)(X2 −
X ′2) < 0); probability of two independent points from F to have a negative
slope).
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Proposition 7.15 (Formula for Kendall’s tau)
Let Xj ∼ Fj with Fj continuous, j ∈ {1, 2}, and copula C. Then

ρτ = 4
∫ 1

0

∫ 1

0
C(u1, u2) dC(u1, u2)− 1 = 4E(C(U1, U2))− 1,

where (U1, U2) ∼ C.

Definition 7.16 (Spearman’s rho)
Let Xj ∼ Fj with Fj continuous, j ∈ {1, 2}. Spearman’s rho is defined
by ρS = ρ(F1(X1), F2(X2)).

Proposition 7.17 (Formula for Spearman’s rho)
Let Xj ∼ Fj with Fj ’s continuous and copula C. For (U ′1, U ′2) ∼ Π,

ρS = 12
∫ 1

0

∫ 1

0
C(u1, u2) du1du2 − 3 = 12E(C(U ′1, U ′2))− 3.
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Fallacy 1 (F1, F2, ρ uniquely determine F ) is not solved by replacing ρ
by rank correlation coefficients κ (it is easy to construct several copulas
with the same Kendall’s tau, e.g. via Archimedean copulas).
Fallacy 2 (For F1, F2, any ρ ∈ [−1, 1] is attainable) is solved when ρ is
replaced by ρτ or ρS . Take

F (x1, x2) = λM(F1(x1), F2(x2)) + (1− λ)W (F1(x1), F2(x2)).

This is a model with ρτ = ρS = 2λ− 1 (choose λ ∈ [0, 1] as desired).
Fallacy 3 (C = M implies VaRα(X1+X2) maximal) is also not solved by
rank correlation coefficients κ = 1: Although κ = 1 corresponds to C =
M , this copula does not necessarily provide the largest VaRα(X1 +X2);
see Fallacy 3 earlier.
Nevertheless, rank correlations are useful to summarize dependence, to
parameterize copula families to make dependence comparable and for
copula parameter calibration or estimation.
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7.2.4 Coefficients of tail dependence

Goal: Measure extremal dependence, i.e. dependence in the joint tails.

Definition 7.18 (Tail dependence)
Let Xj ∼ Fj , j ∈ {1, 2}, be continuously distributed random variables.
Provided that the limits exist, the lower tail-dependence coefficient λl
and upper tail-dependence coefficient λu of X1 and X2 are defined by

λl = lim
u↓0

P(X2 ≤ F←2 (u) |X1 ≤ F←1 (u)),

λu = lim
u↑1

P(X2 > F←2 (u) |X1 > F←1 (u)).

If λl ∈ (0, 1] (λu ∈ (0, 1]), then (X1, X2) is lower (upper) tail dependent.
If λl = 0 (λu = 0), then (X1, X2) is lower (upper) tail independent.

As (conditional) probabilities, we clearly have λl, λu ∈ [0, 1].
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Tail dependence is a copula property, since

P(X2 ≤ F←2 (u) |X1 ≤ F←1 (u)) = P(X1 ≤ F←1 (u), X2 ≤ F←2 (u))
P(X1 ≤ F←1 (u))

= F (F←1 (u), F←2 (u))
F1(F←1 (u))

Sklar= C(u, u)
u

, u ∈ (0, 1), so λl = lim
u↓0

C(u, u)
u

.

If u 7→ C(u, u) is differentiable in a neighborhood of 0 and the limit
exists, then λl = limu↓0

d
duC(u, u) (l’Hôpital’s Rule).

If C is totally differentiable in a neighborhood of 0 and the limit ex-
ists, then λl = limu↓0(D1C(u, u) + D2C(u, u)) (Chain Rule). If C
is exchangeable, λl = 2 limu↓0 D1C(u, u) = 2 limu↓0C2|1(u |u) =
2 limu↓0 P(U2 ≤ u |U1 = u) for (U1, U2) ∼ C. Combined with any
continuous df F· (the same for both components) and (X1, X2) =
(F←· (U1), F←· (U2)), one has

λl = 2 lim
x↓−∞

P(X2 ≤ x |X1 = x). (23)

which is useful for deriving λl for elliptical copulas.
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Similarly as above, for the upper tail-dependence coefficient,

λu = lim
u↑1

1− 2u+ C(u, u)
1− u

= lim
u↑1

2(1− u)− (1− C(u, u))
1− u = 2− lim

u↑1

1− C(u, u)
1− u .

For all radially symmetric copulas (e.g. the bivariate CGa
P and Ctν,P

copulas), we have λl = λu =: λ.

For Archimedean copulas with strict ψ, a substitution and l’Hôpital’s
Rule show:

λl = lim
u↓0

ψ(2ψ−1(u))
u

= lim
t→∞

ψ(2t)
ψ(t) = 2 lim

t→∞

ψ′(2t)
ψ′(t) ,

λu = 2− lim
u↑1

1− ψ(2ψ−1(u))
1− u = 2− lim

t↓0

1− ψ(2t)
1− ψ(t) = 2− 2 lim

t↓0

ψ′(2t)
ψ′(t) .

Clayton: λl = 2−1/θ, λu = 0; Gumbel: λl = 0, λu = 2− 21/θ
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Example 7.19 (λ for the Gauss and t copula)
Considering the bivariate N(0, P ) density, one can show (via fX2|X1(x2 |x1)
= fX1,X2 (x1,x2)

fX1 (x1) ) that (X2 |X1 = x) ∼ N(ρx, 1− ρ2). This implies that

λ = 2 limx↓−∞ P(X2 ≤ x |X1 = x) = 2 limx↓−∞Φ
(
x(1−ρ)√

1−ρ2

)
= I{ρ=1}.

For Ctν,P , one can show that (X2 |X1 = x) ∼ tν+1
(
ρx, (1−ρ2)(ν+x2)

ν+1
)

and thus P(X2 ≤ x |X1 = x) = tν+1
(

x−ρx√
(1−ρ2)(ν+x2)

ν+1

)
. Hence

λ = 2tν+1
(
−
√

(ν+1)(1−ρ)
1+ρ

)
(tail dependence; λ ↑ in ρ ↑ and ν ↓).

λ values for various ν, ρ:
ν ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9 ρ = 1

∞ 0 0 0 0 1
10 0.00 0.01 0.08 0.46 1
4 0.01 0.08 0.25 0.63 1
2 0.06 0.18 0.39 0.72 1

© QRM Tutorial Section 7.2.4

http://www.qrmtutorial.org


Joint quantile exceedance probabilities
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5000 samples from
(a) N2(0, P = ( 1 ρ

ρ 1 )), ρ = 0.5;

(b) CGa
ρ with t4 margins (same

dependence as in (a));

(c) Ct4,ρ with N(0, 1) margins;

(d) t2(4,0, P ) (same depen-
dence as in (c)).

Lines denote the true marginal
0.005- and 0.995-quantiles.

Note the different number of points in the bivariate tails (all models have
the same Kendall’s tau!)
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Joint tail probabilities P(U1 > u,U2 > u) for d = 2
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symm.
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Joint tail probabilities P(U1 > u, . . . , Ud > u) for u = 0.99
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Example 7.20 (Interpretation of joint tail probabilities)
Consider 5 daily negative log-returns X = (X1, . . . , X5). Assume they
follow an elliptical distribution and have pairwise correlations ρ = 0.5.
However, we are unsure about the best joint model.
If X are multivariate normal (and thus CGa

ρ=0.5), the probability that on
any day all 5 negative returns lie above their u = 0.99 quantiles is

P(X1 > F←1 (u), . . . , X5 > F←5 (u)) = P(U1 > u, . . . , U5 > u)
≈

MC error
7.48× 10−5.

In the long run such an event will happen once every 1/7.48× 10−5 ≈
13 369 trading days on average (≈ once every 51.4 years; assuming 260
trading days in a year).
If X is multivariate t3 (and thus Ctν=3,ρ=0.5), however, such an event
will happen approximately 10 times more often, i.e. ≈ once every 5.14
years. This gets worse the larger d!

© QRM Tutorial Section 7.2.4

http://www.qrmtutorial.org


7.2.5 Copulas and credit risk

Felix Salmon: “Recipe for Disaster: The Formula That Killed Wall Street”
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How intensity-/copula-based default models work

Intensity-based default model:

pj(t) = exp
(
−
∫ t

0
λj(s) ds

)
τj = inf{t ≥ 0 : pj(t) ≤ Uj} T0

1 survival probability pj(t)

τj

Uj

Note: λU = 0 (as for the Gauss copula!)
⇒ (Almost) no joint defaults! (pj typically very flat)

Copulas for the triggers U :
1) Li (2000): Gauss (Sibuya (1960): λU = 0)

2) Schönbucher and Schubert (2001): Archimedean (λU > 0)

3) Hofert and Scherer (2011): nested Archimedean (λU > 0, hierarchies)
Typical application: CDO pricing models based on iTraxx data.
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7.3 A proof for subadditivity of ES

Proposition 7.21 (Subadditivity of ES)

ESα(L) =
sup

{Ỹ∼B(1,1−α)}
E(LỸ )

1− α , which is subadditive; the supremum is

taken over all copulas between L ∼ FL and Ỹ ∼ B(1, 1− α).

Proof.
Let L = F←L (U) and Y = I{U>α} ∼ B(1, 1− α) for U ∼ U(0, 1).
Then ESα(L) = 1

1−α
∫ 1
α F

←
L (u) du = 1

1−α
∫ 1

0 F
←
L (u)I{u>α} · 1 du =

1
1−αE(F←L (U)I{U>α}) = 1

1−αE(LY ).
L and Y are comontone. For any other (L, Ỹ ) with Ỹ ∼ B(1, 1− α),
E(LỸ ) = cov(L, Ỹ ) + E(L)E(Ỹ )≤

Hoeffding
cov(L, Y ) + E(L)E(Y ) = E(LY )

and thus ESα(L) = 1
1−α sup
{Ỹ∼B(1,1−α)}

E(LỸ ).
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7.4 Fitting copulas to data
Let X,X1, . . . ,Xn

ind.∼ F with cont. margins F1, . . . , Fd and copula C.
We assume that we have data x1, . . . ,xn, interpreted as realizations of
X1, . . . ,Xn; in what follows we work with the latter.
Assume
I Fj = Fj(·;θ0,j) for some θ0,j ∈ Θj , j ∈ {1, . . . , d};

(Fj(·;θj) is assumed to be continuous ∀θj ∈ Θj , j ∈ {1, . . . , d})
I C = C(·;θ0,C) for some θ0,C ∈ ΘC .
Thus F has the true but unknown parameter vector θ0 = (θ′0,C ,θ′0,1, . . . ,
θ′0,d)′ to be estimated.
Here, we focus particularly on θ0,C . Whenever necessary, we assume
that the margins F1, . . . , Fd and the copula C are absolutely continuous
with corresponding densities f1, . . . , fd and c, respectively.
We assume the chosen copula to be appropriate (w.r.t. symmetry etc.).
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7.4.1 Method-of-moments using rank correlation

For d = 2 and one-parameter copulas, Genest and Rivest (1993) sug-
gested estimating θ0,C by solving ρτ (θC) = rτn w.r.t. θC , i.e.
θ̂IKTEn,C = ρ−1

τ (rτn), (inversion of Kendall’s tau estimator (IKTE))
where ρτ (·) denotes Kendall’s tau as a function of θ and rτn is the
sample version of Kendall’s tau (computed from X1, . . . ,Xn or pseudo-
observations U1, . . . ,Un; see later).
The standardized dispersion matrix P for elliptical copulas can be es-
timated via pairwise inversion of Kendall’s tau. If rτn,j1j2 denotes the
sample version of Kendall’s tau for data pair (j1, j2), then

P̂ IKTE
n,j1j2 = sin(π2 r

τ
n,j1j2).

A proper correlation matrix P can be constructed as in Higham (2002).
One can also use Spearman’s rho. For Gauss copulas,

ρ ≈ 6
π

arcsin ρ2 = ρS.
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The approximation error is comparably small, so that the matrix of
pairwise sample versions of Spearman’s rho is an estimator for P .
For t copulas, P̂ IKTE

n can be used to estimate P and then ν can be
estimated via its MLE based on P̂ IKTE

n ; see Mashal and Zeevi (2002).

7.4.2 Forming a pseudo-sample from the copula

X1, . . . ,Xn typically does not have U(0, 1) margins. For applying the
“copula approach” we thus need pseudo-observations from C.
In general, we take Ûi = (Ûi1, . . . , Ûid) = (F̂1(Xi1), . . . , F̂d(Xid)), i ∈
{1, . . . , n}, where F̂j denotes an estimator of Fj . Note that Û1, . . . , Ûn
are typically neither independent (even if X1, . . . ,Xn are) nor perfectly
U(0, 1)d distributed.
Possible choices for F̂j :
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I Parametric estimators (typically if n is small). One often still uses (24)
below for estimating θ0,C (to keep the error due to misspecification
of the margins small).

I Semi-parametric estimators (for example EVT-based: Bodies are
modelled empirically, tails semiparametrically via the GPD-based tail
estimator of Smith (1987)).

I Non-parametric estimators with scaled empirical dfs, so

Ûij = n

n+ 1 F̂n,j(Xij) = Rij
n+ 1 , (24)

where Rij denotes the rank of Xij among all X1j , . . . , Xnj . The
scaling is to avoid density evaluation on the boundary of [0, 1]d.

If n is sufficiently large, one typically uses (24).
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7.4.3 Maximum likelihood estimation

The (classical) maximum likelihood estimator

If it exists, the density of F (x) = C(F1(x1), . . . , Fd(xd)) is

f(x;θ0) = c(F1(x1;θ0,1), . . . ,Fd(xd;θ0,d);θ0,C)
d∏
j=1

fj(xj ;θ0,j).

The log-likelihood based on X1, . . . ,Xn is thus

`(θ;X1, . . . ,Xn) =
n∑
i=1

`(θ;Xi)

=
n∑
i=1

`C(θC ;F1(Xi1;θ1), . . . ,Fd(Xid;θd)) +
n∑
i=1

d∑
j=1

`j(θj ;Xij),

where
`C(θC ;u1, . . . , ud) = log c(u1, . . . , ud;θC)

`j(θj ;x) = log fj(x;θj), j ∈ {1, . . . , d}.
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The maximum likelihood estimator (MLE) of θ0 is

θ̂MLE
n = argsup

θ∈Θ
`(θ;X1, . . . ,Xn).

This optimization is typically done by numerical means. Note that this
can be quite demanding, especially in high dimensions.

The inference functions for margins estimator
Joe and Xu (1996) suggested the two-step estimation approach:
Step 1: For j ∈ {1, . . . , d}, estimate θ0,j by its MLE θ̂MLE

n,j .
Step 2: Estimate θ0,C by

θ̂IFME
n,C = argsup

θC∈ΘC
`(θC , θ̂MLE

n,1 , . . . , θ̂MLE
n,d ;X1, . . . ,Xn).

The inference functions for margins estimator (IFME) of θ0 is thus

θ̂IFME
n = (θ̂IFME

n,C , θ̂MLE
n,1 , . . . , θ̂MLE

n,d )

This is typically much easier to compute than θ̂MLE
n .
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Example 7.22 (A computationally convincing example)
Suppose Xj ∼ N(µj , σ2

j ), j ∈ {1, . . . , d}, for d = 100, and C has (just)
one parameter.
1) MLE requires to solve a 201-dimensional optimization problem.
2) IFME only requires 100 optimizations in two dimensions and 1 one-

dimensional optimization.

If the marginals are estimated parametrically one often still uses the
pseudo-observations built from the marginal empirical dfs to estimate
θ0,C (see MPLE below) in order to avoid misspecifiation of the margins.
In this case (and under more complicated marginal models), one can
execute the 101 optimizations in parallel, independently of each other.
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The maximum pseudo-likelihood estimator

The maximum pseudo-likelihood estimator (MPLE), introduced by Gen-
est, Ghoudi, et al. (1995), works similarly to θ̂IFME

n , but estimates the
margins non-parametrically:
Step 1: Compute rank-based pseudo-observations Û1, . . . , Ûn.
Step 2: Estimate θ0,C by

θ̂MPLE
n,C = argsup

θC∈ΘC

n∑
i=1

`C(θC ; Ûi1, . . . , Ûid) = argsup
θC∈ΘC

n∑
i=1

log c(Ûi;θC).

Kim et al. (2007) compare θ̂MLE
n , θ̂IFME

n , and θ̂MPLE
n,C in a simulation

study (d = 2 only!) and argue in favor of θ̂MPLE
n,C overall, especially w.r.t.

robustness against misspecification of the margins; but see Embrechts
and Hofert (2013) for d� 2.
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Example 7.23 (Fitting the Gauss copula)
Use pairwise inversion of Spearman’s rho or Kendall’s tau.
Or the MPLE via the (copula-related) log-likelihood

`C(P ; Û1, . . . , Ûn) =
n∑
i=1

`C(P ; Ûi) =
Eq. (21)

n∑
i=1

log cGaP (Ûi).

For maximization over all correlation matrices P , we can use the Cholesky
factor A as reparameterization and maximize over all lower triangular
matrices A with 1s on the diagonal.

Example 7.24 (Fitting the t copula)
For small d, maximize the likelihood over all correlation matrices (as for
the Gauss copula case) and the d.o.f. ν.
For moderate/larger d, use Mashal and Zeevi (2002):
1) Estimate P via pairwise inversion of Kendall’s tau (see above).
2) Plug P̂ into the likelihood and maximize it w.r.t. ν to obtain ν̂n.
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Estimation is only one side of the coin. The other is goodness-of-fit
(i.e. to find out whether our estimated model indeed represents the given
data well) and model selection (i.e. to decide which model is best among
all adequate fitted models). Goodness-of-fit can be (computationally)
challenging, particularly for large d. There are also graphical approaches
not further discussed here.
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8 Aggregate risk
8.1 Coherent and convex risk measures

8.2 Law-invariant coherent risk measures

8.3 Risk measures for linear portfolios

8.4 Risk aggregation

8.5 Capital allocation
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8.1 Coherent and convex risk measures
Consider a linear spaceM⊆ L0(Ω,F ,P) (a.s. finite rvs).
Each L ∈M (incl. constants) represents a loss over a fixed time horizon.
A risk measure is a mapping % :M→ R; %(L) gives the total amount
of capital needed to back a position with loss L.
C ⊆M is convex if (1− γ)x+ γy ∈ C for all x, y ∈ C, 0 < γ < 1. C
is a convex cone if, additionally, λx ∈ C when x ∈ C, λ > 0.
Axioms for % we consider are:
Monotonicity: L1 ≤ L2 ⇒ %(L1) ≤ %(L2).
Translation invariance: %(L+m) = %(L) +m for all m ∈ R.
Subadditivity: %(L1 + L2) ≤ %(L1) + %(L2) for all L1, L2 ∈M.
Positive homogeneity: %(λL) = λ%(L) for all λ ≥ 0.
Convexity: %(γL1 + (1− γ)L2) ≤ γ%(L1) + (1− γ)%(L2) for all 0 ≤

γ ≤ 1, L1, L2 ∈M.
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Definition 8.1 (Convex, coherent risk measures)

A risk measure which satisfies monotonicity, translation invariance
and convexity is called convex .
A risk measure which satisfies monotonicity, translation invariance,
subadditivity and positive homogeneity is called coherent.

A coherent risk measure is convex; the converse is not true (see below).
On the other hand, for a positive-homogeneous risk measure, convexity
and coherence are equivalent.

8.1.1 Risk measures and acceptance sets

Definition 8.2 (Acceptance set)
For a monotone and translation-invariant risk measure % the acceptance
set of % is A% = {L ∈ M : %(L) ≤ 0} (so it contains the positions that
are acceptable without any backing capital).
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Proposition 8.3
Let % be monotone and translation-invariant with associated A%. Then
1) A% 6= ∅ and A% satisfies

L ∈ A% and L̃ ≤ L⇒ L̃ ∈ A%. (25)

2) % can be reconstructed from A% via

%(L) = inf{m ∈ R : L−m ∈ A%}. (26)

Proof. 1) is clear. For 2), note that inf{m : L − m ∈ A%} = inf{m :
%(L−m) ≤ 0} = inf{m : %(L)−m ≤ 0} and this is equal to %(L).
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Proposition 8.4
Suppose that A satisfies (25) and define

%A(L) = inf{m ∈ R : L−m ∈ A}. (27)

Suppose %A(L) is finite for all L ∈ M. Then %A is monotone and
translation-invariant onM and A%A satisfies A%A ⊇ A.

Proof. These properties of %A are easily checked.

Example 8.5 (Value-at-risk)
For α ∈ (0, 1), suppose we call L ∈ M acceptable if P(L > 0) ≤ 1 − α.
Then (27) is given by

%α(L) = inf{m ∈ R : P(L−m > 0) ≤ 1− α}
= inf{m ∈ R : P(L ≤ m) ≥ α} = VaRα(L).
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Proposition 8.6
1) Let % be monotone and translation-invariant. Then

1.1) % is convex if and only if A% is convex.
1.2) % is coherent if and only if A% is a convex cone.

2) More generally, consider a set of acceptable positions A and the associ-
ated risk measure %A (whose acceptance set may be larger than A). If
A is convex, so is %A; if A is a convex cone, then %A is coherent.

Example 8.7 (Risk measures based on loss functions)
Consider a strictly increasing and convex loss function ` : R→ R and some
c ∈ R. Assume that E(`(L)) is finite for all L ∈M. Define an acceptance
set by

A = {L ∈M : E
(
`(L)

)
≤ `(c)},

and the associated risk measure by

%A = inf{m ∈ R : E
(
`(L−m)

)
≤ `(c)}.
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%A is translation invariant and monotone by Proposition 8.4 since A
satisfies (25).
%A is convex by Proposition 8.6; to see this consider acceptable positions
L1 and L2 and observe that the convexity of ` implies

E(`(γL1 + (1− γ)L2)) ≤ E(γ`(L1) + (1− γ)`(L2))
≤ γ`(c) + (1− γ)`(c) = `(c),

where we have used that E(`(Li)) ≤ `(c) for acceptable positions. Hence
γL1 + (1− γ)L2 ∈ A, so A is convex.
Example: `(x) = exp(αx) for some α > 0. Then

%α,c(L) : = inf{m : E(eα(L−m)) ≤ eαc} = inf{m : E(eαL) ≤ eαc+αm}

= 1
α

log(E(eαL))− c.

Note that %α,c(0) = −c, so %α,c cannot be coherent. For c = 0 and
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λ > 1, the entropic risk measure %α,0 satisfies

%α,0(λL) = 1
α

ln{E(eαλL)} ≥ 1
α

ln{E(eαL)λ} = λ%α,0(L),

where the inequality is strict if L is non-degenerate. This shows that
%α,0 is convex but not coherent. If L are insurance claims, %α,0 is known
as exponential premium principle.

Example 8.8 (Stress test or worst case risk measure)
Given stress scenarios S ⊆ Ω, a stress test risk measure can be defined by

%(L) = sup{L(ω) : ω ∈ S},

that is, the worst loss on S. The associated acceptance set is

A% = {L : L(ω) ≤ 0 for all ω ∈ S}.

The choice of S is often guided by the underlying probability measure P.

© QRM Tutorial Section 8.1.1

http://www.qrmtutorial.org


Example 8.9 (Generalized scenario risk measures)
Consider a setQ of probability measures on (Ω,F) and a penalty function γ :
Q → R such that inf{γ(Q) : Q ∈ Q} > −∞. Suppose supQ∈Q EQ|L| <
∞ for all L ∈M. The generalized scenario risk measures % is defined by

%(L) = sup{EQ(L)− γ(Q) : Q ∈ Q}. (28)

The corresponding acceptance set is given by

A% = {L ∈M : sup
{
EQ(L)− γ(Q) : Q ∈ Q

}
≤ 0}.

A% is convex, and thus so is %.
Every convex risk measure can be represented as (28); see Theorem 8.10.
If γ(·) ≡ 0 on Q, % is positive homogeneous and therefore coherent.
The stress test risk measure of Example 8.8 is a special case of (28) in
which γ ≡ 0 and Q is the set of all Dirac measures δω(·), ω ∈ S, that
is, δω(B) = IB(ω) for arbitrary measurable sets B ⊆ Ω.
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8.1.2 Dual representation of convex measures of risk

Theorem 8.10 (Dual representation for risk measures)
Suppose |Ω| = n < ∞. Let F = P(Ω) (power set) and M := {L :
Ω→ R}. Then:
1) Every convex risk measure % onM can be written in the form

%(L) = max{EQ(L)− αmin(Q) : Q ∈ S1(Ω,F)}, (29)

where S1(Ω,F) denotes the set of all probability measures on Ω, and
where the penalty function αmin is given by αmin(Q) = sup{EQ(L) :
L ∈ A%}.

2) If % is coherent, it has the representation

%(L) = max{EQ(L) : Q ∈ Q}

for some set Q = Q(%) ⊆ S1(Ω,F).

One can show that αmin(Q) = supL∈M{EQ(L)− %(L)}.
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8.1.3 Examples of dual representations

Proposition 8.11 (ES formulas)
For α ∈ (0, 1),

1) ESα(L) =
E
(
(L− F←L (α))+

)
1− α + F←L (α);

2) ESα(L) =
E(LI{L>F←L (α)}) + F←L (α)

(
1− α− F̄L(F←L (α))

)
1− α .

Corollary 8.12 (ES formulas under continuous FL)
Let FL be continuous at F←L (α). Then

1) ESα(L) =
E(LI{L>F←

L
(α)})

1−α
2) ESα(L) = E(L |L > F←L (α)) (i.e. conditional VaR (CVaR))

With dual representations one can give a proof for ESα being subadditive;
see the following result.
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Theorem 8.13
For α ∈ [0, 1), ESα is coherent on M = L1(Ω,F ,P). The dual
representation is given by

ESα(L) = max{EQ(L) : Q ∈ Qα}, (30)

where Qα is the set of all probability measures on (Ω,F) that are
absolutely continuous with respect to P and for which the measure-
theoretic density dQ/dP is bounded by 1/(1− α).
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8.2 Law-invariant coherent risk measures
8.2.1 Distortion risk measures

Distortion risk measures are important coherent risk measures. We sum-
marize important representations and investigate their properties.

Representations of distortion risk measures

Definition 8.14 (Distortion risk measure)

A convex distortion function D is a con-
vex, increasing and absolutely continuous
function on [0, 1] satisfying D(0) = 0
and D(1) = 1.

u0 1

1

D(u)

The distortion risk measure associated with D is defined by

%(L) =
∫ 1

0
F←L (u) dD(u). (31)
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Note:
A distortion risk measure is law-invariant (average of the L-quantiles).
D(u) =

∫ u
0 φ(s) ds for an increasing, positive function φ (the right-sided

derivative of D), hence

%(L) =
∫ 1

0
F←L (u)φ(u) du. (32)

A risk measure of this form is known as spectral risk measure and φ as
spectrum.
For Dα(u) = (1− α)−1(u− α)+ one obtains expected shortfall. The
spectrum is φ(u) = (1 − α)−1I{u≥α} (equal weight is placed on all
quantiles beyond the α-quantile).
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Lemma 8.15
The distortion risk measure % associated with a convex distortion function
D can be written in the form

%(L) =
∫
R
x dD ◦ FL(x), (33)

where D ◦ FL(x) = D
(
FL(x)

)
.

Proof. G(x) = D ◦ FL(x) has quantile function G← = F←L ◦D←. Thus
(33) can be written as∫
R
x dG(x) =

u=G(x)

∫ 1

0
G←(u) du =

∫ 1

0
F←L ◦D←(u) du = E(F←L ◦D←(U)),

where U ∼ U(0, 1). Now introduce V = D←(U) ∼ D and note that∫
R
x dD ◦ FL(x) = E(F←L (V )) =

∫ 1

0
F←L (v) dD(v).

D distorts FL. Since D is convex, D(u) ≤ u, so G = D ◦ FL puts more
mass on high values of L than FL.
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Distortion risk measure can be represented as a weighted average of ex-
pected shortfall; see the appendix for a proof.

Proposition 8.16 (Distortion risk measures as weighted ES)
Let % be a distortion risk measure associated with the convex distortion
function D. Then, for a probability measure µ,

%(L) =
∫ 1

0
ESα(L) dµ(α).

Properties of distortion risk measures

Definition 8.17 (Comonotone additivity)
A risk measure % on a space of random variables M is said to be
comonotone additive if %(L1 + · · · + Ld) = %(L1) + · · · + %(Ld) for
comonotone L1, . . . , Ld.

Quantile functions (so value-at-risk) are comonotone additive. Comono-
tone additivity of distortion risk measures then follows from (31).
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Distortion risk measures are coherent. Monotonicity, translation in-
variance and positive homogeneity are obvious. Subadditivity follows
from Proposition 8.16 and subadditivity of ESα (e.g., Theorem 8.13) by
observing that

%(L1 + L2) =
∫ 1

0
ESα(L1 + L2) dµ(α)

≤
∫ 1

0
ESα(L1) dµ(α) +

∫ 1

0
ESα(L2) dµ(α)

= %(L1) + %(L2).

In summary, we have verified that distortion risk measures are law
invariant, coherent and comonotone additive.
It may also be shown that, on an atomless probability space (where
there exists a continuous random variable), a law-invariant, coherent,
comonotone-additive risk measure must be of the form (31) for some
convex distortion function D.
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Parametric families of distortion risk measures can be based on convex
distortion functions of the form

Dα(u) = Ψ(Ψ−1(u) + ln(1− α)), 0 ≤ α < 1,

where Ψ is a continuous df on R; for Ψ(u) = 1− exp(−u), u ≥ 0, one
obtains the distortion function for ES.
I Such a family of convex distortion functions is strictly decreasing in

α for fixed u.
I D0(u) = u (corresponding to the risk measure %(L) = E(L)) and

limα→1D(u) = 1{u=1}.
I For α1 < α2 and 0 < u < 1 we have Dα1(u) > Dα2(u), so that Dα2

distorts the original probability measure more than Dα1 and places
more weight on outcomes in the tail.
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8.2.2 The expectile risk measure

Definition 8.18 (Expectiles)
Let L ∈ M := L1(Ω,F ,P), so E|L| < ∞. Then, for α ∈ (0, 1), the
α-expectile eα(L) is given by the unique solution y of

αE((L− y)+) = (1− α)E((L− y)−) (34)

where x+ = max{x, 0} and x− = max{−x, 0}.

Since x+ − x− = x, e0.5(L) = E(L) as E(L − y)− = E(L − y)+ iff
E((L− y)+ − (L− y)−) = 0 iff E(L− y) = 0.
E(L2) <∞, eα(L) is the minimizer of

min
y∈R

E (S(y, L)) (35)

for scoring function S(y, L). This could be relevant for the out-of-sample
testing of expectile-estimates (so-called backtesting). The scoring func-
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tion that yields the expectile is

Seα(y, L) = |1{L≤y} − α|(L− y)2. (36)

In fact we can compute that d
dyE (Seα(y, L)) equals

d

dy

∫ ∞
−∞
|1{y≥x} − α|(y − x)2 dFL(x)

= d

dy

∫ y

−∞
(1− α)(y − x)2 dFL(x) + d

dy

∫ ∞
y

α(y − x)2 dFL(x)

= 2(1− α)
∫ y

−∞
(y − x) dFL(x) + 2α

∫ ∞
y

(y − x) dFL(x)

= 2(1− α)E((L− y)−)− 2αE((L− y)+)

and setting this equal to zero yields the definition of an expectile.
One can show that the α-quantile F←L (α) is also a minimizer of the
form (35); consider the scoring function Sqα(y, L) = |1{L≤y}−α||L− y|.
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The following result shows uniqueness of the α-expectile and provides a
helpful formula for computing expectiles of certain distributions; see the
appendix for a proof.

Proposition 8.19
Let α ∈ (0, 1) and L a rv such that µ := E(L) <∞. Then eα(L) may
be written as eα(L) = F̃−1

L (α) where

F̃L(y) = yFL(y)− µ(y)
2(yFL(y)− µ(y)) + µ− y

(37)

is a continuous df that is strictly increasing on its support and µ(y) :=∫ y
−∞ x dFL(x).
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Example 8.20 (Bernoulli)
Let L ∼ Be(p) be a Bernoulli-distributed loss. Then

FL(y) =


0, y < 0
1− p, 0 ≤ y < 1,
1, y ≥ 1

µ(y) =

0, y < 1
p, y ≥ 1

from which it follows that F̃L(y) = y(1−p)
y(1−2p)+p , 0 ≤ y ≤ 1 and

eα(L) = αp

(1− α) + p(2α− 1) .

Note that this can take any value in zero and one, whereas VaRα(L) ∈
{0, 1}, α ∈ (0, 1].
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Properties of expectiles

Proposition 8.21 (Coherence of expectile risk measures)
% = eα is a coherent risk measure onM = L1(Ω,F ,P) for α ≥ 0.5.

See the appendix for a proof.
Expectiles are not comonotone additive and thus are not distortion risk
measures.
If L1 and L2 are comonotonic and of the same type (so that L2 =
kL1 + m for some m ∈ R and k > 0) then we do have comonotone
additivity (by translation invariance and positive homogeneity), but
for comonotonic variables that are not of the same type one can find
examples where eα(L1 + L2) < eα(L1) + eα(L2) for α > 0.5.
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Elicitability explained in words

Computing a (one-period ahead) risk measure %(L) =: %(FL) is a point
forecasting problem because FL is unknown and one has to find an
estimate F̂L of it and forecast the unknown true %(FL) via the point
forecast %(F̂L).
As different F̂L can be used to forecast the risk measure, it is desirable
to be able to evaluate which of them gives a better point forecast.
Suppose we want to forecast L (or FL) by a point y. The forecasting
error is

E(S(y, L)) =
∫
R
S(y, l) dFL(l),

where S(y, l) is a scoring (i.e. forecasting objective) function.
Two point forecasting methods can be compared via their forecasting
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errors. For a given S, the optimal point forecast is

%∗(FL) = arginf
y

E(S(y, L)) (minimizing the forecast error).

For example, for S(y, l) = (y − l)2 and S(y, l) = |y − l|, the optimal
point forecasts are the mean and median of FL, respectively.
Elicitable risk measures (or: statistical functionals) are risk measures
% which minimize E(S(y, L)) of some scoring function S; hence that
S can be used to compare different point forecasting procedures for %
(“the smaller the forecasting error, the better” makes sense).
If % is not elicitable, one cannot find such an S and thus the minimization
of the forecasting error does not yield the true value %(FL) for any S.
Hence, for two competing point forecasts of %(FL), one cannot tell
which performs the best by comparing their forecasting error, no matter
what S is used.
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8.3 Risk measures for linear portfolios
We now consider linear portfolios in

M = {L : L = m+ λ′X, m ∈ R,λ ∈ Rd}, (38)

for a fixed d-dimensional random vector X.
Many standard approaches to risk aggregation and capital allocation
are based on the assumption that losses have a linear relationship to
underlying risk factor changes.
It is common to use linear approximations for losses due to market risks
over short time horizons.
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8.3.1 Elliptically distributed risk factors

Theorem 8.22 (Risk measurement for elliptical risk factors)
Let X ∼ Ed(µ,Σ, ψ) and % be any positive-homogeneous, translation-
invariant and law-invariant risk measure onM. Then:
1) For any L = m+ λ′X ∈M, %(L) = m+ λ′µ+

√
λ′Σλ%(Y1)

for Y1 ∼ S1(ψ).

2) If %(Y1) ≥ 0, then % is subadditive onM (e.g., VaRα for α ≥ 0.5).

3) If EX exists then, ∀L = m+ λ′X ∈M and ρij = ℘(Σ)ij = Pij ,

%(L− EL) =

√√√√√ d∑
i=1

d∑
j=1

ρijλiλj%(Xi − EXi)%(Xj − EXj).

4) If cov(X) exists and %(Y1) > 0 then, for every L ∈M,
%(L) = E(L) + k%

√
var(L) for some k% > 0 depending on %.
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Proof.
1) Let Y ∼ Sk(ψ), AA′ = Σ. L = m + λ′X

d= m + λ′µ + λ′AY . By

Theorem 6.11 3), L d= m+ λ′µ+ ‖A′λ‖Y1. Thus %(L) = m+ λ′µ+
‖A′λ‖%(Y1) = m+ λ′µ+

√
λ′Σλ%(Y1).

2) Set L1 = m1 + λ′1X and L2 = m2 + λ′2X. Subadditivity follows from
1) and ‖A′(λ1 + λ2)‖ ≤ ‖A′λ1‖+ ‖A′λ2‖ and %(Y1) ≥ 0.

3) %(L− EL) = %(L)− E(L) = %(L)− (m+ λ′µ) =
√
λ′Σλ%(Y1), so

%(L− EL) =

√√√√√ d∑
i=1

d∑
j=1

ρijλiλjσiσj%(Y1),

where σj =
√

Σjj for j ∈ {1, . . . , d}. For λ = ej , %(Xj − EXj) =
%(e′jX − E(e′jX)) = σj%(Y1), from which the result follows.

4) cov(X) = cΣ for some c > 0. Since var(L) = var(λ′X) = λ′cΣλ, 3)
implies %(L) = E(L) +

√
λ′Σλ%(Y1) = E(L)+

√
var(L)%(Y1)/

√
c.
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2) gives a special case where VaR is subadditive and thus coherent. In
particular, if (L1, . . . , Ld) is jointly elliptical, VaRα is subadditive for
α ≥ 0.5.
3) provides a useful interpretation of risk measures onM in terms of
the aggregation of stress tests.
4) is relevant to portfolio optimization. If we consider losses L ∈ M
for which E(L) is fixed, the weights that minimize % also minimize the
variance. The portfolio minimizing % is thus the same as the Markowitz
variance-minimizing portfolio.
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8.4 Risk aggregation
A risk aggregation rule is a mapping

f(EC1, . . . ,ECd) = EC

which maps the individual capital amounts EC1, . . . ,ECd to the aggre-
gate capital EC (economic capital). Examples are:
I Simple summation EC = EC1 + · · · + ECd (a special case of and

upper bound for correlation adjusted summation)
I Correlation adjusted summation

EC =

√√√√√ d∑
i=1

d∑
j=1

ρij ECi ECj , (39)

where ρij ∈ [0, 1] are parameters (referred to as correlations).
In what follows we show that correlation adjusted summation is justified
as a risk aggregation rule under various setups.
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8.4.1 Aggregation based on loss distributions

Suppose that the overall loss is L = L1 + · · · + Ld where L1, . . . , Ld
are the losses arising from sub-units (e.g., business units, asset classes).
Consider a translation-invariant % and define

%mean(·) = %(· − E(·)) = %(·)− E(·),

that is, the capital required to cover unexpected losses.
The capital requirements for the sub-units are

ECj = %mean(Lj), j ∈ {1, . . . , d},

and the aggregate capital should be

EC = %mean(L).

We require an aggregation rule f such that f(EC1, . . . ,ECd) = EC.
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If %(L) = E(L) + k sd(L), k > 0, and E(L2) <∞ then

sd(L) =
√

var(1′L) =
√

1′ cov(L)1 =

√√√√√ d∑
i=1

d∑
j=1

ρij sd(Li) sd(Lj),

where (ρij)i,j = corr(L), so correlation adjusted summation follows by
noting that sd(L) = %mean(L)/k = EC /k (and sd(Lj) = ECj /k).
If Lj = mj+λ′jX forX ∼ Ed(µ,Σ, ψ) with existing cov(X), then this
formula and Theorem 8.22 4) imply that correlation adjusted summation
is justified for any positive-homogeneous, translation-invariant and law-
invariant risk measure %.
The assumption on cov(X) can be dropped.
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8.4.2 Aggregation based on stressing risk factors

Correlation adjusted summation is used in the aggregation of capital
contributions EC1, . . . ,ECd computed by stressing individual risk factors
(example: Standard formula approach to Solvency II).
Let x = X(ω) be a scenario defined in terms of changes in risk fac-
tors and L(x) the corresponding loss. Assume L(x) is known and
componentwise increasing.
The d risk factors are stressed individually by amounts k1, . . . , kd. Capital
contributions for each risk factor are computed by

ECj = L(kjej)− L(E(Xj)ej)

where kj > E(Xj) so that ECj > 0 (interpreted as the loss incurred by
stressing risk factor j by kj relative to the impact of stressing it by its
expected change); an example is kj = qα(Xj) for large α.
The following justifies correlation adjusted summation as a risk aggrega-
tion rule if kj = %(Xj) for elliptical X and L(X) = m+ λ′X.
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Proposition 8.23 (Justification for correlation adjusted summation)
Let X ∼ Ed(µ,Σ, ψ) with E(X) = µ. Let M be the space of linear
portfolios (38) and % be a pos. hom., translation- and law-invariant risk
measure onM. Then, for any L = L(X) = m+ λ′X ∈M,

EC = %(L− E(L)) =

√√√√√ d∑
i=1

d∑
j=1

ρij ECi ECj ,

where ECj = L(%(Xj)ej)− L(E(Xj)ej) and ρij = ℘(Σ)i,j .

Proof. Note that ECj = m+ λj%(Xj)− (m+ λjEXj) = λj%(Xj −EXj)
and plug this into Theorem 8.22 3) to see that the claim holds.

Thus under linearity of the losses in jointly elliptical risk-factor changes,
we can aggregate the effects of single-risk-factor stresses to an aggregate
capital; this applies to VaR, ES. This idea underscores correlation
adjusted summation in Solvency II.
The ρijs are either estimated (if possible) or set by expert judgement.
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8.4.3 Risk aggregation and Fréchet problems

Consider themargins-plus-copula approach where Lj ∼ Fj , j ∈ {1, . . . , d},
are treated as known (estimated or postulated) and C is unknown.
Consider L = L1 + · · · + Ld. Due to the unknown C (dependence
uncertainty), risk measures can no longer be computed explicitly.
Our goal is to find bounds on VaRα and ESα under all possible C. Let

Sd := Sd(F1, . . . , Fd) :=
{
L =

d∑
j=1

Lj : Lj ∼ Fj , j = 1, . . . , d
}

and consider
%(L) := %(Sd) := sup{%(L) : L ∈ Sd(F1, . . . , Fd)} (worst %)
%(L) := %(Sd) := inf{%(L) : L ∈ Sd(F1, . . . , Fd)} (best %)

If % = ESα, ESα(L) =
∑d
j=1 ESα(Lj) (subadditivity, com. additivity).

ESα, VaRα, VaRα depend on whether the portfolio is homogeneous
(that is, F1 = · · · = Fd); we focus on VaRα.
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Summary of existing results

d = 2: Fully solved analytically
d ≥ 3: Here we distinguish:

I Homogeneous case (F1 = · · · = Fd):
ESα(L) solved analytically for decreasing densities (e.g. Pareto,
Exponential)
VaRα(L), VaRα(L) solved analytically for tail-decreasing densi-
ties (e.g. Pareto, Log-normal, Gamma)

I Inhomogeneous case:
Some analytical results available
Numerical methods: (Adaptive/Block) Rearrangement Algorithm
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The general problem

We have one-period risks L1 ∼ F1, . . . , Ld ∼ Fd with given (estimated
or postulated) F1, . . . , Fd and unknown copula C and want to compute
VaRα(L) for L = L1 + · · ·+ Ld.
Iman and Conover (1982) idea for Par(2), Par(2.5) sample of size 500:
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⇒ Reordering columns changes the dependence of (L1, L2) and FL.
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The Rearrangement Algorithm (RA)

Two columns a, b are oppositely ordered if (ai − aj)(bi − bj) ≤ 0 ∀ i, j.
Minimum row-sum operator s(X) = min

1≤i≤N

∑
1≤j≤d

xij

Algorithm 8.24 (RA for computing VaRα(L))
1) Fix α ∈ (0, 1), F←1 , . . . , F←d , N ∈ N (# of discr. points), ε ≥ 0 (tol.)
2) Compute the lower bound sN :

2.1) Define the (N, d)-matrix Xα =
(
F←j

(
α+ (1−α)(i−1)

N

))
i,j
.

2.2) Randomly permute each column of Xα (to avoid sN − sN 9 0)
2.3) Iterate over all columns of Xα and oppositely order each to the

sum of all others ⇒ Matrix Y α

2.4) Repeat Step 2.3) until s(Y α)− s(Xα) ≤ ε, then set sN = s(Y α).
3) Similarly, compute sN = s(Y α) based on Xα =

(
F←j

(
α+ (1−α)i

N

))
i,j
.

4) Return (sN , sN ) (rearrangement range; taken as bounds on VaRα(L))
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The RA aims at maximizing the minimal row sums (solving a maximin
problem; minimax problem for VaRα).
Intuition: A completely mixable matrix (equal row sums), would min-
imize the variance of L |L > F−L (α) and thus concentrate more of
the 1 − α mass of FL around the constant E[L |L > VaRα(L)] =

cont.
ESα(L) ≥ VaRα(L), so VaRα(L) increases (FL jumps to 1 in VaRα(L)
so VaRα(L) is largest).

fL(x)

VaRα(L) ESα(L)

1 − α
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Example 8.25 (How the RA works)
1) Where it works (to compute the maximal minimal row sum):

1 1 1
2 3 2
3 5 4
4 7 8

 =⇒∑
−1=

( 2
5
9
15

)


4 1 1
3 3 2
2 5 4
1 7 8

 here: stable=⇒∑
−2=

( 5
5
6
9

)


4 5 1
3 7 2
2 3 4
1 1 8

 =⇒∑
−3=

( 9
10
5
2

)


4 5 2
3 7 1
2 3 4
1 1 8

 here: not=⇒∑
−1=

( 7
8
7
9

)


3 5 2
2 7 1
4 3 4
1 1 8

 X =⇒∑
=
( 10

10
11
10

) V̂aRα(L+) ≈ 10

2) The RA can also fail:1 1 1
2 2 2
3 3 3

 =⇒∑
−1=

( 2
4
6

)
3 1 1

2 2 2
1 3 3

 X =⇒∑
=
( 5

6
7

) V̂aRα(L+) ≈ 5 < 6
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Example 8.26 (Par(θ) margins)
Let Lj ∼ Par(θ) with F̄j(x) = (1 + x)−θ, j ∈ {1, . . . , d} (homogeneous
case) and α = 0.999. One obtains:

d = 8 d = 56

θ = 2 θ = 0.8 θ = 2 θ = 0.8

VaRα(L) 465 300 182 3454 4 683 172
VaR+

α (L) = dVaRα(L1) 245 44 979 1715 314 855
VaR⊥α (L) 96 75 877 293 862 855
VaRα(L) 31 5622 53 5622

ESα(L) = dESα(L1) 498 – 3486 –
ES⊥α (L) 184 – 518 –
ESα(L) 178 – 472 –

The “+” and “⊥” denote the comonotonic and independent case, resp.
ESα(L)

VaRα(L) ≈d↑∞ 1 can be explained; see MFE (2015, Proposition 8.36).

The dependence uncertainty spread VaRα(L)−VaRα(L) ≥ ESα(L)−
ESα(L) can be explained; see MFE (2015, Proposition 8.37).
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Remark 8.27
The RA finds approximate solutions to maximin (for VaRα(L)) and
minimax (for VaRα(L)) problems and is thus of wider interest (e.g., in
Operations Research).
For ESα(L), discretize the whole support of each margin, rearrange,
and approximate ESα(L) by the nonparametric ESα estimate of the row
sums.
The Adaptive Rearrangement Algorithm (ARA)
I uses relative (instead of absolute) individual tolerances;
I uses a relative joint tolerance to guarantee that sN and sN are close;
I chooses N adaptively to reach the joint tolerance; and
I determines convergence after each rearranged column.
The Block Rearrangement Algorithm rearranges blocks of columns.
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Example 8.28 (Superadditivity of VaR under special dependence)

Let α ∈ (0, 1), L1 ∼ U(0, 1) and define L2
a.s.=

L1, if L1 < α,

1 + α− L1, if L1 ≥ α.

One can show that L2 ∼ U(0, 1). Also, L1 + L2 =

2L1, if L1 < α,

1 + α, if L1 ≥ α,
from which one can show that

FL1+L2(x) =



0, if x < 0,
x/2, if x ∈ [0, 2α),
α, if x ∈ [2α, 1 + α),
1, if x ≥ 1 + α.

For all ε ∈
(
0, 1−α

2
)
, we thus obtain that

VaRα+ε(L1 + L2) = 1 + α >
ε∈(0, 1−α2 )

2(α+ ε) = VaRα+ε(L1) + VaRα+ε(L2).
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8.5 Capital allocation
How can the overall capital requirement may be disaggregated into additive
contributions/units/investments? Motivation: How can we measure the
risk-adjusted performance of different investments?

8.5.1 The allocation problem
The performance of investments is usually measured using a RORAC
(return on risk-adjusted capital) approach by considering

expected profit of investment j
risk capital for investment j .

The risk capital of investment j with loss Lj can be computed as
follows: Compute %(L) = %(L1 + · · ·+ Ld). Then allocate %(L) to the
investments according to a capital allocation principle such that

%(L) =
d∑
j=1

ACj ,

where the risk contribution ACj is the capital allocated to investment j.
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The formal set-up
Consider an open set 1 ∈ Λ ⊆ Rd \ {0} of portfolio weights and define

L(λ) = λ′L =
d∑
j=1

λjLj , λ ∈ Λ.

For a risk measure %, define the associated risk-measure function

r%(λ) = %(L(λ)),

so that r%(1) = %(L).

8.5.2 The Euler principle and examples
If r% is positive homogeneous and differentiable at λ ∈ Λ, Euler’s rule
implies that

r%(λ) =
d∑
i=1

λi
∂r%
∂λi

(λ) so %(L) = r%(1) =
d∑
j=1

∂r%
∂λj

(1).

Note that r% is positive homogeneous if % is.
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Definition 8.29 (Euler capital allocation principle)
If r% is a pos.-hom. risk-measure function and differentiable at λ = 1,
then the Euler capital allocation principle has risk contributions

ACj = AC%
j := ∂r%

∂λj
(1), j ∈ {1, . . . , d}.

Example 8.30 (Covariance principle)
Consider rSD(λ) :=

√
var(L(λ)) =

√
λ′Σλ where Σ = cov(L). Thus

AC%
j = ∂rSD

∂λj
(1) = (Σ1)j

rSD(1) =
∑d
k=1 cov(Lj , Lk)

rSD(1) = cov(Lj , L)√
var(L)

.

Corollary 8.31 (Euler allocation under ellipticality)
Assume that r% is the risk-measure function of a positive-homogeneous and
law invariant %. Let L ∼ Ed(0,Σ, ψ). Then, under an Euler allocation,

AC%
j

AC%
k

=
∑d
l=1 Σjl∑d
l=1 Σkl

, j, k ∈ {1, . . . , d}.
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Example 8.32 (Euler allocation and shortfall contributions)
Now consider rαES(λ) = E(L |L ≥ qα(L(λ))). Then

rαES(λ) = 1
1− α

∫ 1

α
ruVaR(λ) du,

Assuming the differentiability of ruVaR(λ), the Euler principle implies that
∂rαES
∂λj

(1) = 1
1− α

∫ 1

α

∂ruVaR
∂λj

(1) du = 1
1− α

∫ 1

α
E(Lj |L = F←L (u)) du.

If FL has a differentiable inverse,
∂rαES
∂λj

(1) = 1
1− α

∫ ∞
F←L (α)

E(Lj |L = v)fL(v) dv = E(Lj ;L ≥ F←L (α))
1− α .

Hence the Euler capital allocation takes the form

AC%
j = E(Lj |L ≥ VaRα(L)), L := L(1);

AC%
j is known as the expected shortfall contribution of investment j. This

is a popular allocation principle in practice.
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9 Market Risk
9.1 Risk factors and mapping

9.2 Market risk measurement

9.3 Backtesting
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9.1 Risk factors and mapping
9.1.1 The loss operator

The key idea in this section is that of a loss operator for expressing the
change in value of a portfolio in terms of risk-factor changes.
Let the current time be t and assume the current value Vt os an asset
portfolio is known, or can be computed with appropriate valuation
models.
We are interested in value changes or losses over a relatively short time
period [t, t+ 1], for example one day, two weeks or month.
Scaling may be applied to derive capital requirements for longer periods.
We assume there is no change to the composition of the portfolio over
the time period.
The future value Vt+1 is modelled as a random variable.
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We want to determine the distribution of the loss distribution of Lt+1 =
−(Vt+1 − Vt).
We map the value at time t using the formula

Vt = g(τt,Zt)

where τt is time t expressed in units of valuation time.

The issue of time

We will be quite precise about the modelling of time.
The natural time unit for valuation of positions might be yearly; e.g. in
Black-Scholes valuation, the volatility is expressed in annualized terms.
On the other hand the risk modelling time horizon [t, t+ 1] is typically
shorter.
Let ∆t be the length of the time horizon in valuation time.
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For example, suppose that valuation time is yearly. Then a monthly
time horizon would be ∆t = 1/12 and a trading day ∆t = 1/250.
We set τt = t(∆t) for all t so that τt+1 − τt = ∆t.

From the mapping to the loss operator

The risk factor changes over the time horizon are

Xt+1 = Zt+1 − Zt.

Typically, historical risk factor data are available as a time series
Xt−n, . . . ,Xt−1,Xt and these are used to model the behaviour of Xt+1.
We have

Lt+1 = −(Vt+1 − Vt)
= − (g(τt+1,Zt+1)− g(τt,Zt))
= −(g(τt + ∆t,Zt + Xt+1)− g(τt,Zt)). (40)
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Since the risk factor values Zt are known at time t, the loss Lt+1 is
determined by the risk factor changes Xt+1.
Given a realization zt of Zt, the loss operator at time t is defined to be

l[t](x) = −(g(τt + ∆t, zt + x)− g(τt, zt)), (41)
so that

Lt+1 = l[t](Xt+1).

The loss operator embodies the idea of full revaluation.
From the perspective of time t the loss distribution of Lt+1 is determined
by the multivariate distribution of Xt+1.

9.1.2 Delta and delta–gamma approximations

If the mapping function g is differentiable and ∆t is relatively small we
can approximate g with a first-order Taylor series approximation

g(τt + ∆t, zt + x) ≈ g(τt, zt) + gτ (τt, zt)∆t+
d∑
i=1

gzi(τt, zt)xi, (42)
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where the τ -subscript and zi-subscript denote partial derivatives with
respect to (valuation) time and the risk factors respectively.
This allows us to approximate the loss operator in (41) by the linear
loss operator at time t given by

l∆[t](x) := −
(
gτ (τt, zt)∆t+

d∑
i=1

gzi(τt, zt)xi
)
. (43)

Note that, when working with a short time horizon ∆t, the term
gτ (τt, zt)∆t is typically small and is sometimes omitted in practice.
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Example 9.1 (European call option)

Consider portfolio consisting of one standard European call on a
non-dividend paying stock S with maturity T and exercise price K.
The Black-Scholes value of this asset at time t is CBS(t, St, r, σ)
where

CBS(t, S; r, σ) = SΦ(d1)−Ke−r(T−t)Φ(d2),

Φ is standard normal df, r represents risk-free interest rate, σ the
volatility of underlying stock, and where

d1 = log(S/K) + (r + σ2/2)(T − t)
σ
√
T − t

and d2 = d1 − σ
√
T − t.

While in the BS model, it is assumed that interest rates and volatilities
are constant, in reality they tend to fluctuate over time; they should
be added to our set of risk factors.
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The risk factors: Zt = (logSt, rt, σt)′.
The risk factor changes: Xt = (log(St/St−1), rt − rt−1, σt − σt−1)′.
The mapping:

Vt = CBS(τt, St; rt, σt) = g(τt,Zt)

For derivative positions it is quite common to use the linear loss
operator

L∆
t+1 = l∆[t](Xt+1) = −

(
gτ (τt, zt)∆t+

3∑
i=1

gzi(τt, zt)Xt+1,i

)
,

where gτ , gzi denote partial derivatives.
∆t is the length of the time interval expressed in years since Black-
Scholes parameters relate to units of one year.
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It is more common to write the linear loss operator as

l∆[t](x) = −
(
CBSt + CBSS Stx1 + CBSr x2 + CBSσ x3

)
,

in terms of the derivatives of the BS formula or the Greeks.
I CBSS is known as the delta of the option.
I CBSσ is the vega.
I CBSr is the rho.
I CBSt is the theta.
Note the appearance of St in the CBSS term. This is because the risk
factor is lnSt rather than St and CBSlnS = CBSS St.

Quadratic loss operator

Recall the first-order Taylor series approximation of mapping in (42).
Let δ(τt, zt) = (gz1(τt, zt), . . . , gzd(τt, zt))′ be the first-order partial
derivatives of the mapping with respect to the risk factors.
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Let ω(τt, zt) = (gz1τ (τt, zt), . . . , gzdτ (τt, zt))′ denote the mixed partial
derivatives with respect to time and the risk factors.
Let Γ(τt, zt) denote the matrix with (i, j)th element given by gzizj (τt, zt);
this matrix contains gamma sensitivities to individual risk factors on the
diagonal and cross gamma sensitivities to pairs of risk factors off the
diagonal.
The full second-order approximation of the mapping function is g is

g(τt + ∆t, zt + x) ≈ g(τt, zt) + gτ (τt, zt)∆t+ δ(τt, zt)′x+
1
2
(
gττ (τt, zt)(∆t)2 + 2ω(τt, zt)′x∆t+

x′Γ(τt, zt)x
)
.

In practice, we would usually omit terms of order o(∆t) (terms that tend
to zero faster than ∆t). In standard continuous-time financial models
like Black-Scholes the risk-factor changes x are of order

√
∆t.
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This leaves us with the quadratic loss operator

l∆Γ
[t] (x) = −

(
gτ (τt, zt)∆t+ δ(τt, zt)′x+ 1

2x
′Γ(τt, zt)x

)
(44)

which is more accurate than the linear loss operator (43).

Example 9.2 (European call option)
The quadratic loss operator is

l∆Γ
[t] (x) =l∆[t](x)− 0.5

(
CBSSS S

2
t x

2
1 + CBSrr x

2
2 + CBSσσ x

2
3

)
−
(
CBSSr Stx1x2 + CBSSσ Stx1x3 + CBSrσ x2x3

)
.

The names of the second-order Greeks (with the exception of gamma)
are rather obscure. Here are some of them:
CBSSS is known as the gamma of the option;
CBSσσ is the vomma;
CBSSσ is the vanna.
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9.1.3 Mapping bond portfolios

Basic definitions for bond pricing

Let p(t, T ) denote the price at time t of a default-free zero-coupon bond
paying one at time T (also called a discount factor).
Time is measured in years.
Many other fixed-income instruments such as coupon bonds or standard
swaps can be viewed as portfolios of zero-coupon bonds.
The mapping T → p(t, T ) for different maturities is one way of describing
the so-called term structure of interest rates at time t. An alternative
description is based on yields.
The term structure T → p(t, T ) is known at time t.
However the future term structure T → p(t + x, T ) for x > 0 is not
known at time t and must be modelled stochastically.
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The continuously compounded yield of a zero-coupon bond is

y(t, T ) = − ln p(t, T )
T − t

. (45)

We have the relation

p(t, T ) = exp(−(T − t)y(t, T )) .

The yield is the constant, annualized rate implied by the price p(t, T ).
Also known as spot rate.
The mapping T → y(t, T ) is referred to as the continuously compounded
yield curve at time t.
Yields are comparable across different times to maturity.

Detailed mapping of a bond portfolio

Consider a portfolio of d default-free zero-coupon bonds with maturities
Ti and prices p(t, Ti) for i = 1, . . . , d. Assume p(Ti, Ti) = 1 for all i.
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By λi we denote the number of bonds with maturity Ti in the portfolio.
The portfolio value at time t is given by

V (t) :=
d∑
i=1

λip(t, Ti) =
d∑
i=1

λi exp(−(Ti − t)y(t, Ti)).

In a detailed analysis of the change in value one takes all yields y(t, Ti),
1 ≤ i ≤ d, as risk factors.
We want to put this in the general discrete-time framework of the
mapping

Vt = g(τt,Zt).

We set
τt = t(∆t), Vt = V (τt), Zt,i = y(τt, Ti)

where ∆t is risk management time horizon in years.
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We obtain a mapping of the form

Vt = V (τt) = g(τt,Zt) =
d∑
i=1

λi exp(−(Ti − τt)Zt,i). (46)

The loss operator and its approximations

The portfolio loss is

Lt+1 = −(Vt+1 − Vt)

= −
d∑
i=1

λie
−(Ti−τt)Zt,i

(
exp (Zt,i∆t− (Ti − τt+1)Xt+1,i)− 1

)
.

Reverting to standard bond pricing notation the loss operator is

l[t](x) = −
d∑
i=1

λip(τt, Ti)
(

exp (y(τt, Ti)∆t− (Ti − τt+1)xi)− 1
)
,

where xi represents the change in yield of the ith bond.
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The first derivatives of the mapping function (46) are

gτ (τt, zt) =
d∑
i=1

λip(τt, Ti)zt,i

gzi(τt, zt) = −λi(Ti − τt) exp(−(Ti − τt)zt,i).

Inserting these in (43) and reverting to standard bond pricing notation
we obtain

l∆[t](x) = −
d∑
i=1

λip(τt, Ti)
(
y(τt, Ti)∆t− (Ti − τt)xi

)
, (47)

For the second-order approximation we need the second derivatives with
respect to yields which are

gzizi(τt, zt) = λi(Ti − τt)2 exp(−(Ti − τt)zt,i)

and gzizj (τt, zt) = 0 for i 6= j.
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The quadratic loss operator (44) is

l∆Γ
[t] (x) = −

d∑
i=1

λip(τt, Ti)
(
y(τt, Ti)∆t− (Ti − τt)xi + 1

2(Ti − τt)2x2
i

)
.

(48)

Relationship of linear operator to duration

Consider a very simple model for the yield curve at time t in which

y(τt+1, Ti) = y(τt, Ti) + x

for all maturities Ti.
In our mapping notation

Zt+1,i = Zt,i +Xt+1, ∀i.

In this model we assume that a parallel shift in level takes place along
the entire yield curve.
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This is unrealistic but frequently assumed in practice.
In this model the loss operator and its linear and quadratic approximations
are functions of a scalar variable x, the change in level.
Under the parallel shift model we can write

l∆[t](x) = −Vt
(
At∆t−Dtx

)
, (49)

where

Dt :=
d∑
i=1

λip(τt, Ti)
vt

(Ti − τt), At :=
d∑
i=1

λip(τt, Ti)
Vt

y(τt, Ti).

Dt is usually called the (Macaulay) duration of the bond portfolio.
It is a weighted sum of the times to maturity of the different cash flows
in the portfolio, the weights being proportional to the discounted values
of the cash flows.
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9.2 Market risk measurement
The goal in this section is to estimate the distribution of

Lt+1 = l[t](Xt+1)

or a linear or quadratic approximation thereof, where
Xt+1 is the vector of risk-factor changes from time t to time t+ 1;
l[t] is the known loss operator function at time t.

The problem comprises two tasks:
1) on the one hand we have the statistical problem of estimating the

distribution of Xt+1;
2) on the other hand we have the computational or numerical problem of

evaluating the distribution of Lt+1 = l[t](Xt+1).
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9.2.1 Conditional and unconditional loss distributions

Generally, we want to compute conditional measures of risk based on
the most recent information about financial markets.
In this case, the task is to estimate FXt+1|Ft , the conditional distribution
of risk-factor changes, given Ft, the sigma field representing the available
information at time t.
The conditional loss distribution is the distribution of the loss operator
l[t](·) under FXt+1|Ft , i.e. the distribution with df

FLt+1|Ft(l) = P(l[t](Xt+1) ≤ l | Ft).

In the unconditional approach we assume that (Xs)s≤t forms a stationary
time series, at least in the recent past.
In this case we can estimate the stationary distribution FX and then
evaluate the unconditional loss distribution of l[t](X) where X ∼ FX .
The unconditional loss distribution is thus FLt+1(l) = P(l[t](X) ≤ l).
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The unconditional approach may be appropriate for longer time intervals,
or for stress testing during quieter periods.
If the risk-factor changes form an iid series, we obviously have FXt+1|Ft =
FX , so that the conditional and unconditional approaches coincide.

9.2.2 Variance-covariance method

The variance–covariance method is an analytical method in which strong
assumptions of (conditional) normality and linearity are made.
We assume that the conditional distribution of risk-factor changes
FXt+1|Ft is a multivariate normal distribution.
In other words, we assume that Xt+1 | Ft ∼ Nd(µt+1,Σt+1).
The estimation of FXt+1|Ft can be carried out in a number of ways:
I Fit multivariate ARMA-GARCH model with multivariate normal

innovations; use model to derive estimates of µt+1 and Σt+1.
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I Alternatively use the exponentially weighted moving-average (EWMA)
procedure; Σt+1 estimated recursively by Σ̂t+1 = θXtX

′
t+ (1−θ)Σ̂t

where θ is a small positive number (typically θ ≈ 0.04).
The second critical assumption in the variance–covariance method is
that the linear loss operator is sufficiently accurate. The linear loss
operator is a function of the form

l∆[t](x) = −(ct + b′tx)

for some constant ct and constant vector bt, known at time t.
We infer that, conditional on Ft,

L∆
t+1 = l∆[t](Xt+1) ∼ N(−ct − b′tµt+1, b

′
tΣt+1bt).

Under normality, VaRα and ESα may be easily calculated:

I V̂aRα = −ct − b′tµ̂t+1 +
√
b′tΣ̂t+1bt Φ−1(α).

I ÊSα = −ct − b′tµ̂t+1 +
√
b′tΣ̂t+1bt

φ(Φ−1(α))
1−α .
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Pros and cons, extensions
Pros: In contrast to the methods that follow, variance-covariance

offers analytical solution with no simulation.
Cons: I Assumption of multivariate normality may seriously un-

derestimate the tail of the loss distribution.
I Linearization may be a crude approximation.

Extensions: Instead of assuming normal risk factors, the method could be
easily adapted to use multivariate Student t or multivariate
hyperbolic risk-factor changes without sacrificing tractability
(the method works for all elliptical distributions but lineariza-
tion is crucial here).

© QRM Tutorial Section 9.2.2

http://www.qrmtutorial.org


9.2.3 Historical simulation

Historical simulation is by far the most popular method used by banks
for the trading book.
Instead of estimating the distribution of l[t](Xt+1) under an explicit
parametric model for Xt+1, the historical simulation method can be
thought of as estimating the distribution of the loss operator under the
empirical distribution of historical data Xt−n+1, . . . ,Xt.
Construct the historically simulated losses (under the current portfolio):

{L̃s = l[t](Xs) : s = t− n+ 1, . . . , t}.

One may apply the linear/quadratic loss operator (if that was already
used; avoids revaluation).
L̃s shows what would happen to the current portfolio if the risk-factor
change on day s were to recur.
Use (L̃s) to make inferences about the loss distribution and risk measures.
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Inference about the loss distribution
I One could use empirical quantile estimation to estimate VaRα.

But: What about precision (sample size; confidence intervals)?
I Or fit a parametric distribution to the historical losses Lt−n+1, . . . , Lt

and calculate risk measures from this distribution.
But: Which distribution to fit (body or tail)?

I One could use extreme value theory to estimate the tail of the loss
distribution and related risk measures based on the historical losses
Lt−n+1, . . . , Lt.

Theoretical justification
If Xt−n+1, . . . ,Xt are iid or, more generally, stationary, convergence of
the empirical distribution to the true distribution is ensured by a suitable
version of the Law of Large Numbers (e.g. Glivenko–Cantelli theorem).
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Pros and Cons
Pros: I Easy to implement.

I No statistical estimation of the distribution of X necessary (the
empirical df of X is used implicitly).

Cons: I It may be difficult to collect sufficient quantities of relevant,
synchronized data for all risk factors.

I Historical data may not contain examples of extreme scenarios
(“driving a car by only looking in the back mirror”).

Note: I The dependence here is given by the empirical df of X.
I “Historical simulation method” is a bit of a misnomer; there is

no simulation in the sense of random number generation.
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9.2.4 Dynamic Historical Simulation

Assume that {L̃s = l[t](Xs) : s = t−n+ 1, . . . , t} are realizations from
a stationary process (L̃s) of the form L̃s = µs + σsZs, where
I µs and σs are Fs−1-measurable;
I (Zs) are SWN(0, 1) innovations with distribution function FZ .
Example: ARMA-GARCH model.
We can easily calculate that for the next loss Lt+1 = l[t](Xt+1) ahead

FLt+1|Ft(l) = P(µt+1 + σt+1Zt+1 ≤ l | Ft) = FZ((l − µt+1)/σt+1).

Writing VaRt
α for F←Lt+1|Ft(α) and EStα for ES, we obtain

VaRt
α = µt+1 + σt+1 VaRα(Z),

EStα = µt+1 + σt+1 ESα(Z),

where Z is a random variable with distribution function FZ .
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Estimation
I Formal parametric time series modelling to estimate µt+1, σt+1,

VaRα(Z) and ESα(Z).
I Often µt+1 ≈ 0 and can be neglected. We can use EWMA to

estimate σt−n+1, . . . , σt, σt+1 and use the standardized residuals
{Ẑs = L̃s/σ̂s, s = t − n + 1, . . . , t} to estimate VaRα(Z) and
ESα(Z).

9.2.5 Monte Carlo

Estimate the distribution of L = `[t](Xt+1) under some explicit para-
metric model for Xt+1.
In contrast to the variance-covariance approach we do not necessarily
make the problem analytically tractable by linearizing the loss and making
an assumption of normality for the risk factors.
Instead, make inference about L using simulated risk factor data.
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The method
1) Based on the historical risk-factor data Xt−n+1, . . . ,Xt, estimate a

suitable statistical model for the risk-factor changes.
2) Simulate N new risk-factor changes X(1)

t+1, . . . ,X
(N)
t+1 from this model.

3) Construct the simulated losses Lk = `[t](X
(k)
t+1), k ∈ {1, . . . , N}.

4) Make inference about the loss distribution FL and risk measures using
Lk, k ∈ {1, . . . , N} (similar possibilities as for the historical simulation
method: non-parametric/parametric/EVT).

Pros and Cons
Pros: I General. Any distribution for Xt+1 can be taken.
Cons: I Can be time consuming if loss operator is difficult to evaluate

(depends on size and complexity of the portfolio).
I Note that MC approach does not address the problem of deter-

mining the distribution of Xt+1.
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9.3 Backtesting
Backtesting is the practice of evaluating risk measurement procedures
by comparing ex ante estimates/forecasts of risk measures with ex post
realized losses and gains.
It allows us to evaluate whether a model and estimation procedure
produce credible risk measure estimates.

9.3.1 Violation-based tests for VaR

Let VaRt
α denote the α-quantile of the conditional loss distribution

FLt+1|Ft and consider the event indicator variable It+1 = I{Lt+1>VaRtα}.
The event {Lt+1 > VaRt

α} is a VaR violation or exception.
Assuming a continuous loss distribution, we have, by definition of the
quantile,

E(It+1 | Ft) = P(Lt+1 > VaRt
α | Ft) = 1− α , (50)
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It+1 is a Bernoulli variable with event probability (1− α).
Moreover, the sequence of VaR exception indicators (It) is an iid se-
quence.
The sum of exception indicators is binomially distributed:

M =
m∑
t=1

It ∼ B(m, 1− α).

Assume exceptions occur at times 1 ≤ T1 < · · · < TM ≤ m and set
T0 = 0. The spacings Sj = Tj −Tj−1 will be independent geometrically
distributed rvs with mean 1/(1− α), so that

P(Sj = k) = αk−1(1− α), k ∈ N .

Both of these properties are testable in empirical data.
For small event probability 1− α, the Bernoulli Trials Process may be
well approximated by a Poisson process.

© QRM Tutorial Section 9.3.1

http://www.qrmtutorial.org


Also for small 1− α the geometric distribution may be approximated by
an exponential distribution.
Suppose we estimate VaRt

α at time point t by V̂aR
t

α.
In a backtest we consider empirical indicator variables

Ît+1 = I
{Lt+1>V̂aR

t

α}
.

The sequence (Ît)1≤t≤m should behave like a realization from a Bernoulli
trials process with event probability (1− α).
To test binomial behaviour for number of violations we compute a score
test statistic

Zm = (
∑m
t=1 Ît)−m(1− α)√

mα(1− α)
and reject Bernoulli hypothesis at 5% level if Zm > Φ−1(0.95).
Exponential spacings can be tested numerically or with a Q-Q plot.
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9.3.2 Violation-based tests of expected shortfall

Let EStα denote the one-period expected shortfall and ÊS
t

α its estimate.
Assume (Lt) follows a model of the form Lt = σtZt, where σt is a
function of Ft−1 and the (Zt) are SWN(0, 1) innovations.
Then we can define a process (Kt) by

Kt+1 = (Lt+1 − EStα)
EStα

I{Lt+1>VaRtα} = Zt+1 − ESα(Z)
ESα(Z) I{Zt+1>qα(Z)},

and note that it is a zero-mean iid sequence.
This suggests we form violation residuals of the form

K̂t+1 = (Lt+1 − ÊS
t

α)
ÊS

t

α

Ît+1. (51)

We test for mean-zero behaviour using a bootstrap test on the non-zero
violation residuals (McNeil and Frey (2000)).
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9.3.3 Empirical comparison of methods using backtesting
concepts

We apply various VaR estimation methods to the portfolio of a hypo-
thetical investor in international equity indexes.
The investor is assumed to have domestic currency sterling (GBP) and
to invest in the Financial Times 100 Shares Index (FTSE 100), the
Standard & Poor’s 500 (S&P 500) and the Swiss Market Index (SMI).
The portfolio is influenced by five risk factors.
On any day t we standardize the total portfolio value Vt in sterling to be
one and assume portfolio weights are 30%, 40% and 30%, respectively.
The loss operator and linear loss operator are:

l[t](x) = 1− (0.3ex1 + 0.4ex2+x4 + 0.3ex3+x5)
l∆[t](x) = −(0.3x1 + 0.4(x2 + x4) + 0.3(x3 + x5))
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x1, x2 and x3 represent log-returns on the three indexes and x4 and x5
are log-returns on the GBP/USD and GBP/CHF exchange rates.
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The final picture shows the corresponding historical simulation data.
The vertical dashed line is Lehman Brothers bankruptcy.
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Estimation methods:
VC. The variance–covariance method assuming multivariate Gaussian risk-
factor changes and using the multivariate EWMA method to estimate the
conditional covariance matrix of risk-factor changes.
HS. The standard unconditional historical simulation method.
HS-GARCH. The univariate dynamic approach to historical simulation
in which a GARCH(1, 1) model with a constant conditional mean term
and Gaussian innovations is fitted to the historically simulated losses to
estimate the volatility of the next day’s loss.
HS-GARCH-t. A similar method to HS-GARCH but Student t innovations
are assumed in the GARCH model.
HS-MGARCH. The multivariate dynamic approach to historical simula-
tion in which GARCH(1, 1) models with constant conditional mean terms
are fitted to each time series of risk-factor changes to estimate volatilities.
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Year 2005 2006 2007 2008 2009 2010 2011 2012 All
Trading days 258 257 258 259 258 259 258 258 2065

Results for 95% VaR

Expected no. 13 13 13 13 13 13 13 13 103
of violations
VC 8 16 17 19 13 15 14 14 116
HS 0 6 28 49 19 6 10 1 119
HS-GARCH 9 13 22 22 13 14 9 15 117
HS-GARCH-t 9 14 23 22 14 15 10 15 122
HS-MGARCH 5 14 21 19 12 9 11 12 103

Results for 99% VaR

Expected no. 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 21
of violations
VC 2 8 8 8 2 4 5 6 43
HS 0 0 10 22 2 0 2 0 36
HS-GARCH 2 8 8 10 5 4 3 3 43
HS-GARCH-t 2 8 6 8 1 4 2 1 32
HS-MGARCH 0 4 4 5 0 1 2 1 17
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The HS method does not react to changing volatility:

Time
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Dotted line is HS; dashed line is HS-MGARCH; vertical line is Lehmann.
Circle is VaR violation for HS; cross is VaR violation for HS-MGARCH.
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Q-Q plot of spacings between exceptions (for HS-MGARCH):

0 1 2 3 4 5

0
5
0

1
0
0

1
5
0

Exponential Quantiles

S
p
a
ci

n
g
s

Violation residual test for ES (n: number of VaR violations):

ES0.95 n ES0.99 n

VC 0.00 116 0.05 43
HS 0.02 119 0.25 36

HS-GARCH 0.00 117 0.05 43
HS-GARCH-t 0.12 122 0.68 32
HS-MGARCH 0.99 103 0.55 17
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10 Credit risk
10.1 Credit risky instruments

10.2 Measuring credit quality

10.3 Structural models of default

10.4 Bond and CDS pricing in hazard rate models
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What is credit risk?

“Credit risk is the risk of a loss arising from the failure of a coun-
terparty to honour its contractual obligations. This subsumes both
default risk (the risk of losses due to the default of a borrower or a
trading partner) and downgrade risk (the risk of losses caused by a
deterioration in the credit quality of a counterparty that translates
into a downgrading in some rating system). ”

Obligor = a counterparty who has a financial obligation to us; for
example, a debtor who owes us money, a bond issuer who promises
interest, or a counterparty in a derivatives transaction.
Default = failure to fulfill that obligation, for example, failure to repay
loan or pay interest/coupon on a loan/bond; generally due to lack of
liquidity or insolvency; may entail bankruptcy.
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A crucial risk category

A portfolio of loans or (corporate) bonds is obviously affected by credit
risk.
Credit risk accompanies any OTC (over-the-counter) derivative transac-
tion such as a swap, because the default of one of the parties involved
may substantially affect the actual pay-off of the transaction.
There is a specialized market for credit derivatives, such as credit default
swaps.
Credit risk relates to the core activities of most banks but is also highly
relevant to insurance companies: Insurers are exposed to substantial
credit risk in their investment portfolios and counterparty default risk in
their reinsurance treaties.
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Credit risk management: A range of tasks

An enterprise needs to determine the capital it requires to absorb losses
due to credit risk.
Portfolios of credit-risky instruments should be well diversified and
optimized according to risk-return considerations.
Institutions need to manage their portfolio of traded credit derivatives,
which involves pricing, hedging and managing collateral for such trades.
Financial institutions need to control the counterparty credit risk in their
trades and contracts with other institutions. This has particularly been
the case since the 2007–2009 financial crisis.

10.1 Credit risky instruments
This comprises loans, bonds, derivatives subject to counterparty risk and
credit derivatives such as CDSs.
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10.1.1 Credit default swaps and related credit derivatives

Credit derivatives are securities which are primarily used for the hedging
and trading of credit risk.
The promised pay-off of a credit derivative is related to credit events
affecting one or more firms.
Major participants in the market for credit derivatives are banks, insur-
ance companies and investment funds.
Retail banks are typically net buyers of protection against credit events;
other investors such as hedge funds and investment banks often act as
both sellers and buyers of credit protection.
Credit default swaps (CDSs) are the workhorses of the credit derivatives
market and the market for CDSs written on larger corporations is fairly
liquid.
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Structure of CDS

Consider contract with maturity T and ignore counterparty credit risk.
Three parties are involved (only two directly):

C (reference entity); default at time τC < T triggers default payment.
A (protection buyer); pays premiums to B until min(τC , T ).
B (protection seller); makes default payment to A if τC < T .

C

B A

?

6

�premium payments at fixed times

-C defaults ?

-

-

yes: default payment

no: no payment
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CDS: Payment flows

If the reference entity experiences a default before the maturity date T
of the contract, the protection seller makes a default payment to the
protection buyer, which mimics the loss due to the default of a bond
issued by the reference entity (the reference asset); this part of a CDS
is called the default payment leg.
As compensation the protection buyer makes periodic premium payments
(typically quarterly or semiannually) to the protection seller (the premium
payment leg); after the default of the reference entity, premium payments
stop. There is no initial payment.
The premium payments are quoted in the form of an annualized per-
centage x∗ of the notional value of the reference asset; x∗ is termed the
(fair or market quoted) CDS spread.
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Use of CDS

Investors enter into CDS contracts for various reasons.
Bond investors with a large credit exposure to the reference entity may
buy CDS protection to insure themselves against losses due to default of
a bond (easier than reducing the original bond position as CDS contracts
are more liquid).
CDS contracts are also held for speculative reasons: so-called naked
CDS positions, where the protection buyer does not own the bond are
often assumed by investors who are speculating on the widening of the
credit spread of the reference entity (similar to short-selling bonds issued
by the reference entity.)
Note that, in contrast to insurance, there is no requirement for the
protection buyer to have insurable interest, that is, to actually own a
bond issued by the reference entity.
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10.2 Measuring credit quality
Scores, ratings & measures inferred from prices

There are two philosophies for quantifying the credit quality or default
probability of an obligor.
1) Credit quality can be described by a credit rating or score that is based

on empirical data and expert judgement.
2) For obligors whose equity is traded on financial markets, prices can be

used to infer the market’s view of the credit quality of the obligor.
Credit ratings and scores fulfill a similar function—they allow us to order
obligors by their credit risk and map that risk to an estimate of the PD.

Credit ratings tend to be expressed on an ordered categorical scale whereas
credit scores are often expressed in points on a metric scale.
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Rating and scoring

The task of rating obligors is often outsourced to a rating agency such
as Moody’s or Standard & Poor’s (S&P).
In the S&P rating system there are seven pre-default rating categories
labelled AAA, AA, A, BBB, BB, B, CCC, with AAA being the highest
and CCC the lowest rating.
Moody’s uses nine pre-default rating categories labelled Aaa, Aa, A,
Baa, Ba, B, Caa, Ca, C.
A finer alpha-numeric system is also used by both agencies.
Credit scores are traditionally used for retail customers and are based
on so-called scorecards. Historical data is used to model default risk as
a function of demographic, behavioural and financial covariates using
techniques like logistic regression. The covariates are weighted and
combined into a score.
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10.2.1 Credit rating migration

In the credit-migration approach each firm is assigned to a credit-rating
category at any given time point.
We assume that the current credit rating completely determines the
default probability.
The probability of moving from one credit rating to another over a given
risk horizon (typically one year) is then specified.
These probabilities, known as transition probabilities, are typically pre-
sented in the form of a matrix. They are estimated from historical data
on empirical transition rates.
The following example is taken from Ou (2013), (Exhibit 26). It gives
average transition rates from one rating to another within one year. WR
stands for withdrawn rating.
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Rating at year-end (%)
Initial ︷ ︸︸ ︷
rating Aaa Aa A Baa Ba B Caa Ca–C Default WR
Aaa 87.20 8.20 0.63 0.00 0.03 0.00 0.00 0.00 0.00 3.93
Aa 0.91 84.57 8.43 0.49 0.06 0.02 0.01 0.00 0.02 5.48
A 0.06 2.48 86.07 5.47 0.57 0.11 0.03 0.00 0.06 5.13
Baa 0.039 0.17 4.11 84.84 4.05 7.55 1.63 0.02 0.17 5.65
Ba 0.01 0.05 0.35 5.52 75.75 7.22 0.58 0.07 1.06 9.39
B 0.01 0.03 0.11 0.32 4.58 73.53 5.81 0.59 3.85 11.16
Caa 0.01 0.02 0.02 0.12 0.38 8.70 61.71 3.72 13.34 12.00
Ca-C 0.00 0.00 0.00 0.00 0.40 2.03 9.38 35.46 37.93 14.80

1-year default probability for an A-rated company is estimated to
be 0.06%, whereas for a Caa-rated company it is 13.3%.
In practice a correction to the figures would probably be undertaken to
account for rating withdrawals
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Rating agencies also publish cumulative default rates over longer time
horizons.
These provide estimates of cumulative default probabilities over several
years. Alternative estimates of multi-year default probabilities can be
inferred from one-year transition matrices as explained later.
The data are taken from Ou (2013), (Exhibit 33).

Term
Initial ︷ ︸︸ ︷
rating 1 2 3 4 5 10 15
Aaa 0.00 0.01 0.01 0.04 0.11 0.50 0.93
Aa 0.02 0.07 0.14 0.26 0.38 0.92 1.75
A 0.06 0.20 0.41 0.63 0.87 2.48 4.26
Baa 0.18 0.50 0.89 1.37 1.88 4.70 8.62
Ba 1.11 3.08 5.42 7.93 10.18 19.70 29.17
B 4.05 9.60 15.22 20.13 24.61 41.94 52.22
Caa-C 16.45 27.87 36.91 44.13 50.37 69.48 79.18
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10.2.2 Rating transitions as a Markov chain

Let (Rt) denote a discrete-time stochastic process taking values in
S = {0, 1, . . . , n} at times t = 0, 1, . . ..
The set S defines rating states of increasing creditworthiness with 0
representing default. (Rt) models an obligor’s rating over time.
We will assume that (Rt) is a Markov chain. This means that it has
the Markov property that

P(Rt = k | R0 = r0, R1 = r1, . . . , Rt−1 = j) = P(Rt = k | Rt−1 = j)

for all t ≥ 1 and all j, r0, r1, rt−2, k ∈ S.
Conditional probabilities of rating transitions given an obligors’s rating
history depend only on the previous rating Rt−1 = j at the last time
point and not the more distant history.
There is evidence that rating histories show momentum and stickiness
which violates the Markov assumption (Lando and Skodeberg (2002)).
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Properties of Markov chains

The Markov chain is stationary if, for all t ≥ 1 and rating states j, k,

P(Rt = k | Rt−1 = j) = P(R1 = k | R0 = j).

In this case we can define the transition matrix P = (pjk) with elements
pjk = P(Rt = k | Rt−1 = j), for any t ≥ 1.
The Chapman-Kolmogorov equations say that

P(Rt = k | Rt−2 = j) =
∑
l∈S

pjlplk .

An implication of this is that the matrix of transition probabilities over
two time steps is given by P 2 = P × P .
It is not clear how a matrix of transition probabilities for a fraction of a
time period can be computed (one would need continuous-time chains).
Estimators of transition probabilities from rating history are available,
see Section 10.2.2 of the book.
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10.3 Structural models of default
10.3.1 The Merton model

Merton’s model (1974) is the prototype of all firm value models.
Consider firm with stochastic asset-value (Vt), financing itself by equity
(i.e. by issuing shares) and debt.
Assume that debt consists of single zero coupon bond with face or
nominal value B and maturity T .
Denote by St and Bt the value at time t ≤ T of equity and debt so that

Vt = St +Bt, 0 ≤ t ≤ T.

Assume that default occurs if the firm misses a payment to its debt
holders and hence only at T .
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Equity and debt as contingent claims on assets

At T we have two possible cases:
1) VT > B. In that case the debtholders receive B; shareholders receive

residual value ST = VT −B, and there is no default.
2) VT ≤ B. In that case the firm cannot meet its financial obligations,

and shareholders hand over control to the bondholders, who liquidate
the firm; hence we have BT = VT , ST = 0.

In summary we obtain

ST = (VT −B)+

BT = min(VT , B) = B − (B − VT )+ .

The value of equity at T equals the pay-off of a European call option
on VT with exercise price equal to B.
The value of the debt at T equals the nominal value of debt minus the
pay-off of a European put option on VT .

© QRM Tutorial Section 10.3.1

http://www.qrmtutorial.org


The option interpretation explains certain conflicts of interest between
shareholders and bondholders.
For example, shareholders have more interest in the firm taking on risky
projects/investments since the value of an option increases with the
volatility of the underlying security.
Bondholders have a short position on the firm’s assets and would like to
see the volatility reduced.
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The asset value process

It is assumed that asset value (Vt) follows a diffusion of the form

dVt = µV Vtdt+ σV VtdWt

for constants µV ∈ R, σV > 0, and a Brownian motion (Wt)t≥0, so that

VT = V0 exp
(
(µV −

1
2σ

2
V )T + σVWT

)
;

in particular lnVT ∼ N(lnV0+(µV− 1
2σ

2
V )T, σ2

V T ). The default probability
is thus

P(VT ≤ B) = P(lnVT ≤ lnB) = Φ
(

ln B
V0
− (µV − 1

2σ
2
V )T

σV
√
T

)
; (52)

it is increasing in B and σV (for V0 > B) and decreasing in V0 and µV .
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A default path
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A non-default path
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10.3.2 Pricing in Merton’s model

Under some technical assumptions we can price equity and debt using
the Black–Scholes formula.
The assumptions are that:
1) The risk-free rate is deterministic and equal to r ≥ 0.
2) The asset-value process (Vt) is independent of the debt level B.
3) The asset value (Vt) can be traded on a frictionless market.
Recall that equity is a call option on the asset value (Vt). Hence
Black–Scholes formula yields

St = CBS(t, Vt;σV , r, T,B) := VtΦ(dt,1)−Be−r(T−t)Φ(dt,2),

where the arguments are given by

dt,1 =
ln Vt

B + (r + 1
2σ

2
V )(T − t)

σV
√
T − t

, dt,2 = dt,1 − σV
√
T − t.
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Pricing of debt

The price at t ≤ T of a default-free zero-coupon bond with maturity T
and a face value of one equals

p0(t, T ) = exp(−r(T − t)).

The value of the firm’s debt equals the difference between the value of
default-free debt and a put option on (Vt) with strike B, i.e.

Bt = Bp0(t, T )− PBS(t, Vt; r, σV , B, T ).

The Black–Scholes formula for European puts now yields

Bt = p0(t, T )BΦ(dt,2) + VtΦ(−dt,1). (53)

The path of (Bt) is shown on the previous plots. The value of default-free
debt Bp0(t, T ) is shown as a green curve.
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Risk-neutral and physical default probabilities

Under the risk-neutral measure Q the process (Vt) satisfies the SDE
dVt = rVt dt+ σV Vt dW̃t for a standard Q-Brownian motion W̃ .
The drift µV is replaced by the risk-free interest rate r.
Hence the risk-neutral default probability is given by

q = Q(VT ≤ B) = Φ
( lnB − lnV0 − (r − 1

2σ
2
V )T

σV
√
T

)
.

Comparison with physical default probability p = P(VT ≤ B) yields

q = Φ
(

Φ−1(p) + µV − r
σV

√
T

)
. (54)

The correction term (µV − r)/σV equals the Sharpe ratio of the firm’s
assets (a popular measure of the risk premium earned by the firm).
The formula is sometimes applied in practice to go from physical to
risk-neutral default probabilities.
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Credit spreads in Merton’s model

The credit spread measures the difference between the (continuously
compounded) yield of a default-free zero coupon bond p0(t, T ) and a
defaultable zero coupon bond p1(t, T ), i.e.

c(t, T ) = −1
T − t

(ln p1(t, T )− ln p0(T − t))

= −1
T − t

ln p1(t, T )
p0(t, T ) .

In Merton’s model we have p1(t, T ) = 1
BBt and hence

c(t, T ) = −1
(T − t) ln

(
Φ(dt,2) + Vt

Bp0(t, T ) Φ(−dt,1)
)
. (55)

For a fixed time to maturity c(t, T ) depends only on σV and on the
ratio Bp0(t, T )/Vt (a measure of indebtedness of the firm).
In line with economic intuition it is increasing in both quantities.
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Illustration of credit spreads in Merton’s model
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lower picture σV = 0.25.
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10.4 Bond and CDS pricing in hazard rate models
10.4.1 Hazard rate models

These are the simplest reduced-form credit risk models.
A hazard rate model is a model in which the distribution of the default
time of an obligor is directly specified by a hazard function without
modelling the mechanism by which default occurs.
To set up a hazard rate model we consider a probability space (Ω,F ,P)
and a random default time τ defined on this space, i.e. an F -measurable
rv taking values in [0,∞].
We denote the df of τ by F (t) = P(τ ≤ t) and the tail or survival
function by F̄ (t) = 1− F (t); we assume that P(τ = 0) = F (0) = 0,
and that F̄ (t) > 0 for all t <∞.
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The jump or default indicator process (Yt) associated with τ is

Yt = I{τ≤t} , t ≥ 0. (56)

(Yt) is a right-continuous process which jumps from 0 to 1 at the default
time τ .
1− Yt = I{τ>t} is the survival indicator of the firm at time t.

Definition 10.1 (cumulative hazard and hazard function)
The function Γ(t) = − ln(F̄ (t)) is called the cumulative hazard function
of the random time τ . If F is absolutely continuous with density f , the
function

γ(t) = f(t)
1− F (t) = f(t)

F̄ (t) = − d
dt ln(F̄ (t))

is called the hazard function of τ .

The hazard function γ(t) gives the hazard rate at t, which is a measure
of the instantaneous risk of default at t, given survival up to time t.
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We can represent the survival function of τ by

F̄ (t) = exp
(
−
∫ t

0
γ(s) ds

)
. (57)

We may show that

lim
h→0

1
h
P(τ ≤ t+ h | τ > t) = 1

F̄ (t)
lim
h→0

F (t+ h)− F (t)
h

= γ(t).

Example 10.2 (Weibull distribution)
For illustrative purposes we determine the hazard function for the Weibull
distribution with df F (t) = 1 − exp(−λtα) for parameters λ, α > 0.
Differentiation yields

f(t) = λαtα−1 exp(−λtα) and γ(t) = λαtα−1.

In particular, γ is decreasing in t if α < 1 and increasing if α > 1. For
α = 1 (exponential distribution) the hazard rate equals the constant λ.
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Introducing filtrations

Filtrations model information available to investors over time.
A filtration (Ft) on (Ω,F) is an increasing family {Ft : t ≥ 0} of
sub-σ-algebras of F : Ft ⊂ Fs ⊂ F for 0 ≤ t ≤ s <∞.
Ft represents the state of knowledge of an observer at time t. A ∈ Ft
means that at time t we can determine if A has occurred.
In this section we assume that only observable quantity is the default
indicator (Yt) associated with τ . The appropriate filtration is (Ht) with

Ht = σ({Yu : u ≤ t}), (58)

the default history up to and including time t.
τ is a (Ht)-stopping time, since {τ ≤ t} = {Yt = 1} ∈ Ht for all t ≥ 0.
In order to study bond and CDS pricing in hazard rate models we need
to compute conditional expectations with respect to the σ-algebra Ht.
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A useful result

Lemma 10.3
Let τ be a default time with jump indicator process Yt = I{τ≤t} and
natural filtration (Ht). Then, for any integrable rv X and any t ≥ 0,
we have

E(I{τ>t}X | Ht) = I{τ>t}
E(I{τ>t}X)
P(τ > t) . (59)

This result can be used to determine conditional survival probabilities. For
t < T , applying (59) with X := I{τ>T} we get

P(τ > T | Ht) = I{τ>t} exp
(
−
∫ T

t
γ(s) ds

)
, t < T . (60)
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Martingale property of jump indicator process

Proposition 10.4
The process (Mt) defined as

Mt = Yt −
∫ t

0
I{τ>u}γ(u) du, t ≥ 0

is an (Ht)-martingale, that is E(Ms | Ht) = Mt for all 0 ≤ t ≤ s <∞.

10.4.2 Risk-neutral pricing revisited

According to the first fundamental theorem of asset pricing, a model for
security prices is arbitrage free if and (essentially) only if it admits at
least one equivalent martingale measure Q.
When building a model for pricing derivatives it is a natural shortcut
to model the objects of interest—such as interest rates and default
times—directly, under a martingale measure Q.
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Physical (P) vs risk-neutral (Q) measure: An example

Consider a defaultable bond with principal 1 and maturity T = 1y. In
case of a default (real world probability p = 0.01), the recovery rate is
R = 60%. The risk-free interest rate is r = 0.05. Moreover, assume the
bond’s current price to be V0 = 0.941 (t = 0).
The expected discounted value of the bond is

1
1 + r

(1 · (1− p) +R · p) = 1
1.05(0.99 + 0.6p) = 0.949

which is > V0 since investors demand a premium for bearing the bond’s
default risk.
Here, Q is determined by specifying a q such that

1
1 + r

(1 · (1− q) +R · q) = V0.

This implies q = 0.03 which is greater than p = 0.01; the larger value
reflects the risk premium.
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Martingale modelling

So-called martingale modelling is particularly convenient if the value H
of the underlying assets at some maturity date T is exogenously given,
as in the case of zero-coupon bonds.
The underlying asset at time t < T can be computed as the conditional
expectation under Q of the discounted value at maturity via the risk-
neutral pricing rule

Vt = EQ(e− ∫ Tt rsdsH | Ft
)
. (61)

Model parameters are determined using the requirement that at time
t = 0 the model price should coincide with the market price of the
security; this is known as calibration to market data.
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Pros and cons of Martingale modelling

Martingale modelling ensures that the resulting model is arbitrage free,
which is important for pricing many different securities simultaneously.
The approach is frequently adopted in default-free term structure models
and in reduced-form models for credit-risky securities.
Martingale modelling has two drawbacks.
1) Historical information is largely useless in estimating model parame-

ters.
2) Realistic models for pricing credit derivatives are typically incomplete.
An arbitrage-free market is complete if and only if there is exactly one
equivalent martingale measure.
In incomplete markets there may be more than one equivalent martingale
measure. It will generally not be possible to find a replicating strategy
for a derivative (one cannot eliminate all risk by dynamic hedging).
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10.4.3 Bond pricing

It suffices to consider zero-coupon bonds.
We use martingale modelling and work directly under some martingale
measure Q.
We assume that under Q the default time τ is a random time with
deterministic risk-neutral hazard function γQ(t).
The information available to investors at time t is given by the sigma
algebra Ht = σ({Yu : u ≤ t}).
We take interest rates and recovery rates to be deterministic.
The percentage loss given default is denoted by δ ∈ (0, 1).
The continuously compounded interest rate is denoted by r(t) ≥ 0.
The price of the default-free zero-coupon bond with maturity T ≥ t is
p0(t, T ) = exp(−

∫ T
t r(s) ds).
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Analysing the payments

The payments of a defaultable zero-coupon bond can be represented
as a combination of a survival claim that pays one unit at the maturity
date T and a recovery payment in case of default.
The survival claim has pay-off I{τ>T}.
Recall from (60) that

Q(τ > T | Ht) = I{τ>t} exp
(
−
∫ T

t
γQ(s) ds

)
and define R(t) = r(t) + γQ(t).
Then the price of a survival claim at time t equals

EQ(p0(t, T )I{τ>T} | Ht) = exp
(
−
∫ T

t
r(s) ds

)
Q(τ > T | Ht)

= I{τ>t} exp
(
−
∫ T

t
R(s) ds

)
. (62)
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Note that for τ > t, this can be viewed as the price of a default-free
zero-coupon bond with adjusted interest rate R(t) > r(t).
A similar relationship between defaultable and default-free bond prices
can be established in many reduced-form credit risk models.

Recovery models

1) Recovery of Treasury (RT).
The RT model was proposed by Jarrow and Turnbull (1995).
If default occurs at some point in time τ ≤ T , the owner of the
defaulted bond receives (1− δτ ) units of the default-free zero-coupon
bond p0(· , T ) at time τ , where δτ ∈ [0, 1] models the percentage
loss given default.
At maturity T the holder of the defaultable bond therefore receives
the payment I{τ>T} + (1− δτ )I{τ≤T}.
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2) Recovery of Face Value (RF).
Under RF, if default occurs at τ ≤ T , the holder of the bond receives
a recovery payment of size (1− δτ ) immediately at the default time τ .
Note that even with deterministic loss given default and deterministic
interest rates, the value at maturity of the recovery payment is
random as it depends on the exact timing of default.

RF is slightly more realistic; RT is slightly easier to analyse.

Pricing recovery payment under RT

The value of the recovery payment at the maturity date T is

(1− δ)I{τ≤T} = (1− δ)− (1− δ)I{τ>T}.

Using (62), the value of the recovery payment at time t < T is hence

(1− δ)p0(t, T )− (1− δ)I{τ>t} exp
(
−
∫ T

t
R(s) ds

)
.
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Hence the value of the bond is

p1(t, T ) = (1− δ)p0(t, T ) + δI{τ>t} exp
(
−
∫ T

t
R(s) ds

)
.

Pricing recovery payment under RF

Under the RF-hypothesis the recovery payment takes the form (1 −
δ)I{τ≤T} where the payment occurs directly at time τ .
A payments of this form is a payment-at-default claim.
The value of the recovery payment at time t ≤ T equals

EQ
(
(1− δ)I{t<τ≤T} exp

(
−
∫ τ

t
r(s) ds

) ∣∣∣Ht) .
Using (59) we may show that

EQ
(
(1− δ)I{t<τ≤T} exp

(
−
∫ τ

t
r(s) ds

) ∣∣∣Ht)
= (1− δ)I{τ>t}

∫ T

t
γQ(s) exp

(
−
∫ s

t
R(u) du

)
ds.
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10.4.4 CDS pricing

First we recall payment flows. We write τ = τC and consider the following
contract:

Premium payments.
I These are due at times 0 < t1 < · · · < tN measured in years.
I If τ > tk, A pays a premium of size x∗(tk − tk−1) at tk, where x∗

denotes the fair swap spread.
I After τ premium payments stop, no initial payment.
Default payment.
I If τ < tN = T , B makes a default payment δ at τ .
I Sometimes B receives an accrued premium payment of size x∗(τ− tk)

for τ ∈ (tk, tk−1). We ignore this feature for simplicity.
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Valuing the premium leg

The premium leg consists of a set of survival claims.
Introduce a function of x given by

V prem
t (x; γQ)

= EQ
( ∑
k : tk>t

exp
(
−
∫ tk

t
r(u) du

)
x(tk − tk−1)I{τ>tk} | Ht

)
= x

∑
k : tk>t

p0(t, tk)(tk − tk−1)Q(τ > tk |Ht),

which is easily computed using Q(τ > tk |Ht) = exp(−
∫ tk
t γQ(s) ds).

We obtain

V prem
t (x; γQ) = I{τ>t} x

∑
k : tk>t

(tk − tk−1) exp
(
−
∫ tk

t
R(u) du

)
.
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Valuing the default leg

The default payment leg is a typical payment-at-default claim.
We obtain

V def
t (γQ)

= EQ
(
δI{t<τ≤tN} exp

(
−
∫ τ

t
r(s) ds

) ∣∣∣Ht)
= I{τ>t} δ

∫ tN

t
γQ(s) exp

(
−
∫ s

t
R(u) du

)
ds.

The fair CDS spread

The fair CDS spread x∗t quoted for the contract at time t is chosen such
that the value of the contract is equal to zero.
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The equation V prem
t (x∗t ; γQ) = V def

t (γQ) yields

x∗t = I{τ>t}
δ
∫ tN
t γQ(s) exp

(
−
∫ s
t R(u) du

)
ds∑

k : tk>t(tk − tk−1) exp
(
−
∫ tk
t R(s) ds

) . (63)

Model calibration

We have to calibrate our model to the available market information.
Hence we have to determine the implied risk-neutral hazard function
γQ(t), which ensures that the fair CDS spreads implied by the model
equal the spreads quoted in the market.
Suppose that the market information at time t = 0 consists of the fair
spread x∗ of one CDS with maturity tN .
In that case γQ(s) is taken constant: for all s ≥ 0, γQ(s) = γ̄Q for some
γ̄Q > 0.
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γ̄Q has to solve the equation

x∗
N∑
k=1

p0(0, tk)(tk − tk−1)e−γ̄Qtk = δγ̄Q
∫ tN

0
p0(0, t)e−γ̄Qt dt.

There is a unique solution.
If we observe spreads for several CDSs on the same reference entity but
with different maturities, a constant function is not sufficient. Instead
one typically uses piecewise constant or linear hazard functions.
A first approximation to the implied hazard rate is given by γ̄Q ≈ x∗/δ.
This approximation implies that the one-year default probability satisfies
Q(τ ≤ 1) = 1− e−γ̄Q ≈ γ̄Q ≈ x∗/δ.
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11 Portfolio credit risk management
11.1 Threshold models

11.2 Mixture models

11.3 Statistical inference for portfolio credit models
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Importance of default dependence

Dependence between defaults (and downgrades) is a key issue in credit risk
management. There are two main sources of dependence between defaults:

Dependence caused by common factors (for example, interest rates and
changes in economic growth) affecting all obligors
Default of company A may have direct impact on default probability
of company B and vice versa because of direct business relations, a
phenomenon known as contagion
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Comparison of the loss distribution of a homogeneous portfolio of 1000
loans with a default probability of p1 = · · · = p1000 = 1% assuming (i)
independent defaults and (ii) a default correlation of ρ(Yi, Yj) = 0.5%.
Case (ii) can be considered as roughly representative for BB-rated loans.
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11.1 Threshold models
11.1.1 Notation for one-period portfolio models

Consider portfolio of m firms and time horizon T = 1 (say one year).
For 1 ≤ i ≤ m, let Ri be a state indicator for obligor i at time T taking
values in the set {0, 1, . . . , n}; we interpret the value 0 as default and
non-zero values as states of increasing credit quality. At time t = 0
obligors are assumed to be in some non-default state.
Mostly we will concentrate on the binary outcomes of default and
non-default. We write Yi for the default indicator variables so that
Yi = 1 ⇐⇒ Ri = 0 and Yi = 0 ⇐⇒ Ri > 0.
The random vector Y = (Y1, . . . , Ym)′ is a vector of default indicators
for the portfolio and p(y) = P(Y1 = y1, . . . , Ym = ym), y ∈ {0, 1}m,
is its joint probability function; the marginal default probabilities are
denoted by pi = P(Yi = 1), i = 1, . . . ,m.
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Default or event correlation. Noting that

var(Yi) = E(Y 2
i )− p2

i = E(Yi)− p2
i = pi − p2

i ,

we obtain, for firms i and j with i 6= j, the formula

ρ(Yi, Yj) = E(YiYj)− pipj√
(pi − p2

i )(pj − p2
j )
. (64)

Let the rv M :=
∑m
i=1 Yi denote the number of defaulted obligors at T .

The actual loss if company i defaults is modelled by the random quantity
δiei, where ei represents the overall exposure to company i and 0 ≤
δi ≤ 1 represents the LGD.
We denote the overall portfolio loss by L :=

∑m
i=1 δieiYi.

It is possible to set up different credit risk models leading to the same
multivariate distribution for R or Y . We call two models with state
vectors R and R̃ (or Y and Ỹ ) equivalent if R d= R̃ (or Y d= Ỹ ).
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11.1.2 Threshold models and copulas

Definition 11.1
Let X = (X1, . . . , Xm)′ be an m-dimensional random vector and let
D ∈ Rm×n be a deterministic matrix with elements dij such that, for
every i, the elements of the ith row form a set of increasing thresholds
satisfying di1 < · · · < din. Augment these thresholds by setting di0 =
−∞ and di(n+1) =∞ for all obligors and then set

Ri = j ⇐⇒ dij < Xi ≤ di(j+1), j ∈ {0, . . . , n}, i ∈ {1, . . . ,m}.

Then (X, D) is said to define a threshold model for R = (R1, . . . , Rm)′.

X are the critical variables and the ith row of D contains the critical
thresholds for firm i.
Default occurs if Xi ≤ di1 so that the default probability of company i
is given by pi = FXi(di1).

© QRM Tutorial Section 11.1.2

http://www.qrmtutorial.org


When working with a default-only model we simply write di = di1 and
denote the threshold model by (X,d).
Default correlation and asset correlation. It is important to distinguish
the default correlation ρ(Yi, Yj) of two firms i 6= j from the correlation
of the critical variables Xi and Xj .
Since the critical variables are often interpreted in terms of asset values,
the latter correlation is often referred to as asset correlation.
For given default probabilities, ρ(Yi, Yj) is determined by E(YiYj) accord-
ing to (64), and in a threshold model E(YiYj) = P(Xi ≤ di1, Xj ≤ dj1),
so default correlation depends on the joint df of Xi and Xj .
If X is multivariate normal, as in many models used in practice, the
correlation of Xi and Xj determines the copula of their joint distribution
and hence the default correlation.
If two threshold models lead to the same state/default probabilities and
if the critical variables have the same copula, they are equivalent.
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11.1.3 Gaussian threshold models

Multivariate Merton model:
Assume that the multivariate asset-value process Vt = (Vt,1, . . . , Vt,m)′

follows an m-dimensional GBM with drift vector µV = (µ1, . . . , µm)′,
vector of volatilities σV = (σ1, . . . , σm)′ and correlation matrix P .
This means that (Vt) solves the stochastic differential equations

dVt,i = µiVt,i dt+ σiVt,i dWt,i, i = 1, . . . ,m,

for correlated BMs with correlation ρ(Wt,i,Wt,j) = ρij , t ≥ 0.
For all i the asset value VT,i is of the form

VT,i = V0,i exp
(
(µi − 1

2σ
2
i )T + σiWT,i

)
,

where WT ∼ Nm(0, TP ).
In its basic form the Merton model is a default-only model where the
firm defaults if VT,i ≤ Bi and Bi is the liability of firm i.

© QRM Tutorial Section 11.1.3

http://www.qrmtutorial.org


Writing B = (B1, . . . , Bm)′ the threshold model representation is
(VT ,B).
The multivariate Merton model is equivalent to the model (X,d) with

Xi :=
lnVT,i − lnV0,i − (µi − 1

2σ
2
i )T

σi
√
T

,

di :=
lnBi − lnV0,i − (µi − 1

2σ
2
i )T

σi
√
T

.

The transformed variables satisfy X ∼ Nm(0, P ) and their copula is
the Gauss copula CGa

P .

Gaussian threshold models in practice

In practice it is usual to start directly with threshold models of the form
(X,d) with X ∼ Nm(0, P ).
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There are two practical challenges:
1) calibration of d (or, in the case of a multi-state model, the threshold

matrix D) in line with exogenously given default and transition
probabilities;

2) calibration of the correlation matrix P in a parsimonious way.
The problem of embedding state transition probabilities in a threshold
matrix D has already been discussed. In a default-only model we set
di = Φ−1(pi) for i = 1, . . . ,m.

Factor models

In its most general form P has m(m− 1)/2 distinct parameters.
m is typically large and it is important to use a more parsimonious
parametrization of this matrix based on a factor model.
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Factor models also lend themselves to economic interpretation and the
factors are commonly interpreted as country and industry effects.
We assume that

Xi =
√
βiF̃i +

√
1− βiεi, (65)

where F̃i and ε1, . . . , εm are independent standard normal variables, and
where 0 ≤ βi ≤ 1 for all i.
In this formulation F̃i are the systematic variables, which are correlated,
and εi are idiosyncratic variables.
It follows that βi can be viewed as a measure of the systematic risk of
Xi: that is, the part of the variance of Xi which is explained by the
systematic variable.
The systematic variables are assumed to be of the form F̃i = a′iF where
F is a vector of common factors satisfying F ∼ Np(0, Ω) with p < m,
and where Ω is a correlation matrix.
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These factors typically represent country and industry effects.
The assumption that var(F̃i) = 1 means that a′iΩai = 1 for all i.
Since var(Xi) = 1 and since F̃i and ε1, . . . , εm are independent and
standard normal, the asset correlations in this model are given by

ρ(Xi, Xj) = cov(Xi, Xj) =
√
βiβj cov(F̃i, F̃j) =

√
βiβja

′
iΩaj .

In order to set up the model we have to determine ai and βi for each
obligor and Ω, with the additional constraint that a′iΩai = 1 for all i.
Since Ω has p(p− 1)/2 parameters, the loading vectors ai and coeffi-
cients βi have collectively mp+m parameters, and we are applying m
constraints, this gives mp+ p(p− 1)/2 parameters.
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11.2 Mixture models
11.2.1 Bernoulli mixture models

In a mixture model the default risk of an obligor is assumed to depend on
a set of common factors, usually interpreted as macroeconomic variables,
which are also modelled stochastically.
Given a realization of the factors, defaults of individual firms are assumed
to be independent.
Dependence between defaults stems from the dependence of individual
default probabilities on the set of common factors.
Bernoulli mixture models provide a way of capturing the dependence
between Bernoulli events (i.e. defaults/non-defaults).
They can be extended to multinomial mixture models to capture depen-
dent migrations in a rating system.
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Definition 11.2 (Bernoulli mixture model)
Given some p < m and a p-dimensional random vector Ψ =
(Ψ1, . . . ,Ψp)′ , the default indicator vector Y follows a Bernoulli mixture
model with factor vector Ψ if there are functions pi : Rp → (0, 1), such
that conditional on Ψ the components of Y are independent Bernoulli
rvs with P(Yi = 1 | Ψ = ψ) = pi(ψ).

The conditional independence given factors makes these models relatively
easy to analyse. For y = (y1, . . . , ym)′ in {0, 1}m we get

P(Y = y | Ψ = ψ) =
m∏
i=1

pi(ψ)yi(1− pi(ψ))1−yi

P(Y = y) =
∫
Rp

m∏
i=1

pi(ψ)yi(1− pi(ψ))1−yig(ψ) dψ,

where g(ψ) is the probability density of the factors. The default probabilities
are given by pi = E(Yi = 1) = E(pi(Ψ)).
© QRM Tutorial Section 11.2.1

http://www.qrmtutorial.org


Consider the portfolio loss L =
∑m
i=1 eiδiYi in the case where the

exposures ei and LGDs δi are deterministic.
It is difficult to compute the df FL of L.
However, it is easy to use the conditional independence of the defaults
to show that the Laplace–Stieltjes transform of FL is for t ∈ R given by

F̂L(t) = E(e−tL) = E
(
E(e−t

∑m

i=1 eiδiYi |Ψ)
)

= E
( m∏
i=1

E(e−teiδiYi |Ψ)
)

= E
( m∏
i=1

(
pi(Ψ)e−teiδi + 1− pi(Ψ)

))
which can be obtained by integrating over distribution of factors Ψ.
This is useful for: sampling losses from model with importance sampling;
approximating probability mass function using Fourier inversion.
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11.2.2 Threshold models as mixture models

Although the mixture models of this section seem, at first glance, to be
different in structure to the threshold models, it is important to realize
that the majority of useful threshold models, including all the examples
we have given, can be represented as Bernoulli mixture models.
In a threshold model default occurs for counterparty i if a critical variable
Xi lies below a critical threshold di.
Moreover Xi follows a linear factor model

Xi =
√
βia
′
iF +

√
1− βiεi, where

I F ∼ Np(0,Ω) is a random vector of normally distributed common
economic factors;

I 0 ≤ βi ≤ 1 and var(a′iF) = 1;
I ε1, . . . , εm are iid standard normal and are also independent of F .
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We will write the Gaussian threshold model as a Bernoulli mixture
model with factor vector Ψ = −F . (This makes the conditional default
probabilities increasing in the factors for positive ai.)
Conditioning on Ψ = −F , the vector X is multivariate normally dis-
tributed with a diagonal covariance matrix and therefore the components
of X are conditionally independent.
The conditional default probabilities are

pi(ψ) = P(Yi = 1 |Ψ = ψ) = P(Xi ≤ di |Ψ = ψ)
= P(Xi ≤ di |F = −ψ)
= P(

√
1− βiεi ≤ di +

√
βia′iψ)

= Φ
(
di +

√
βia′iψ√

1− βi

)

= Φ
(

Φ−1(pi) +
√
βia′iψ√

1− βi

)
.

© QRM Tutorial Section 11.2.2

http://www.qrmtutorial.org


11.2.3 Poisson mixture models and CreditRisk+

Since default is typically a rare event, it is possible to approximate
Bernoulli indicator rvs for default with Poisson rvs and Bernoulli mixture
models with Poisson mixture models.
By choosing independent gamma distributions for the economic factors
Ψ, we obtain a tractable model known as CreditRisk+, proposed by
Credit Suisse Financial Products in 1997.
Assume that, given the factors Ψ, the default indicators Y1, . . . , Ym
for a particular time horizon are conditionally independent Bernoulli
variables satisfying P(Yi = 1 | Ψ = ψ) = pi(ψ).
Moreover assume that the distribution of Ψ is such that the conditional
default probabilities pi(ψ) tend to be very small.
The Yi variables can be approximated by conditionally independent
Poisson variables Ỹi satisfying Ỹi | Ψ = ψ ∼ Poi(pi(ψ)).
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This follows because

P(Ỹi = 0 | Ψ = ψ) = e−pi(ψ) ≈ 1− pi(ψ) ,

P(Ỹi = 1 | Ψ = ψ) = pi(ψ)e−pi(ψ) ≈ pi(ψ) .

The portfolio loss L =
∑m
i=1 eiδiYi can be approximated by L̃ =∑m

i=1 eiδiỸi.
It is possible for a company to “default more than once” in the approxi-
mating Poisson model, albeit with a very low probability.
In CreditRisk+ the parameter λi(Ψ) of the conditional Poisson distribu-
tion for firm i is assumed to take the form

λi(Ψ) = kiw
′
iΨ (66)

for ki > 0, non-negative weightswi = (wi1, . . . , wip)′ satisfying
∑
j wij =

1, and p independent Ga(αj , βj)-distributed factors Ψ1, . . . ,Ψp.
The parameters are set to be αj = βj = σ−2

j for σj > 0 and j = 1, . . . , p.
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This parametrization of the gamma variables ensures that we have
E(Ψj) = 1 and var(Ψj) = σ2

j .
It is easy to verify that

E(Ỹi) = E(E(Ỹi |Ψ)) = E(λi(Ψ)) = kiE(w′iΨ) = ki,

so ki is the expected number of defaults for obligor i in the time period.
The assumptions in CreditRisk+ make it possible to compute the dis-
tribution of the number of defaults and the aggregate portfolio loss
fairly explicitly using techniques for compound distributions and mixture
distributions that are well known in actuarial mathematics.

Distribution of the number of defaults

In CreditRisk+ we have that given Ψ = ψ, Ỹi ∼ Poi(kiw′iψ), which implies
that the distribution of the number of defaults M̃ :=

∑m
i=1 Ỹi satisfies

M̃ | Ψ = ψ ∼ Poi
( m∑
i=1

kiw
′
iψ

)
. (67)
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This uses the fact that the sum of independent Poisson variables is also
Poisson with a rate parameter given by the sum of the rate parameters
To compute the unconditional distribution of M̃ we require a well-known
result on mixed Poisson distributions.

Proposition 11.3
If the rv N is conditionally Poisson with a gamma-distributed rate
parameter Λ ∼ Ga(α, β), then N has a negative binomial distribution,
N ∼ NB(α, β/(β + 1)).

In the case when p = 1 we may apply this result directly to (67) to deduce
that M̃ has a negative binomial distribution. The general result is:

Proposition 11.4
M̃ is distributed as a sum of p independent negative binomial rvs.
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Distribution of the aggregate loss

To obtain a tractable model, exposures are discretized in CreditRisk+
using the concept of exposure bands.
The LGD is subsumed in the exposure by multiplying the actual exposure
by a typical value for the LGD for an obligor with the same credit rating.
The losses arising from the individual obligors are of the form L̃i = eiỸi
where the ei are known (LGD-adjusted) exposures.
For all i, the exposure ei is discretized in units of an amount ε so that ei
is replaced by a value `iε ≥ ei where `i is a positive integer multiplier.
Exposure bands b = 1, . . . , n are defined corresponding to the distinct
values `(1), . . . , `(n) for the multipliers so that obligors are grouped in
exposure bands according to the values of their discretized exposures.
It is then possible to derive the distribution of the aggregate loss
L̃ =

∑m
i=1 `iεỸi.
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Theorem 11.5
Let L̃ represent the aggregate loss in the general p-factor CreditRisk+
model with exposures discretized into exposure bands as described above.
Then the following hold.
i) The Laplace–Stieltjes transform of the df of L̃ is given by

F̂L̃(s) =
p∏
j=1

(
1 + σ2

j

m∑
i=1

kiwij

(
1−

n∑
b=1

e−sε`
(b)
qjb

))−σ−2
j

, (68)

where qjb =
∑
i∈sb kiwij/

∑m
i=1 kiwij for b = 1, . . . , n.

ii) The distribution of L̃ has the structure L̃ d=
∑p
j=1 Zj where the Zj

are independent variables that follow a compound negative binomial
distribution. More precisely, it holds that Zj ∼ CNB(σ−2

j , θj , GXj )
with θj = (1 + σ2

j

∑m
i=1 kiwij)−1 and GXj the df of a multinomial

random variable Xj taking the value ε`(b) with probability qjb.
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11.3 Statistical inference for portfolio credit
models

11.3.1 Industry factor models

Recall that portfolio models in industry often take the form of a Gaussian
threshold model (X,d) with X ∼ Nm(0, P ), where the random vector
X contains the critical variables, the deterministic vector d contains
the critical default thresholds and P is the so-called asset correlation
matrix, which is estimated with the help of a factor model for X.
Industry models generally separate the calibation of the vector d (or the
threshold matrix D in a multi-state model) and the calibration of the
factor model for X.
In a default-only model the threshold di is usually set at di = Φ−1(pi)
where pi is an estimate of the default probability for obligor i for the
time period in question (generally one year).
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The default probability may be estimated in different ways: for larger
corporates it may be estimated using credit ratings or using a firm-value
approach, such as the Moody’s public-firm EDF model; for retail obligors
it may be estimated on the basis of credit scores.
Recall that the factor model for X takes the form

Xi =
√
βiF̃i +

√
1− βiεi, i = 1, . . . ,m, (69)

where F̃i and ε1, . . . , εm are independent standard normal variables,
and where 0 ≤ βi ≤ 1 for all i.
The systematic variables F̃i are assumed to be of the form F̃i = a′iF

where F is a vector of common factors satisfying F ∼ Np(0,Ω) with
p < m, and where Ω is a correlation matrix.
The factors typically represent country and industry effects.
The assumption that var(F̃i) = 1 implies that a′iΩai = 1 for all i.
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Different industry models use different data for X to calibrate the factor
model (69).
The Moody’s Analytics Global Correlation or GCorr model has sub-
models for many different kinds of obligor including public corporate firms,
private firms, small and medium enterprises (SMEs), retail customers
and sovereigns. Huang et al. (2012)
The sub-model for public firms (GCorr Corporate) is calibrated using
data on weekly asset value returns, where asset values are determined
as part of the public-firm EDF methodology.
In the CreditMetrics framework weekly equity returns are viewed as a
proxy for asset returns and used to estimate the factor model.
We sketch a generic procedure for estimating a factor model for corpo-
rates where the factors have country and industry-sector interpretations.
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Estimating a credit risk factor model

We assume that we have a high-dimensional multivariate time series
(Xt)1≤t≤n of asset returns (or other proxy data for changing credit
quality) over a period of time in which stationarity can be assumed.
We also assume that each component time series has been scaled to
have mean zero and variance one.

1) We first fix the structure of the factor vector F so that, for example,
the first block of components might represent country factors and the
second block of components might represent industry factors. We
then assign vectors of factor weights ai to each obligor based on our
knowledge of the companies. The elements of ai may simply consist of
ones and zeros if the company can be clearly identified with a single
country and industry, but may also consist of weights if the company
has significant activity in more than one country or sector.
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2) We then use cross-sectional estimation techniques to estimate the factor
values Ft at each time point t. Effectively the factor estimates F̂t are
constructed as weighted sums of the Xt,i data for obligors i that are
exposed to each factor. One way of achieving this is to construct a
matrix A with rows ai and then to estimate a fundamental factor model
of the form Xt = AFt + εt at each time point t.

We have a regression model

Xt = AFt + εt, (70)

where Xt ∈ Rm are the return data, A ∈ Rm×p is a known matrix
of factor loadings, Ft ∈ Rp are the factors to be estimated and εt
are errors with diagonal covariance matrix Υ.
Note that the components of the error vector εt can not generally be
assumed to have equal variance, so that (70) is a regression problem
with so-called heteroskedastic errors.
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Unbiased estimators of the factors Ft may be obtained by forming
the ordinary least squares (OLS) estimates

F̂OLS
t = (A′A)−1A′Xt .

Since the errors are heteroskedastic, slightly more efficient estimators
can be obtained by using the method of generalized least squares
(GLS).

3) The raw factor estimates form a multivariate time series of dimension p.
We standardize each component series to have mean zero and variance
one to obtain (F̂t)1≤t≤n and calculate the sample covariance matrix of
the standardized factor estimates, which serves as our estimate of Ω.

4) We then scale the vectors of factor weights ai so that the conditions
a′iΩ̂ai = 1 are met for each obligor.

5) Time series of estimated systematic variables for each obligor are then
constructed by calculating ˆ̃Ft,i = a′iF̂t for t = 1, . . . , n.
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6) Finally we estimate the βi parameters by performing a time series
regression of Xt,i on ˆ̃Ft,i for each obligor.

Note that the accurate estimation of the βi in the last step is particularly
important (as it effects tail behaviour). The estimate of βi is the so-called
R-squared of the time series regression model in Step 6 and will be largest
for the firms whose credit-quality changes are best explained by systematic
factors.
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17 Introduction to counterparty risk
17.1 Introduction

17.2 Credit value adjustments
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17.1 Introduction
A substantial part of all derivative transactions is carried out over
the counter and there is no central clearing counterparty to guarantee
fulfilment of the contractual obligations.
These trades are subject to the risk that a contracting party defaults
during the transaction, thus affecting the cash flows that are actually
received by the other party. This is known as counterparty credit risk.
Counterparty risk received a lot of attention during the financial crisis
of 2007-2009 as some of the institutions heavily involved in derivative
transactions experienced worsening credit quality or—in the case of
Lehman Brothers—even a default event.
Counterparty risk management is now a key issue for all financial insti-
tutions and the focus of many new regulatory developments.
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Example of Interest-Rate Swap

Two parties A and B agree to exchange a series of interest payments
on a given nominal amount of money for a given period.
A receives payments at a fixed interest rate and makes floating payments
at a rate equal to the three-month LIBOR rate.
Suppose that A defaults at time τA before the maturity of the contract.
If interest rates have risen relative to their value at inception of contract:
I The fixed interest payments have decreased in value and the value

of the contract has increased for B.
I The default of A constitutes a loss for B; the loss size depends on

the term structure of interest rates at τA.
If interest rates have fallen relative to their value at t = 0:
I The fixed payments have increased in value so that the swap has a

negative value for B.
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I B will still has to pay the value of the contract into the bankruptcy
pool, and there is no upside for B in A’s default.

If B defaults first the situation is reversed: falling rates lead to a
counterparty-risk-related loss for A.
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Management of counterparty risk

Counterparty risk has to be taken into account in pricing and valuation.
This has led to the notion of credit value adjustments (CVA).
Counterparty risk needs to be controlled using risk-mitigation techniques
such as netting and collateralization.
Under a netting agreement the value of all derivatives transactions
between A and B is computed and only the aggregated value is subject
to counterparty risk; since offsetting transactions cancel each other out,
this has the potential to reduce counterparty risk substantially.
Under a collateralization agreement the parties exchange collateral (cash
and securities) that serves as a pledge for the receiver. The value of the
collateral is adjusted dynamically to reflect changes in the value of the
underlying transactions.
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17.2 Credit value adjustments

General definition. The price (for the protection buyer ) satisfies

True price = (counterparty) risk-free price
− adjustment for default of seller (CVA)
+ adjustment for default of buyer (DVA) ,

where CVA and DVA stand for Credit Value Adjustment and Debt Value
Adjustment respectively.
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General adjustment formulas

Denote by Vt the market value of the CDS (assuming that B and S are
default-free), by τ = min{τR, τS , τB} the first default time and by ξ ∈
{R,S,B} the identity of first defaulting firm. Recall that x+ = max(x, 0)
and x− = −min(x, 0) and denote by D(0, t) the discount factor over the
period [0, t] (with constant interest rate, D(0, t) = e−rt).

It can be shown that

CVA = EQ(I{τ<T}I{ξ=S}D(0, τ)δSV +
τ

)
DVA = EQ(I{τ<T}I{ξ=B}D(0, τ)δBV −τ

)
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Comments.
CVA gives loss of B due to premature default of S; DVA gives loss of S
due to premature default of B.
The value adjustments involve an option on the market value V =
(Vt)t≤T of the swap with strike K = 0 (a call for the CVA and a put for
the DVA).
Similar formula holds if V is the market value of another derivative such
as an interest swap or even a reinsurance contract.
DVA is a bit problematic: a worsening credit quality of B leads to an
accounting profit for B.
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A simplified formula

In order to evaluate the CVA and DVA formulas one needs a model with
stochastic credit spreads that takes dependence between the default of S,
B and the market value V of the CDS into account (a dynamic portfolio
credit risk model). Markets often work with a simpler formula that assumes
that the default of S and B and V are independent:

CVAindep = δS
∫ T

0
F̄B(t)D(0, t)EQ(V +

t )fS(t) dt,

DVAindep = δB
∫ T

0
F̄S(t)D(0, t)EQ(V −t )fB(t) dt.

Here fS is the density of τS and F̄B resp F̄S is the survival function of
τB resp τS .
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Comments.
In order to evaluate the simplified formula one only needs to determine
the marginal distribution of τS and τB and the so-called expected
exposures EQ(V +

t ) and EQ(V −t ).
The independence assumption underlying the simplified value adjustment
formula between the price of the CDS on R, that is Vt, and the default
event of S and B is often unrealistic; in practice this is known as wrong
way risk.

Examples:
I CDS on a financial institution: given that S defaults it is quite likely

that credit quality of R is low.
I Reinsurance.

For further reading on counterparty risk see Gregory (2012).
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