High Dimensional Integration

M.Sc. in Mathematical Modelling & Scientific Computing,
Practical Numerical Analysis

Michaelmas Term 2019, Lecture 8



Integration
Suppose we want to compute

I(F) = / F(x)dx
Q
where Q C RY and x = (x1, x2, ..., Xq).

We know how to do this in 1D using one of the quadrature rules
discussed in Lecture 3. Then

I(F) ~ I(f) = > wif(x) .
k=0

In dD if Q is a hypercube, e.g. Q = (0,1)9, we could compute
using tensor product rules. So in 2D we could use

n
I(F) ~ I(f) = > wiewef (xc, xe) -
k=0



Integration

The trouble is that, as d grows, so does the number of function
evaluations required — we need to evaluate f(x) at N := (n+ 1)
points.

Then, assuming the function to be integrated is smooth, we have

1 1 _
error = (’)<nz> = (’)<N2/d> = O(N2/9) .



2D Example

The composite trapezium rule in 1D is

1 n—1
/Og(X)dX = i(g(0)+2zg(xk)+g(1)>

k=1
n
= 1734 (Xk)
=0

x

where xx = k/n for k =0,1,...,n and wo = w, = 1/(2n), and
wx =1/nfork=1,....n—1.

Thus, in 2D we use

1 r1 n
I(f) = /O/Of(x,y)dxdy ~ I(f) = ZWngf(Xk,Xg).

k,6=0



2D Smooth Example

Define

f(x,y) = cos (%X) cos (%)

I(F) = /01/01 F(x, y)dxdy = %.

so that



2D Smooth Example
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2D Non-Smooth Example

Define

1 0<x®+y%2<1
0 elsewhere

I(f) = /ol/olf(x,y)dxdy

Xx>0Xy>0dxdy

flx,y) = {

Then

Il
T

x2+y2<1

IS



2D Non-Smooth Example
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Convergence is worse than predicted because f(x,y) is not smooth.



Alternative Idea: Monte Carlo

Here the idea is that, with Q = (0,1)9, we approximate

N
1
I(f) = In(f) = 3 > Fxi)
k=1
where x; = (Xk,1,Xk2,-- ., Xk,q) and the x, ; are independent

samples from a uniform distribution on [0, 1].
Note that this is unbiased so E[/y(f)] = /(f).

In addition the law of large numbers ensures that

Jim In(F) = 1(f).



Alternative ldea: Monte Carlo
The Central Limit Theorem proves that for large N

en = I(f) = In(f) ~ oN7Y2Z7
where Z ~ N(0,1) and

2 = E[(f - ()] = /Id(f(x)—/(f»zdx.

Hence the error is O(N~1/2) for any d.

The sample variance is an unbiased estimate of o> where the
sample variance is

N
53, = Zf(xk In(f))?
k_

N N
= (N D (Fxi))? - (/N<f>)2>
k=

1

=
—



2D Smooth Example using Monte Carlo
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2D Non-Smooth Example using Monte Carlo
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How Many Samples Should be Used?
Recall that

en = I(f) = In(f) ~ oN7Y27.
Thus, if o is finite, as N — oo we have
CDF(NY?67tey) — CDF(Z2)
and so

P(NY25 ey <s) — P(Z<s) = &(s)
P(INY267tepy| > s) — P(|Z] >s) = 2d(—s)
P(INY?c7tepy| <s) — P(|Z] <s) = 1—2d(—s).

Here ®(s) is the CDF of a normal distribution with mean 0 and

variance 1 so
1 s



How Many Samples Should be Used?

We can use
P(IN*257tey| <5) — P(|Z|<s) = 1—2d(-s),
to choose N so that P(len| < s) ~ c.
Let c =1 — 2d(—s) so that s(c) = ®~1((1 — ¢)/2). Then
P(IN*257tey| < s(c)) — ¢
and we use
P(len| < s(c)/(NY?071)) =~ c.
So if we require P(|en| < TOL) ~ ¢ we should choose
N — (as(c))2
TOL
samples. In practice, o is unknown so we can use Gy instead where
&n is computed using a fairly small value of N.




How Many Samples Should be Used?
We have ¢ = 1 — 2®(—s), s(c) = ®7((1 — ¢)/2) and

o0 = 2(1var(3))

so that ¢ = erf(s/v/2) and s = v/2erf 1(c) (use erfinv in
Matlab).

Hence we have

0.9 0.99 0.999 | 0.9999
s | 1.6449 | 2.5758 | 3.2905 | 3.8906

Thus if we require P(|ey| < 0.01) ~ 0.999 we choose

3.29050 \ ? )
N = ( 5ol > ~ 10827402 .




Sample Variance
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Non-Smooth Example

With N = 100 we calculate the sample variance to be 43 = 0.1555
so if we require P(Jen| < 0.01) ~ 0.999 we choose

3.2905 2
N = [Z2222) 6% = 16832.
<0'01 ) 5% 683

Then we calculate
In(f) = 0.780121197718631
with

\In(F) — I(f)] = 0.005276965678817 < 0.01 .

(Note that because we use random numbers, this is just one set of
results — re-running the code would generate a different sample
variance and a different approximation /n(f).)



Trapezium vs Monte Carlo

If we use N sample points for the trapezium rule and for Monte
Carlo, then the CPU time will be similar. However, we have

Trapezium rule error ~ N —2/d

Monte Carlo error ~ N~1/2

assuming the integrand is sufficiently smooth.

Thus, if d = 1,2, 3 the trapezium rule is better, if d = 4 the errors
are the same order, and if d > 4 Monte Carlo is better. Again this
assumes the integrand is sufficiently smooth.



Smooth Example
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Non-Smooth Example
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Reduction of Number of Sample Points

Recall that if we require P(|ey| < TOL) =~ ¢ we should choose

N = os(c)\?
N TOL
samples. Thus, if we can reduce the variance, we can reduce the
number of sample points needed.




Stratified Sampling in 1D

If we want to approximate

then we could split [0, 1] into M ‘strata’ of equal width and take L
samples in each. Let x;j be the ith sample from the jth strata.

Then let

L

_ 1

Fi = ZZf(X,‘J)
i=1

be the average from strata j, and the overall average is

_ 1M
F = MZFJ.
j=1



Stratified Sampling in 1D

If we also let

pj = E[f(x)|x € strata j]
af = V[f(x)|x € strata j]
then
) 1M LM
E[F] = MJ_ZIE[FJ] = szlﬂj = p

so it is unbiased.

Also the variance is

1 U 1 1Y 1 U
- _ Cl — 2 2
V[F] Ve ZV[FJ] - MZZZUJ - MN ZUJ
j=1 j=1 j=1

where N = ML is the total number of samples.



Stratified Sampling in 1D

On the other hand, without stratified sampling V[F] = 02 /N with

o’ = E[fz]—

= v ZE[f %|x € strata j] —

ﬂ (1} +af) — 1

((j — u)* +07)
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Stratified Sampling in 1D

Thus, with stratified sampling we have
1 M
and without stratified sampling we have

_ 1 5
> :
V[F] > MNJ;UJ

and we see that stratified sampling reduces the variance.



Stratified Sampling in 1D

An alternative is to use L; samples in stratum j. Then it can be
shown that the overall variance is

M
1 1,
MZZFUJ' :
j=1"

If we want the total number of samples N = Ejhil L; to be fixed,
then the variance is minimised if L; is proportional to o;.



Stratified Sampling in Higher Dimensions

A generalisation to d dimensions could split [0,1]¢ into M9
sub-cubes by splitting each dimension into M strata. Then L
points could be used in each subcube. The problem is that this

requires LM< function evaluations which grows very quickly with d
unless M is small.

An alternative is to use Latin Hypercube sampling.



Latin Hypercube sampling

Here the idea is to generate M points, dimension by dimension,
using 1D stratified sampling with 1 value per stratum assigning
them randomly to the M points to give precisely one point in each
stratum.




Latin Hypercube sampling

This gives one set of M points, with average
i} 1 U

f = M f(Xk) .
k=1

Again this is unbiased, i.e. we have E[f] = E[f].

If we now take L independently generated sets of points to get an
average, Fy, every time, we can compute an average of these

which is again an unbiased estimate for E[f].



Other Methods

Other methods for variance reduction include

antithetic variables
control variates
importance sampling

quasi-Monte Carlo methods

vVvyyVvyyvyy



