
High Dimensional Integration

M.Sc. in Mathematical Modelling & Scientific Computing,
Practical Numerical Analysis

Michaelmas Term 2019, Lecture 8

Integration
Suppose we want to compute

I (f) =

∫
Ω
f (x)dx

where Ω ⊂ Rd and x = (x1, x2, . . . , xd).

We know how to do this in 1D using one of the quadrature rules
discussed in Lecture 3. Then

I (f) ≈ In(f) =
n∑

k=0

wk f (xk) .

In dD if Ω is a hypercube, e.g. Ω = (0, 1)d , we could compute
using tensor product rules. So in 2D we could use

I (f) ≈ In(f) =
n∑

k,`=0

wkw`f (xk , x`) .

Integration

The trouble is that, as d grows, so does the number of function
evaluations required — we need to evaluate f (x) at N := (n + 1)d

points.

Then, assuming the function to be integrated is smooth, we have

error = O
(

1

n2

)
= O

(
1

N2/d

)
= O(N−2/d) .

2D Example

The composite trapezium rule in 1D is∫ 1

0
g(x)dx =

1

n

(
g(0) + 2

n−1∑
k=1

g(xk) + g(1)

)

=
n∑

k=0

wkg(xk)

where xk = k/n for k = 0, 1, . . . , n and w0 = wn = 1/(2n), and
wk = 1/n for k = 1, . . . , n − 1.

Thus, in 2D we use

I (f) =

∫ 1

0

∫ 1

0
f (x , y)dxdy ≈ In(f) =

n∑
k,`=0

wkw`f (xk , x`) .

2D Smooth Example

Define

f (x , y) = cos
(πx

2

)
cos
(πy

2

)
so that

I (f) =

∫ 1

0

∫ 1

0
f (x , y)dxdy =

4

π2
.

2D Smooth Example

10 2 10 3 10 4 10 5 10 6 10 7 10 8

N

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

|I(f)-I
n

(f)|

O(1/n
2

)

2D Non-Smooth Example

Define

f (x , y) =

{
1 0 ≤ x2 + y2 ≤ 1
0 elsewhere

Then

I (f) =

∫ 1

0

∫ 1

0
f (x , y)dxdy

=

∫
x2+y2≤1

χx≥0χy≥0dxdy

=
π

4
.

2D Non-Smooth Example

10 2 10 3 10 4 10 5 10 6 10 7 10 8

N

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

|I(f)-I
n

(f)|

O(1/n
2

)

Convergence is worse than predicted because f (x , y) is not smooth.

Alternative Idea: Monte Carlo

Here the idea is that, with Ω = (0, 1)d , we approximate

I (f) ≈ IN(f) =
1

N

N∑
k=1

f (xk)

where xk = (xk,1, xk,2, . . . , xk,d) and the xk,i are independent
samples from a uniform distribution on [0, 1].

Note that this is unbiased so E[IN(f)] = I (f).

In addition the law of large numbers ensures that

lim
N→∞

IN(f) = I (f) .

Alternative Idea: Monte Carlo
The Central Limit Theorem proves that for large N

εN := I (f)− IN(f) ∼ σN−1/2Z

where Z ∼ N(0, 1) and

σ2 = E[(f − I (f))2] =

∫
I d

(f (x)− I (f))2dx .

Hence the error is O(N−1/2) for any d .

The sample variance is an unbiased estimate of σ2 where the
sample variance is

σ̂2
N =

1

N − 1

N∑
k=1

(f (xk)− IN(f))2

=
N

N − 1

(
1

N

N∑
k=1

(f (xk))2 − (IN(f))2

)

2D Smooth Example using Monte Carlo

10 2 10 3 10 4 10 5 10 6 10 7 10 8

N

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

|I(f)-I
n

(f)|

O(1/N
1/2

)

2D Non-Smooth Example using Monte Carlo

10 2 10 3 10 4 10 5 10 6 10 7 10 8

N

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

|I(f)-I
n

(f)|

O(1/N
1/2

)

How Many Samples Should be Used?
Recall that

εN := I (f)− IN(f) ∼ σN−1/2Z .

Thus, if σ is finite, as N →∞ we have

CDF (N1/2σ−1εN) → CDF (Z)

and so

P(N1/2σ−1εN < s) → P(Z < s) = Φ(s)

P(|N1/2σ−1εN | > s) → P(|Z | > s) = 2Φ(−s)

P(|N1/2σ−1εN | < s) → P(|Z | < s) = 1− 2Φ(−s) .

Here Φ(s) is the CDF of a normal distribution with mean 0 and
variance 1 so

Φ(s) =
1

2

(
1 + erf

(
s√
2

))
.

How Many Samples Should be Used?
We can use

P(|N1/2σ−1εN | < s) → P(|Z | < s) = 1− 2Φ(−s) ,

to choose N so that P(|εN | < s) ≈ c .

Let c = 1− 2Φ(−s) so that s(c) = Φ−1((1− c)/2). Then

P(|N1/2σ−1εN | < s(c)) → c

and we use

P(|εN | < s(c)/(N1/2σ−1)) ≈ c .

So if we require P(|εN | < TOL) ≈ c we should choose

N =

(
σs(c)

TOL

)2

samples. In practice, σ is unknown so we can use σ̂N instead where
σ̂N is computed using a fairly small value of N.

How Many Samples Should be Used?
We have c = 1− 2Φ(−s), s(c) = Φ−1((1− c)/2) and

Φ(s) =
1

2

(
1 + erf

(
s√
2

))
so that c = erf(s/

√
2) and s =

√
2erf−1(c) (use erfinv in

Matlab).

Hence we have

c 0.9 0.99 0.999 0.9999

s 1.6449 2.5758 3.2905 3.8906

Thus if we require P(|εN | < 0.01) ≈ 0.999 we choose

N =

(
3.2905σ

0.01

)2

≈ 108274σ2 .

Sample Variance

0 0.5 1 1.5 2 2.5 3 3.5 4

N 10
6

0.166

0.167

0.168

0.169

0.17

0.171

0.172

0.173
Sample variance

Non-Smooth Example
With N = 100 we calculate the sample variance to be σ̂2

N = 0.1555
so if we require P(|εN | < 0.01) ≈ 0.999 we choose

N =

(
3.2905

0.01

)2

σ̂2
N = 16832 .

Then we calculate

IN(f) = 0.780121197718631

with

|IN(f)− I (f)| = 0.005276965678817 < 0.01 .

(Note that because we use random numbers, this is just one set of
results — re-running the code would generate a different sample
variance and a different approximation IN(f).)

Trapezium vs Monte Carlo

If we use N sample points for the trapezium rule and for Monte
Carlo, then the CPU time will be similar. However, we have

Trapezium rule error ∼ N−2/d

Monte Carlo error ∼ N−1/2

assuming the integrand is sufficiently smooth.

Thus, if d = 1, 2, 3 the trapezium rule is better, if d = 4 the errors
are the same order, and if d > 4 Monte Carlo is better. Again this
assumes the integrand is sufficiently smooth.

Smooth Example

10 2 10 3 10 4 10 5 10 6 10 7 10 8

N

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

trapezium rule

Monte Carlo

Non-Smooth Example

10 2 10 3 10 4 10 5 10 6 10 7 10 8

N

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

trapezium rule

Monte Carlo

Reduction of Number of Sample Points

Recall that if we require P(|εN | < TOL) ≈ c we should choose

N =

(
σs(c)

TOL

)2

samples. Thus, if we can reduce the variance, we can reduce the
number of sample points needed.

Stratified Sampling in 1D
If we want to approximate

I (f) =

∫ 1

0
f (x)dx

then we could split [0, 1] into M ‘strata’ of equal width and take L
samples in each. Let xi ,j be the ith sample from the jth strata.

Then let

F̄j =
1

L

L∑
i=1

f (xi ,j)

be the average from strata j , and the overall average is

F̄ =
1

M

M∑
j=1

F̄j .

Stratified Sampling in 1D
If we also let

µj = E[f (x)|x ∈ strata j]

σ2
j = V[f (x)|x ∈ strata j]

then

E[F̄] =
1

M

M∑
j=1

E[F̄j] =
1

M

M∑
j=1

µj = µ

so it is unbiased.

Also the variance is

V[F̄] =
1

M2

M∑
j=1

V[F̄j] =
1

M2

1

L

M∑
j=1

σ2
j =

1

MN

M∑
j=1

σ2
j

where N = ML is the total number of samples.

Stratified Sampling in 1D

On the other hand, without stratified sampling V[F̄] = σ2/N with

σ2 = E[f 2]− µ2

=
1

M

M∑
j=1

E[f (x)2|x ∈ strata j]− µ2

=
1

M

M∑
j=1

(µ2
j + σ2

j)− µ2

=
1

M

M∑
j=1

((µj − µ)2 + σ2
j)

≥ 1

M

M∑
j=1

σ2
j .

Stratified Sampling in 1D

Thus, with stratified sampling we have

V[F̄] =
1

MN

M∑
j=1

σ2
j

and without stratified sampling we have

V[F̄] ≥ 1

MN

M∑
j=1

σ2
j

and we see that stratified sampling reduces the variance.

Stratified Sampling in 1D

An alternative is to use Lj samples in stratum j . Then it can be
shown that the overall variance is

1

M2

M∑
j=1

1

Lj
σ2
j .

If we want the total number of samples N =
∑M

j=1 Lj to be fixed,
then the variance is minimised if Lj is proportional to σj .

Stratified Sampling in Higher Dimensions

A generalisation to d dimensions could split [0, 1]d into Md

sub-cubes by splitting each dimension into M strata. Then L
points could be used in each subcube. The problem is that this
requires LMd function evaluations which grows very quickly with d
unless M is small.

An alternative is to use Latin Hypercube sampling.

Latin Hypercube sampling

Here the idea is to generate M points, dimension by dimension,
using 1D stratified sampling with 1 value per stratum assigning
them randomly to the M points to give precisely one point in each
stratum.

Latin Hypercube sampling

This gives one set of M points, with average

f̄ =
1

M

M∑
k=1

f (xk) .

Again this is unbiased, i.e. we have E[f̄] = E[f].

If we now take L independently generated sets of points to get an
average, F̄`, every time, we can compute an average of these

1

L

L∑
`=1

f̄`

which is again an unbiased estimate for E[f].

Other Methods

Other methods for variance reduction include

I antithetic variables

I control variates

I importance sampling

I quasi-Monte Carlo methods

I . . .

