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Health warning;:

The following lecture notes are meant as a rough guide to the lectures. They are not meant
to replace the lectures. You should expect that some material in these notes will not be covered in
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class and that extra material will be covered during the lectures (especially longer proofs, exam-
ples, and applications). Nevertheless, I will try to follow the notation and the overall structure of
the notes as much as possible. Also, these notes may be updated during the course of the term.
In particular, please alert me if you catch any typos or errors. I will notify you if I upload an
updated version.

1 Introduction

In the Supplementary Applied Mathematics course you were introduced to several approaches
for understanding and solving boundary value problems given by ordinary differential equations.
The first half of this course provides further tools and perspectives on related problems in integral
equations and the theory of linear operators, filling in some of the theoretical gaps in boundary
value problem theory. The second half of this course will then explore the calculus of variations,
and optimal control theory. Throughout, by way of example, we will also introduce you to some
aspects of perturbation theory which arise naturally in the examples. We will not have time
to cover any of these topics in detail, but you should be able to come away from this course
having a basic understanding of the ideas, and the ability to continue learning about any of these
methods on your own. Good resources for the material on integral equations and the Fredholm
Alternative can be found in Chapters 1, 3, and 4 of Principles Of Applied Mathematics: Transfor-
mation And Approzimation by James Keener. Further material on the calculus of variations and
optimal control can be found in Calculus of Variations and Optimal Control Theory: A Concise
Introduction by Daniel Liberzon. You should review some aspects of linear algebra, particularly
the rank-nullity Theorem, the kernel and nullspace of a matrix, and how these ideas relate to
eigenvalues and diagonalization.

1.1 Integral Equations

There are many different formulations of integral equations, but the following are four common
nontrivial examples.

Volterra non-homogeneous

y(x) = f(z) + /w K(z,t)y(t)dt, x € [a,b)].

Volterra homogeneous

y(x) = /ﬂﬂ K(x,t)y(t)dt, x € |a,b].
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Fredholm non-homogeneous

b
y(x) = f(x) + )\/ K(x,t)y(t)dt, x € |a,b].

Fredholm homogeneous

b
y(x) = )\/ K(x,t)y(t)dt, x € [a,b)].

The function K(x,t) is the kernel of the integral equation.

A value of X for which the homogeneous Fredholm equation has a solution which is not identically
zero is called an eigenvalue, and the corresponding non-zero solution y(x) is an eigenfunction.
As with boundary value problems, one can develop a spectral theory of the eigenvalues and
eigenfunctions in order to express the solution to the inhomogeneous problem.

We remark that throughout we always consider A £ 0. Note that some literature will put the A on
the y(z) on the left-hand side, or will relate the eigenvalues written each way via A = 1/pu; these
conventions are unimportant as long as A # 0 and one is careful where the A appears. We will
also only consider real solutions in this course, but the theory generalizes easily to the complex
case. Finally, unless otherwise stated, all functions a considered will be continuous. Rather than
work out or present the general theory, we will focus on Fredholm equations of a particular type.
First, we relate these operators to familiar boundary value problems.

1.1.1 Relationship with differential equations

Example 1. Consider the differential equation
y'(z) + My(z) = g(2),
where A > 0 is constant and g is contonuous on [a, b]. Integrating from a to x € [a, b] gives

/@) =@+ [Cuwae= [ g
Integrating again gives
y(@) — y(a) — ¢/ (a) @ — a) + )\/: /auy(t) dt du = /x /aug(t) dt du.
Switching the order of integration gives
y(z) —y(a) —y'(a)(z —a) + A /j(x —t)y(t)dt = /:(:r — t)g(t) dt. (1)

Initial conditions Suppose y(a) and 3/(a) are given. Then we have a Volterra non-homogeneous
integral equation with

K(z,t) =At—x),  f(z)=yla)+y(a)(x—a)+ /z(x — t)g(t) dt.



Further Mathematical Methods 4

Boundary conditions Suppose y(a) and y(b) are given. Then, putting x = b in (1)

b

b
v~ 9(0) =y @b —a) + A [ b=y = [ b-go)at

a

so that

b b
V@ =5 (10 s+ [[e=ouae- [[o-nawar).

On substituting into (1) and simplifying this gives the non-homogeneous Fredholm equation

b
y() = f(z) + A / K () y(t) dt

5 a<t<z<h,
K(z) = s
(x_a)(b_t) a<zr<t<b
b—a -

NB: This kernel should look familiar to you from the study of Green’s functions for boundary
value problems.

2 Fredholm Alternative

The Fredholm Alternative is often considered one of the most important Theorems in applied
mathematics (competing with Taylor’s Theorem, among others). It gives a notion of ‘solvability
criterion’ for a wide range of linear operators, and has numerous applications in differential and
integral equations. Here we will present it first in the finite-dimensional case of linear algebra,
followed by the cases of integral and differential equations. For integral equations of a particular
type, the proof of this Theorem demonstrates how to construct solutions in a manner analogous
to the eigenfunction expansions for boundary value problems.

2.1 DMatrices
Consider a linear equation of the form,
Ax = b, (2)

where A is an m X n real matrix, € € R", b € R™. Let a; be the ith column of A. Then we have
a solvability condition as follows.



Further Mathematical Methods 5

Proposition 1. The Fredholm Alternative for general matrices
FEither

1. The system Ax = b has a solution x;
or
2. The system ATv = 0 has a solution v with v’b # 0;

Thus Az = b has a solution z if and only if v7b = 0 for every v in R™ such that A”v = 0.

Proof.
Ax = b has a solution * < b is a linear combination of the columns of A
< bespan({ar, - ,an})
~ Span(b) - Span(ala U aan)
& span(b)" D span(ay, -+ ,an)"
& every vector v with each a;fpv = 0 also has v = 0.
Note that Bt denotes all vectors perpendicular to every vector in the set B. O

To relate this to integral equations we need to consider square matrices. Then we can write

Proposition 2. The Fredholm Alternative for square matrices
FEither

1. The system Ax = b has a unique solution x;
or
2. There exist nonzero solutions to the system A”v = 0. In this case Az = b has a solution

if and only if vTb = 0 for every v such that ATv = 0. Such a solution (if it exists) is not
unique, since any null vector of A may be added to it.

2.2 Integral equations

We consider the non-homogeneous Fredholm equation

b
y(x) = f(z) + )\/ K(z,t)y(t)dt, z € [a,b].
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2.2.1 A simple case
To motivate the statement and proof of the theorem we consider the simplest possible degenerate

kernel, that is, we set
K(z,t) = g(x)h(t), =t ¢€a,b]

where g and h are continuous on [a, b]. Then

where )
X = / h(t)y(t) dt.
a
We also need to consider the non-homogeneous transpose (adjoint) equation

b
mw=ﬂ@+k/g®M@M@&=f@H%YM@, (1)

where )
y = / g(t)y(t) dt.
In addition, we have the two corresponding homogeneous equations
@)= [ g @ = 1xo(w), 5)
and the transpose ,
a) = A [ ah@u(t)at = AV h(a), ()
Multiplying (3) by h(x) and integrating with respect to x gives

X <1 —)\/abg(x)h(x) dx) _ /abf(x)h(x) d. (7)

Multiplying (4) by g(x) and integrating with respect to x gives

b b
Y (1 - )\/ g(z)h(x) dx> :/ f(z)g(z)dz. (8)
Now, if
b
1— )\/ g(x)h(z)dx #0
then we can solve for X and Y and hence determine the solutions

A JY f@)h(z) de oo
1-— )\f;g(x)h(x) dz

y(z) = f(z) +
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of (3) and

of (4).

However, if
b
1-— )\/ g(x)h(x)dz =0

then neither (3) or (4) has a unique solution. Indeed, in this case from (7), equation (3) cannot
have a solution unless

b
/ f(@)h(z) dz =0,

and, from (8), equation (4) cannot have a solution unless
b
| @g@rdz =0,
a
Now every solution of (5) must be of the form y(z) = cg(x) for some constant c. Furthermore, if

b
1-— )\/ g(x)h(x)dz =0
and y(z) = cg(x) then

AX = Ae /b h(t)g(t)dt = c,

so that y = cg(x) is a solution for any c. Similarly, if )\f;g(x)h(x) dz = 1, then y(x) = dh(z)
solves (6) for any d.

Thus we arrive at the following conclusion.

Proposition 3. Fredholm Alternative (Degenerate Integral Kernel)
Either

1. There are unique solutions to (3) and (4);
or

2. The are nonzero solutions to (5) and (6). In this case there exists a solution to (3) if and

only if the integral of f times the solution of (6) vanishes (ff f(z)h(x)dx = 0). If a solution
exists it is nonunique, since any nonzero solution of (5) can be added.

If the solvability condition f: f(z)h(x)dx = 0 is met then the general solution of (3) is

y(z) = f(z) + cg(2),

for all ¢ € R.
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2.3 Integral equations: general case

We consider the Fredholm equation

b
y(x) = f(z) + )\/ K(x,t)y(t) dt, x € [a, b (F)

along with the adjoint and homogeneous equations

b
y(x) = f(z) + )\/ K(t,z)y(t) dt, x € [a, b (FT)
b
y(z) = A / K@yt dt, o€ lab] (H)
b
y(z) = )\/ K(t,z)y(t)dt, x € [a,b] (HT)

where f : [a,b] — R and the kernel K : [a,b]?> — R are continuous and \ is constant.

Theorem 1. The Fredholm Alternative For each fixed A exactly one of the following two
statements is true. Either

1. The equation (F) has a unique continuous solution. In particular if f = 0 on [a,b] then
y =0 on [a,b]. In this case (F) also has a unique continuous solution.

or

2. The equation (H) has a finite maximal linearly independent set of, say, r continuous solutions
Y1,..-,yr (r > 0). In this case (HT) also has a maximal linearly independent set of r
continuous solutions z1, ..., z, and (F) has a solution if and only if the solvability conditions

b
/ f(@)zk(z)dz =0, k=1,...,r
a
are all satisfied. When they are, the complete solution to (F) is given by
T
y(x) = g(z) + > cwi(x),  x€la,b],
i=1

where ¢1,. .., ¢, are arbitrary constants and ¢ : [a,b] — R is any continuous solution to (F).

We sketch the proof of the theorem for the degenerate kernel

K(z,t) =Y gj(@)h;(t), x,t€ab]
j=1
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Proof. We may assume that each of the sets {g1,92, -+ ,gn} and {hi, ha,--- , h,} are linearly
independent (otherwise express each element in terms of a linearly independent subset). Then
we have

n b
y(@) = F@) + A3 Xjg;(z),  where X, = / by ()y () dt, (F1)
=1 a
n b
y(@) = F(@) + A3 Vihy(z),  where vi= [Catuodw @)
=1 @

y(@) =AY Xjgi(), (Hy)
j=1
y(@) =AY Yihy(a). (H{)
j=1
Multiply (Fy) by h;(z) and integrate over x to give
puX; — Zainj = bj,
j=1

where . b
r=T aij = / gj(z)hi(x) dz, b; = M/ f(x)hi(r) dz.

We may write this as
(ul - A)X =b (F)

where X = (X;) and b = (b;) are column vectors, A = (a;;) is a matrix, and I is the identity
matrix. Similarly (F7) becomes

(ul —ATY = (uI - AT)Y =¢ (F3)

where AT is the transpose of A and ¢ = (c¢;) with

b
o =u [ Fa)g(e)ds

Similarly (H;) and (H!) become
(Wl —A)X=0 (Ha)

(uI—A)TY=0 (HZ)

Now we are back in the case of linear algebra. So, suppose that there are no nontrivial solutions
to (Hg), i.e., that p is not an eigenvector of A. Then, since uf — A is nonsingular, there are unique
solutions to (F3) and (F1), thus (1) holds.
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On the other hand, suppose p is an eigenvalue of A with eigenspace of dimension r spanned by
eigenvectors X¥, k = 1,...,7. Then the corresponding eigenspace of AT is also of dimension r
and spanned by Y* k=1,...,r, say. Then

ye() =AY Xjg;(x), (9)
j=1

2() =AY Y hy(@), (10)
j=1

form a maximal set of linearly independent solutions of (H) and (H”) respectively. We know (F3)
has a solution if and only if
b’ Y* =0, k=1,...,r

which is, noting from (10) that Y* corresponds to the solution z;(z) of (HT),

n

Z (N /abf(l“)hj(ﬂﬂ) diﬂ) (/ab gi(t) 2k (1) dt) —0.

J=1

Rearranging, this is

b b n
/ / Zgj(t)hj(f’f) () dt | f(z)dz =0,
a a =

/ab </ab K(t,x)z(t) dt) f(x)dz =0,

ie.
which gives
since z;, is a solution of (HT).

This method of proof can be used to solve (F) for degenerate kernels.

Example 2. Solve the integral equation

2T
y(z) = () + A /O sin(z + £)y(#) dt,

in the two cases
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The equation may be written

27
y(z) = f(x) + /\/ (sinz cost + cosxsint) y(t) dt
0
= f(z) + AXysinz + AXy cosx

where

2 2
X1 :/ y(t) cost dt, Xo :/ y(t) sint dt.
0 0

11

(11)

Note that it is self-adjoint. Multiplying (11) by cosz (and sinz) and integrating with respect to

T gives
21

X1 — Xy = () cos z dzx,
0

2w
Xo — AnX; = f(x)sinzdx
0

2T 2 2
/ cos’ zdx = / sin? z dz = 7, / coszsinxdzr = 0.
0 0 0

This system is invertible if the determinant of the coefficient matrix

since

=1-X\x%#£0.

1 -\
-\ 1

In this case the (unique) solution is

1 2T
Xi=—F— A si q
L= 100202 ), (z) (cosx + Arsinz) du,
1 2T
=100 nz+ A da.
271202, (z) (sinz + Arcos ) dx

Since

2 2 2 2
/ rsinzxdr = —2m, / cosxda;—/ sinxda:—/ rcosxdxr =0,
0 0 0 0

in case (a) we have X; = Xy = 0 and therefore

while in case (b) we have

27
y(z) =2 — ﬁ (Amsinz + cosx),

provided A\27? #£ 1.

(12)

(13)
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When A\ = 1/7 the homogeneous version of (12)-(13) has solutions X; = X5, while when A = —1/7
it has solutions X7 = —X5. Thus the homogeneous version of (11) has solutions

y(x) = c(sinz + cos x) when A = 1/,

y(x) = d(sinz — cosx) when A\ = —1/7,

where c and d are constants. Thus in order for solutions to exist we have the solvability conditions

2m
(x)(sinx + cosz)dx = 0, when A\ =1/,
0
and
2m
(z)(sinx — cosz)dx =0, when A\ = —1/7.
0

In case (a) both conditions are met. Since y = 1 is a particular solution when A = £1/7, the
general solution in this case is

y(x) =1+ c(sinx + cosz) when \ = 1/,
y(x) =1+ d(sinz — cosx) when A\ = —1/7,
where ¢ and d are arbitrary constants.

In case (b) neither condition is met and there are no solutions when A = +1 /7.

2.4 Linear ordinary differential equations

We are going to describe solvability conditions for linear ODE’s analogous to those for linear
algebraic equations. We will do this for the 2nd order real scalar case, and give the general
version later.

Consider a differential operator
_ d*u
 da?

where a(z), f(z) are continuous real-valued functions on [0, 1]. We are going to consider:

L[u] + a(x);l—z + B(x)u = v’ + au’ + Bu,

Primary problem
Llu] = b(x) on0<z<1,

with 2 linear homogeneous boundary conditions on v and u’ at x = 0, 1.

Adjoint problem
L*[v] =0 on0<z<1,

with 2 linear homogeneous boundary conditions on v and v’ at x = 0, 1.
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The solvability result is that

Primary has a solution u < fol v(x)b(x) dz = 0 for every solution v of the Adjoint problem

The adjoint differential operator is
L*[v] = v" — (aw)" + Bu.

This obeys the fundamental identity

1 1
/ (vL[u] — uL*[v]) do = / v(u” + au' + fu) — u(W” — (av) + Bv) dx
0 0

= [ov —w' + auv] (1)
= B(u,v),

a bilinear form in the boundary values of u and v. This bilinear form is non-singular if B(u,v) =0
for all v implies u = 0. Equivalently

al) 10 0 u(1)
B(u,v) = ((v(1) o'(1) »(0) '(0) ) _01 8 _o?(o) _01 Z(%))
0 0 1 0 /' (0)

and B(u,v) is non-singular if the central matrix is non-singular. Then if u(1), «/(1), u(0), u’(0)
obey 2 linear homogeneous equations (the primary boundary conditions) then we shall need 2
linear homogeneous equations on v(1), v'(1), v(0), v'(0) to force B(u,v) = 0 (there are 2 degrees
of freedom left). These conditions on v are the adjoint boundary conditions.

2.4.1 Examples of adjoints
Example 3. Suppose the primary boundary conditions are
u(0) =0, w'(0) =0 Primary boundary conditions.
(an initial value problem, IVP).Then
B(u,v) = v(1)u/(1) — ' (1)u(1) + a(1)v(1)u(l).
To force this to vanish (for arbitrary w(1), /(1)) we must have

v(1) =0, (1) =0 Adjoint boundary conditions.
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Example 4. Suppose the primary boundary conditions are
u(0) =0, u(l)=0 Primary boundary conditions.
(a boundary value problem, BVP).Then
B(u,v) = v(1)d/(1) — v(0)u/(0).

To force this to vanish (for arbitrary «’(0), u/(1)) we must have

v(0) =0, v(l)=0 Adjoint boundary conditions.

|

Example 5. Suppose the primary boundary conditions are

u(0) = u(1), W' (1) =0 Primary boundary conditions.
(a generalised boundary value problem).Then
B(u,v) = —v'(1)u(0) + a(1)v(1)u(0) — v(0)u'(0) 4+ v’ (0)u(0) — a(0)v(0)u(0).
To force this to vanish (for arbitrary «(0), «/(0)) we must have
v(0) =0, V(1) — a(1)v(1) = 2'(0) Adjoint boundary conditions.

|

Easy part of proof If a solution u of the primary problem exists, and v is any solution of the
adjoint problem, then

/0 (vL[u] = uL*[v]) dx = B(u,v) = 0.

We then multiply the primary problem by v and integrate, and multiply the adjoint problem by
u and integrate, then subtract the first from the second to get,

1 1
/ (vLu] — uL*[v]) dz = / vbdx = 0.
0 0
The harder part (if adjoint condition holds then a solution exists) requires 2 steps:

1. Convert the ode problem to an integral equation by using a Green’s function.

2. Use the “Fredholm Alternative” theory of integral equations to write down solvability
conditions for the integral equation.

This is why the solvability condition for ODE’s is sometimes called the Fredholm Alternative.
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2.4.2 Applications
Example 6. Primary:

Adjoint:
v =0, v'(0) ='(1) = 0.

There is a nontrivial solution of the adjoint, namely
v=1.

Hence there is a solution of the primary if and only if
1
/ b(x)dz = 0.
0

Example 7. Find the asymptotic solution of the equation
Z+ (14 €)x = cost, z(0) = z(27), %(0) = @(2m),
as € — 0. Suppose we try a perturbation expansion
x(t) ~ zo(t) + exq(t) + - - -
Substituting into the equation gives
(Zo+ ety +---)+ (1 +e€)(xo+exy + ) = cost.
Expanding the brackets gives
o+ xo+€(@1 +x0+ 1)+ -+ = cost.
Equating coefficients of powers of € gives
Zo + xg = cost, 1+ x0+21 =0,
Thus the leading-order problem is
Zo + xo = cost, 20(0) = zo(27), 20(0) = zo(27).
Note that this is self-adjoint. Is there a solution? The homogeneous version
Zo+z0 =0, x0(0) = z9(27m), 40(0) = &o(27),

has solutions
Ty = cost, and To = sint.

15

(16)
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Since
21
/ cos®tdt #0
0

we conclude that (16) has no solution. This does not mean that (14) has no solution: it means
that our expansion (15) was incorrect. In (14) we are forcing with a term that is almost resonant
(it is resonant when € = 0). Thus we expect the response to be large. Let us try instead

w{t) ~ ~ao(t) + aa(t) ++ (17)
Substituting into the equation gives
Zo+ xo + (@1 + 2o+ 1) + -+ = €ecost.
Equating coefficients of powers of € now gives
To+ x9 =0, T1 + xo + x1 = cost,

This time the leading-order problem is

Zo +x0 =0, x0(0) = zo(27m), 20(0) = &o(27), (18)
with solution

xg9 = Acost + Bsint,

where A and B are arbitrary constants, undetermined at this stage. To determine A and B we
need to consider the equation at next order. This is

T1 + xo + x1 = cost,
or, using our expression for xg,
T1+x1 = (1*A)COSt*BSiDt, $1(0):$1(27T), .%‘1(0) :i‘l(277').

Now we use the Fredholm alternative again. There is a solution for x; if and only if the right-hand
side is orthogonal to the solutions cost and sint of the homogeneous problem. Multiplying by
cost and integrating gives

1-A=0 = A=1

Multiplying by sint and integrating gives
B =0.
Thus the leading order solution is

1
T ~ —cost.

€
In fact, this leading-order solution is the exact solution of the original problem, and we can
continue looking at higher-order terms to see they are all zero. While this is a linear problem (and
hence we could have solved the problem directly), this example illustrates a powerful combined
use of asymptotic methods and solvability conditions which is widely applicable for nonlinear
systems, especially oscillators. The solvability theory always tells us something important in the
case that e = 0 — namely, that there is no solution, as we saw above in the regular perturbation
expansion.
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Example 8. Consider the equation

ot  Ox?

€ —u—ud+e, v (—00) =0, u'(c0) =0,

(with u(—o00) close to —1 and u(c0) close to 1). Consider an expansion
U~ U+ EUL At
Then, at leading order (equating coefficents of ")

82
—aTUZD = up — uj, up(—o0) = =1, wp(oo0) =1.

uo = tanh <$_f"]02°(t>> :

where xo(t) is arbitrary. This is the solution to the steady problem with € = 0, but it can be
translated arbitrarily. To determine zp we need to go to the next order. At first order (equating
coefficients of €!)

The solution is

0 0?

% - 8;21 = uy — 3udu; + 1, uy(—o0) =0, uj(o0)=0.
Rearranging

0%u ou dxg Ou
Now, since
0%u
— a$20 —UO+U(3):O,
differentiating gives
_OPug O g aOu0 _

923~ 9r | 0 0x
Thus u; = dug/0z satisfies the homogeneous version of (19). Therefore, by the Fredholm Alter-
native, the right-hand side must be orthogonal to dug/dx:

o © dCCO 8u0 8u0 o 00 dﬂ?o > auo 2 o dCCQ o0 8’&0 2
0—/00 (”am) praal L <ax> de=2+-3 ) (&) &
Thus
dzo 2

dt [ (Qug/dw)® da’
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Example 9. Consider the equation for y(z):
y'+Ty+y’ =0,  y(0)=0, y(1)=0. (20)
Let us first consider the linearised equation:
y'+Ty=0, y(0)=0, y(1)=0.

This is an eigenvalue problem: there are solutions only for particular values of T. After imposing
the boundary condition at x = 0 we have

y = sin VT,
The condition at = = 1 then implies
sin VT =0 = T = n’r.
Then the solution is
y = Asinnmx, T = n’r2,
where A is arbitrary.

Let us see how the nonlinear term affects this calculation when we are close to the bifurcation
point T' = n?x2. Returning to (20) let us pose an expansion

y=eyo+ey+-, T=To+&T +---.
Then, equating coefficients of €'

vy + Toyo = 0, y0(0) =0, yo(1) =0,

so that

Ty = n’x2, yo = Asinnmx,

as above. The coefficient A is determined by proceeding to next order. Equating coefficients of
3
€

v+ Toyi +Tiyo +yo =0, 51(0) =0, wi1(1) =0.

Substituting in for yg, Ty gives
Y+ nPny, = — ATy sinnmz — A3 sin® nra. (21)

Now the homogeneous equation is satisfied by sinnwz. Thus in order for there to be a solution
for y1, by the Fredholm Alternative the right-hand side must be orthoginonal to sinnmz. Thus

! ATy 343
0= / ATy sin® nrz + A3 sin* nre dz = 71 + 5
0

1 1 1 3
/ sin? nrzde = =, / sin? nrazdr = =.
0 2 0 8

since
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As an alternative to evaluating the integrals we observe

3
sin3 nrr — (21 (einﬂz _ einﬂ'z)) _ _% (e3in7rm _ Seinﬂx + Seinﬂx _ ef3in7rx)3
i i
= 3 (sin3nmz — 3sinnmz).
Thus the right-hand side of (21) is

1
— AT sinnmx + Agz (sin3nmzr — 3sinnnz) .

We know that sin 3n7z is orthogonal to sin nma. Thus we need the coefficient of sin nwax to vanish,
i.e.

343
Thus the amplitude is
4T
A=4/-=L
3
Note that this means that the branch of solutions exists for 71 < 0, i.e. for T slightly less than

the critical value n?m2.

2.4.3 Generalisation

Suppose u is a vector of complex-valued functions, obeying a higher-order primary problem

Primary
L{u] = b(x) on0<z<1,

with primary boundary conditions on w at x = 0, 1, where

ol =3 A5 =Y A

r=0

where the A,(x) are matrices, continuous in z, and b is a vector of continuous functions. To
state the adjoint problem we introduce some notation.

1. A* = conjugate of transpose of A [like A" in Matlab).

2. If v is a vector of continuous functions (same order as b) then define an inner product

1
(v,b) :/0 v(x)*b(z) dr =

Then

Primary has a solution u < (v,b) =0 for every solution b of the Adjoint problem
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Adjoint
L*[v] =0,

with adjoint boundary conditions on v at x = 0, 1. The adjoint differential operator is

k

L] =Y (—1)" (Apv) ™).

r=0

The fundamental identity is

(v, L[u]) — (L*[v],u) = /O 12<'U*Aru(r)—(—I)T(U*A,-)(r)u) dz

1

Zv*Aru(rfl) _ (,U*Ar)lu(er) NS (_1)r71(v*AT)(r,1)u
' 0
= B(u,v).

This B is used to construct the adjoint boundary conditions exactly as in the basic case considered
earlier (B is a Hermitian form now). The easy part of the proof is just as before.

3 Calculus of variations

Start with a simple example: consider a plane curve joining two points (a,c) and (b,d) and
given by the smooth graph y = y(x).

NB this disallows some slopes.

Define the functional

NB J: V — R, where V is a suitable function space, e.g. the set C?[a, b] of twice continuously
differentiable functions y(x) defined on [a, b], satisfying y(a) = ¢ and y(b) = d [we won’t dwell
much on the strict conditions on y(x)].

Now we ask: which function y(z) € V minimises the functional J[y]?

To answer this, let y(z) be the desired extremal function which minimises J[y]. Then any admiss-
able perturbation about y(z) should increase J. So consider J[y + en], where n € C?[a,b] with
n(a) = n(b) = 0. Now

b
Jiy+en) = / (o (&) + erf (2))? e

b b
= T+ 2 / (@) (@) de + € / (o (2))? .
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Figure 1:

We want this to have a minimum when ¢ = 0, and a necessary condition is

b
/ (@) (z) da = 0.

[Then the coefficient of €2 > 0 so it is a minimum not a maximum.|

Now integrate by parts to give

b
b
v/ (2)n(2)], —/ n(x)y" (z) dz = 0.
——— a
=0 since n(a)=n(b)=0
We deduce that ,
[ nta @) ae =0

for all n € C?[a,b] with n(a) = n(b) = 0.

Fundamental Lemma of Calculus of Variations (FLCV)
If

b
/ n@)o@)dz =0  ¥n e Ca, b] with n(a) = n(b) = 0,

and ¢ is continuous, then

o(x) =0 on [a, b].

21
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Hence we find that the function y(z) that minimises J[y| satisfies
y"(x) =0,

(d—¢)
(b— a)(x_ a’)7

ie.
y=Ax+B=c+

which is a straight line from (a,c) to (b,d).

Possible motivations
(i) 1-d flow of electricity through a semiconductor. ¢(x) = electric potential (voltage).

Figure 2:

The energy dissipated (as heat) in the medium is given by

!
Tl = /0 o () (¢ (2))? da,

where o(z) is the ocnductivity of the medium. So dissipation is minimised when ¢ satisfies
d
4 (0@)¢'(2)) = 0.

(ii) Drive from A to B in a given time 7. Let your position at time t be x(¢). Then z(0) = a,
x(T) = b. Suppose there is a frictional resistance ki(t). Then the work done against friction
during the journey is

Jlz] = /0 ki ar.

This suggests that driving at constant speed (Z = 0) is the most efficient.
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Class of problems

This simple example falls into a class of problems: to minimise or maximise a functional

b
Jly) = / Fle,y(z),y/(z)) dz

(where F(z,y,') is given) over all y € C?[a, b] satisfying y(a) = ¢, y(b) = d.
Let y(x) be an extremal function and perturb:

b
Jy + en] =/ F(z,y+eny +en)de,
a

where n € C?[a, b] with n(a) = n(b) = 0. Expand using Taylor’s theorem:

b OF oF
Se = Jhl+e [ (15 )+ G e))) s+ 0@

NB here we treat x, y and 3 as independent variables.

b
oF ,8F>
=iy ) dz=0.
/1<n0y nﬁy’

/b OF A (OF\\ oo [P
a77 oy dz \ oy o n@y’ u -

. "
=0 simce n(a)=n(b)=0

At an extremal we must have

Integrate by parts:

Since this is true for all n € C?[a,b] with n(a) = n(b) = 0 by the FLCV we have Euler’s equation
(basic equation of Calculus of Variations):

4 (oF\ _oF |
dx \ 9y’ oy

NB d/dz not 0/0z.

Examples
(i) In our previous example F(z,y,y’) = (v')%. This gives
d
a(Qy/) =0, ie. y" = 0.

(ii) Curve of minimum length joining (a,c) to (b,d). Length

b
Jlyl = / V1t (y)?de,
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subject to y(a) = ¢, y(b) = d. Then
oF or Yy’

F = 1 + / 2, - = 0; a7 *
) dy 9y’ 1+ (y)?

So Euler’s equation is
doFN_ ¥
de \oy') — (L+()»)3?
Thus " =0 so y = Az + B. Linear (again). Thus

(d—c)

y(z) =c+ b—a)

(ZL'—CL),

a straight line, as expected.

Extensions
Natural boundary conditions

This time let )
Tl = / F(z,y,y) de

where y(a) = ¢ but y(b) is NOT prescribed. Again let y(x) be an extremal of J[y] and consider
y + en, where n(a) = 0 but n(b) is arbitrary. Then

b
Jly+en = /F(%y,y’)dfc

b/ OF  OF 5
~ J[y]+e/a <nay+nay,> dz + O(e%).

b/ OF  ,0F
/a(”ayﬂayf) dr=0

= /b or _d (or dz + 8—Fa—0
o K oy dx \dy . "ay' b_

This is true for all n € C?[a,b] satisfying n(a) = 0. In particular it is true for all n € C?[a, b]
satisfying n(a) = n(b) = 0, so

b (oF d [OF oF1° )
/a n <8y e <8y’>> dz + [nay,]b 0, Vn € C?[a, b] such that n(a) = n(b) =0

At an extremal, we must have

Then FLCV = Euler’s equation again. Now we are left with

oF 1" OF
ol =010 5

b r=b
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Since n(b) is arbitrary we must have

OF _

This is the natural boundary condition applied at any boundary where no boundary condi-
tions are prescribed in advance.

Trivial Example
Minimise the length

b
Tl = [ VI

subject to y(a) = ¢ but y(b) kept free.

Euler equation is
y' =0 = y = Ax + B.

Boundary conditions.

Imposed boundary condition

yla) = ¢
Natural boundary condition
oF !
i B at x = b.
%y 1+ (y)?
Thus y/(b) = 0. Thus A =0 and 3y =0, i.e.
y=c

as expected.

Constraints

Suppose we have to minimise or maximise a functional

b
J[y] _/ F(xaya y/) dx

subject to y(a) = ¢ and y(b) = d [can easily generalise to natural boundary conditions] and y has
to satisfy the constraint

b
Kly| = / G(z,y,y)=C (constant).
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d beoooo _, y(b) specified

y(b) unspecified

Figure 3:

Example
The minimal length curve enclosing a given area

b
min J[y] :/ V14 (y)?de

subject to y(a) = ¢, y(b) = d and

Now if we perturb about the extremal y(z) then

oG oG

b
el Il 2
Ky + en) K[y]—i—e/a (n8y+n8y’> dz + O(e”)

brooag  ,0G )
~ O+€/a <’I78y+776y,> dx—i—O(e)
= C,

so 1 is not arbitrary. It has to satisfy

brooaa  ,0G
/G<nay+nay,> dx = 0.
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d b y(b) specified

y(b) unspecified

Figure 4:

A trick to get around this problem is to add two perturbation functions, ¢ and 7 satisfying
¢(a) =n(a) = £(b) = n(b) = 0. Then

OG
Kly+en+ 468 ~ K[y]+e/ (na )d +5/ (f——i—f—) dz + O(€?)
= C. (22)
The idea now is to fiz the function £(x) and, for any subsequently chosen 7(x), then to determine

J as a function of € in such a way that (22) is satisfied. Thus n will be arbitrary, but we have to
choose 0(¢) in the right way. In order to be able to choose such a § we need

oK b oG  ,0G b roG 4 [(0G
WH,EZO‘/@ (<5 +<5y) o= [ <(5 i (5)) 470
oG d [dG
3 i (o)

(cases where this is zero are degenerate and uninteresting), we can certainly choose £ so that this
is true. Let us choose such a . Then, for any subsequent choice of 1, we can determine § as a

Provided
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function of € so that (22) is satisfied. Now

Tly+en+5(e)e] ~ J[y]+e/ab (”gﬂ'g;) di + 6(c ( (TF ) do
+0(&)
~ J[y]+e/b(gF+ngF> dx+e— / <8F ,> dz
+O(e2).a

Since y is an extremal we must have
b (OF d (OF ds b (OF d (OF
— dx ——— | =— ]| dx=0. 2
/an<3y (31/)) +d(0)/a§<3y dz (31/’)) r=0 2
Similarly, integrating by parts in (22) gives
b oG d (0G ds b (oG 4 [0G
— - — d 0 — - dz = 0. 24
/ (f?y <8y>) o de()/a§<3y (3y>> o 24
Solving (24) for dj/de and substituting into (23) gives

b9 d (OF 0G
/a n (ay(F—)\G) — @ <ay, —)\6y/>> d.Z'— O, (25)

where A is a constant, defined as the ratio of two definite integrals involving the arbitrary fixed

LG (5) -

(5 ))

Since (25) is true for any n € C?[a, b] satisfying n(a) = = 0 the FLVC implies that F — A\G
satisfies Euler’s equation:

function &:

aay(F—AG)—d(aa, (F— AG)) =0.

A is called a Lagrange multiplier and is fixed by satisfying the constraint

b
/ G(x,y,y")dx = C.

This can also be thought of (and is taught in many books as) introducing a new functional (e.g.

for C' =0)

~

b
Jz/F(xy, ") = AG(x,y,y) dz

and minimising over y. Then X is determined from the constraint

b
/ G(z,y,y)dz = C.
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Simple Example
Minimise

[ weyras

over all C2[0, 1] functions satisfying y(0) = y(1) = 0 and

/Oly(:c)dle.

So F = (y)?, G =y, giving

d
“A——(2y)=0
dm(y)
so that 2 \
-1
y(:v):——j —|—Ax—|—B:—$(x4 ),

after imposing the boundary conditions. Then fix A by imposing the constraint

1
A
/0 y(a:)dx—ﬂ—l.

y(x) = 6z(1 —x).

Thus A = 24 and

Generalisation to higher derivatives

Suppose we want to minimise

b
JMz/FWM%MMx

29

subject to y(a) = ¢, y(b) = d, y'(a) = m, y'(b) = n. Perturbing y to y + en and linearising in 7

gives

b
oF  ,0F  ,0F ,
Jly + en) J[y]—i—e/a <776y—|—778y,+77 6y”> dz + O(€%).

At an extremal we have

b
oF ,OF y OF B
/a <n8y+nay,+n By dz =0

= /b aj_iaj+d728i dz + a£+/aF_i
a nay L oy’ a2 oy’ v n@y’ nay” Tz

Thus the Euler equation is
oF A (9P & (0P _,
oy dx \ oy dz2 \oy" )

This generalises in the obvious way.
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More dependent variables

Suppose we want to minimise

b
Jy, 2] =/ F(z,y,y, 2 2)da

subject to y(a) = ¢, y(b) = d, z(a) = m, z(b) = n. We perturb and consider J[y + en, z + §¢].
Since we can vary n and £ independently we get an Euler equation for each variable:

a(ory _ or
dz \0oy' )] 0y’

4 (oFy _ oF
dx \ 02/ 9z

These will be coupled in general.

Pointwise constraints

Once we have more dependent variables we can consider pointwise constraints of the form
G(y,z) =0. (26)

The condition for stationarity is

2@ 2@l o

However, now 7 and £ cannot be assigned arbitrarily because of the constraint (26). Taylor
expanding (26) gives

oG 3G, |

oy T~

Multiply by a Lagrange multiplier A (which in this case is a function of x) and integrate to give

b 0G oG
/a ()\ayn + )\825> dz = 0.
Subtract this from (27) to give
b
oF d [oOF oG OF d [OF oG
[ (5o Gr) 25 e 156 (52) 250 e) o

Now suppose we choose A so that the coefficient of 7 vanishes. Then since £ can be chosen
arbitrarily its coefficient must also vanish. Thus

or_ 4 (or) 06 _
oy dx \ 9y oy ’
or 4 (or) 06 _
0z dx \ 0¥ 0z ’

These two equations and (26) form three equations for y, z and A\. Note that again this is the
same as minimising F' — AG.
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More independent variables

Consider

_ / /D F(z, $, b, 6y) da dy

where ¢ = ¢(z,y), D is a region of the (z,y) plane, and ¢ satisfies ¢ = 0 on 9D.

Figure 5:

F oF
Jp+en] = //( +7]xa¢x+nya¢y> dr dy

Now instead of integration by parts we need to use Green’s Theorem. From the identity

V-nf)=Vn-f4+nV-f£,

we find
// (Vn-f—i—T]V-f)dxdy:/ nf-nds.
D oD
Thus, with
- (2800
by 0by )’
we find

1, G, i) e = = ] (o (35) oy () =

+/ (8Fn +8Fn>ds
on \ g, = Bg, ")
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(-0 () -3 () oo

for all n so the Euler equation (or Euler-Lagrange equation) is

0 (OF\, 0 (9F\ _0OF
o (35c) s (56,) = 5

Thus

This is now a p.d.e.

Hamiltonian

Suppose a function y(z) satisfies Euler’s equation

A (or\ _oF
de \0y') 0Oy

for some function F(x,y,y’). Note that

dF  9F 0Fdy OFdy

dr 8x+8ydx+87y’a
_OF d (0F\dy OFd%
- 8:c+da:<8y’>dx+8y’dx2

_OF d (AR _oF 4 ( oF
T 9 dz \dzdy' ) or  dx y@y’ '

Therefore, if we define the Hamiltonian

,OF
=Yy oy
Y
then
dt __or
de Oz’
If F does not depend explicitly on x (the problem is autonomous) then
oF
= —0
ox

and hence H = constant. In this case H is a conserved quantity (often identifyable as energy).

Example
Suppose

F=\1+(y)2+y"

32
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The Euler equation is

This is not very nice...but

/
1
( — /1 y —_—— y2 = constant,

\/l—l—( 1+ (y')2

gives a first integral of the o.d.e.

33

We can transform the Euler equation into canonical form by changing independent variables.
Think of F and H as functions of (z,p, q) instead of (z,y,y’), where

_ _OF.
1=y P= G

p is known as the generalised momentum. Then, then definition of H is

H=py - F

(where 3/ is a function of z,p, ¢) and Euler’s equation is

So

ap _or
de Oy’
oH ,0p  OF 6p

oy Py oy TV ay

by the Chain rule, since p = 9F/dy’. But

Thus

Also

But

Thus

OH  0H dq L OH OH 0p  OH 0Op
oy dq oy ' Opdy Op oy

,_dg 0H

dx 8p
W 0F_ 0 on on
de 0y Oy by Yoy oy’

OH _0HOp 0HOq _ ,Op  OH
9y opoy  oqoy Yoy oq

dp ap ,0p OH  OH

de ~ 8y y@y dqg  Oq’
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Thus

b _ om g _oH
de 9q

dz ~ ap°

These are Hamilton’s equations. Note that

dH 0H 8H@ 8H%_6H dgdp dpdg

Az oz  Opdr  Ogdw 0z deds dzde
Thus if
OH

or Y

then H is conserved as expected.

Free boundaries

Minimise )
Iy b = / F(z,y,y)do

subject to y(a) = ¢, y(b) = d where b is unspecified.

b+ef
Jly + en; b+ €f] / F(z,y+en,y +en')da

oF

- s+ ef b (n50 +5E) ar+ 56,00/ 0) | + 0,

Taylor expanding the boundary condition

d = y(b+eB)+nb+ed)
y(b) + € [BY/(b) + n(b)] + O(e?)
= d+¢€[By(b) +n(b)] + O(*).

Thus

At an extremal ,
oF ,OF , B
(05, 15 ) do e+ BEG0).40) =0,

Integrate by parts to give

50000+ [ 50 - & (2 ars [o2F

Hence

_on
oz

34
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Thus FLCV gives us Euler’s equation and the extra free boundary condition

oF
= y/@ atx =0
(i,e. H=0).
Example
minimise

Iy, b] = /Ob (; (y) + %y2 + 1> dz

subject to y(0) = 0, y(b) = 1. Euler’s equation is

/"
Yy =Y.
Solving and applying the boundary conditions gives
_ sinhx
sinhb’
The extra free boundary condition is
1 2 1
E(y') —§y2—1:Oata::b.
This gives
h?b 1
%23 = b=tanh™! <>
sinh” b V3
CHECK

sinh x 1
—— = — coth .
J[sinhb’b] 2cot b+b

This is minimised when

1 1
——cosech’h+1=0 = b=tanh™! () .
2 V3
OR note that
1 1 5

H= B (y')2 oY - 1 = constant (autonomous) =0

by the free boundary condition. Hence
v =Vy?+2.
Thus q
o= [ A =t (4.
VY2 +2 V2
Thus
y = V2sinhz.

Then the boundary condition y(b) = 1 gives

b =sinh™! (%) = tanh ™! (\%) :
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4 Optimal control

Example
Suppose x(t) satisfies the differential equation

T =u-+z,

where u(t) is our control variable. Suppose we want to vary u so as to control x. For example,
staring from z(0) = a we may wish to arrive at z(7T") = 0.

Is this possible? Yes! Just choose any function x(t) satisfying the initial and final condition and
then read off the required control as
u=2x—.

However, in practice there may be bounds on the achievable u, e.g. —1 < u < 1. This will
leads to bounds on the initial condition for which the desired final condition is achievable. In the
example if v < 1 then the maximum achievable value of z(T') — 2(0) occurs when

i—r=1 = x=-1+Ae"=-1+(1+a)"

Then x(T) = 0 gives a = —1 + e~ 1. The problem is controllable only if a is greater than this
value.

We may wish to find the control which minimises a cost function. For example, the work done
agaist friction may be
T
/ ut dt.
0

This we may want to define the cost function as

T
C:/ u(u + ) dt
0

and ask for the control which achieves the goal and minimises C[z, u].

So, in general we may find the following optimal control problem:
T
minimise Clz, u] = / h(t,z,w)dt,
0

over all controls u(t) satisfying the control problem

T = f(t,z,u), z(0) =a, xz(T)=n0.
This now resembles a variational problem, with the control problem acting as a constraint.
Let us approach it by perturbing about the extremal functions:

Oh Oh

T
Clz + €€, u + en] :C’[x,u]+e/ <§8x+nau> dt + O(€?),
0
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while

i+ €€ = ft,x,u) + <§f+ gf>+0( )

£(0) =0=¢&(T). Since & = f(t,z,u) for an extermal function we need

T v on  Oh
/0 (gaer a>dt_0

of of
£= S50 Tay

with £(0) = &(T") = 0. We require df/0u # 0, otherwise the control v has no influence on the
problem. Then we can solve for
. f af
and plug it into the integral
oh of f
— =0.
f (g (<50 50/ ) o

As usual integrate by parts to give

T (0h of on /Of d [Oh | Of o _,
/05<ax‘am/m‘dt(au/w>) F/&J

Since £(0) = &(T") = 0 the boundary term is zero. Hence we find that = and u have to satisfy the

o.d.e.
d (Oh | Of oh  Of /
w5/ %) 55/ 5%)

This o.d.e. is coupled with the control problem

for all £ and 7 satisfying

dx

a:fv

with (0) = a, (T") = b. In principle two coupled first order o.d.e.s with two boundary conditions
gives a unique solution.

Return to the example

f=u+z, h =u(u+ z),
so that we get
—2u+z)=u— 2u+x),

l.e.
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20+ 3 =—(u+x),

along with the control problem
T=u+z.

Adding gives
i+ & =0,

so that u + 2 = A constant. Then & = A, 2(0) = a, z(T) = 0 gives

T = a+ At, A=-—

t
rz=a(|l— =
(-7),
(constant velocity is the most efficient), and the optimal control is
t 1
=a|l=—-1—=]).
u=a (T T)

Note the existence of a first integral which facilitated the solution of this example. As in the
calculus of variations this will be generall true for autonomous problems. To see this define the

Hamiltonian on | of
H(taﬂ%u) =f <8u/8u> —h

Then direct differentiation and the chain rule leads to
Al _ (0 [0\ 0f oh
dt  \ou/ ou) ot 0Ot’

so if the problem is autonomous, then

a
T?
so that

of _oh _
ot ot

and H is conserved. In the example f = v+ x, h = u(u 4+ z) and

0

H=(u+2)2u+z)—ulu+z)=(utz)?

which is conserved as we found before.

Example 2
Solve
T =x+u, z(0) =0, =z(1)=1,

where u is chosen to minimise
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Now f =z + u, h = u?, so the Hamiltonian is
H = (z+u) x 2u —u? = u? + 2zu.
Completing the square
(u+z)=H*+2> = u+x=+VH+ a2
Choose the plus sign (4 should be positive from the initial and final conditions) to give

=+ H+ 22.

Therefore

; / dx —_— < x >

= —— = SI1 =1 I
VH + 22 vVH
Therefore
o =V Hsinht.

The final condition (1) = 1 determines H, to gives

inh ¢ —

r = Ln , H = cosech?1, U= .e
sinh 1 sinh 1

4.1 The Pontryagin Maximum Principle

Form of problem : The state vector x of a system obeys
= f(z,t,u), z, f € RY,

where u is a control which we are free to choose subject to u(t) € Uy(z(t),t), the set of feasible
controls which may depend on x and t. We have to choose u in such a way as to maximise (or
minimise) some “gain” function

T
/ h(z,t,w)dt, h(z,t,u) € R.
0

Boundary conditions: typically x(0) given; 7" and z(7') may both be given, or T fixed but z(7T)
free, or z(T) fixed but T free, etc. E.g. if z(T) is given, T is free and h = 1 we have a minumum
time control, fOT hdt =T = time to get between specified end states.

Procedure (Pontryagin Maximum Principle) Introduce a vector p € R™ and define

Hg(%’, ta u7p) = h(l’, ta U) + pf(-’L', ta u) = h(.’IJ, ta u) + Zpifi(xa ta u)
i
(The “pre-Hamiltonian”.) Let ug(z,t, p) be the value of u in Ug(x, t) that maximises Ho(z,t,u, p),
and let the Hamiltonian

H(z,t,p) = max {Ho(z,t,u,p) :u € Us(x,t)} = Ho(x,t,uo(x,t,p),p). (28)
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Then the optimal trajectory is found by solving

H
t = f(z,y,uo(z,t,p)) = aap (if max is attained),
,_ om
b= Ox

(system of 2n ode’s), subject to

(i) the given value of z(0),
(ii) given value of z(T'), or p(T) = 0 if z(T) is free,

(iii) given value of T', or H = 0 at T if T is free.

Notes
(i) Can replace max with min throughout.

(ii) p is called the dual variable vector, adjoint, co-state.

Example Suppose x € R, & = u, and u is restricted by —1 < u < 1, and from some initial state
you have to reach z(7") = 0 in minimum time 7". Take the start vector to be

(5)=(3).

so the differential equations are

ijl = X2,

To = u,
i.e.

_ T2

f - ( u > .

We want to minimise -
T—/ 1dt, so take h =1,
0

and we have

| (x0,%0) ast=0,
(w1,22) = { (0,0) ast=1T.

Then
Ho=h+pf=1+piz2+ pou,

where p1,p2 are conjugate to x; and xo respectively. Hence

H =min Hy = 1+ p1xs — |p2], ug = —sign(pz).
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Then
OH
b1 a$1 ’
. — _O0H __

We already see that

(a) the optimal trajectory will use v = 1 only: “bang-bang” control.

b) u Changes between 1 at most once on the optlmal tra'ectory since P2 monotonic and
J
ug = SigIl(pQ).)

What does this mean in the phase plane?

7.

N\

trajectories with u = +1 trajectories with u = —1

After the first switch, we must be on one of the dark paths. These are called the switching

locus. Hence we must follow one family until we hit the switching locus and the the other until
z=1z=0.
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apply u = —1

\

apply u = +1
S~

This is the “time optimal” control. (Can also find p; and ps etc by using the boundary conditions,
but using (a) and (b) and the phase plane is easier.)

Note wu does not vary continuously on the optimal trajectory. There is a discontinuity in &
where u changes sign. In some applications u© may not be a real variable or vector at all, e.g.
sound insulation: a board is to be built of layers of different materials subject to constraints on
weight, thickness, cost, so as to minimise sound coming through. This is optimal control

t — =,
u — what material used at x,

state — displacement/stress at x
(all assumed o e?). Consequently we should prove the Pontryagin Maximum Principle (P.M.P.)
by a method not assuming and continuity in .

“Proof” (Why the method usually works) First we prove the following
Lemma Suppose

g(ya Z) = maX{f(‘Tvyaz) RS X(y)} = f(xo(:% Z)7y7 Z), a:o(y,z) € X(y)

Then 5 of
g —
&(ya Z) - Oz ($D(y, 2)7%2)-

Proof If f is differentiable

9 of

9 d
9, W2 = 5, @y )y, 2) + £($0(y, 21 2) 22 2)

0z

But xg defined to be maximum implies that

0
aii(x()(ywz)?y) Z) =0.



Further Mathematical Methods 43

But this inequality holds even if f is not differentiable in . We have

f(ﬂjo(y, Z)a Y, Z/) < g(y7 Z/)

with equality at z = 2’. Hence the 2’ derivatives are equal at z = 2/, i.e. the required result.
Depends on z being in the interior of the set over which f is defined and on f, g being differentiable
in z. Does not depend on any differentiability in x or y. [J

Now, to prove the Pontryagin maximum principle we have to show that there is a p defined on
the optimal trajectory such that

(i) the optimal control u is the value maximising H.
0H
(ii)) p= 5, °n the optimal trajectory.
x
(ii) The boundary conditions hold.

Define T
F, )= sup/ h(z,t,u)dt starting from z(7) = &,
T
(subject to & = f, u € Ug(x,t) etc.) Then F(x(0),0) is the required maximum. Assume f, f are

continuous in (z,t) and F is C'. We are going to show that p = F, (i.e. p; = OF/0x;) is the
required function.

From the point (z,t) one possible control is to hold w constant (some value in Ug(x,t)) for
small time §, and then apply the optimal control from where you reach (z1,t + ). Here x1 =
x~+ f(x,t,u)d + o(d), so h(x,t,u)d + o(d) + F(z1,t + 0) < F(x,t). Subtract F(z,t), divide by ¢
and let 6 — O:

h(z,t,u) + Fp(z,t) f(z,t,u) + F; <0, (29)

for all u € Ug(x,t). (i.e.
oF
h(a:,t,u) + E 87]01 + Ft < 0.

If we integrate this inequality along any feasible trajectory (optimal or not) we have
T
/ h(z,t,u) dt + F(a(T), T) — F(2(0),0) <0,
0

/T Wz, t,u) dt < F(2(0),0).
0

(remember h > 0.) This equation also clearly follows from the definition of F', since F'(x(0),0)
is the supremum of the left-hand side over all possible controls. However, this definition of F
means that there are controls that get arbitrarily close in this inequality. For simplicity, assume
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equality is attained for some optimal control. Then, for the optimal trajectory, equality holds

in (29) for almost all ¢, and again for simplicity assume it holds everywhere. So (29) says
Ho(z,t,u, Fy(z,t)) + Fi(z,t) <0,

for all u, with equality for the optimal trajectory. Hence the optimal control does maximise H
for p = F, [(i) is satisfied], and we also see that the maximised value is

H(x,t, Fy(z,t)) = —F(z,1). (30)
Now assume that H is C' and F is C2. To derive the p equation, first note that by (28)
Ho(z,t,uo(z,t,p), p') < H(z,t,p),
with equality at p’ = p. Hence (by the previous Lemma) the p’-derivatives must agree at p, so
[l t,uo(z,t,p)) = Hp(z,t,p). (31)

Then the derivative of p along the optimal trajectory is

p= i (Fm(wvt)) - Fxt(wvt) + Facacf(x7t’ u0<x’t7 Fx))

dt
But by (30)
0
Fu(x,t) = ~ (H(z,t, F,))
= —Hy(x,t,F;) — Hy(z,t, Fy)Fpp
= —Hx(l‘, t, F:t:) - f(l'a t, FJ:)F:J:x
by (31). So

p - _Hl‘(x7 tv Fx)
as required [(ii) is satisfied].

For the boundary conditions, note that if 2(T") is free then F'(x,T) = 0 for all z, sop = 0F /0x = 0
at T. If T is free but z(T') = xp is fixed, then F(zp,T) =0, so

_OF

0= = —H(T)

ET_

by (30). So (iii) is satisfied.

Note If max is replaced by min, all inequalities are reversed and the “proof” is still OK.
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