Further Partial Differential Equations
Problem Sheet 3

NB: Updated on 28/2/2020. Problem 1 has been developed; Problem 3 has now
been reduced to help coincide with the lectures. The rest of problem 3 that originally
featured on this sheet will now be moved to Sheet 4 so don’t worry if you had already
attempted part of that question.

1. A solid-liquid interface with a density change
Consider the one-dimensional Stefan problem for melting of a solid considered in lectures.
The full system behaviour may be described by equations expressing conservation of mass,
momentum and total energy, which are given respectively by
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where p is the density, v the velocity, p the pressure, T the temperature and
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is the enthalpy of the system, which is the total energy per unit mass, including heat. Here,
¢ is the specific heat and L the latent heat.

Suppose that liquid occupies a region 0 < z < s(t) and solid occupies a region s(t) <z < 1.

(a) Show that when the density of the fluid and the solid are the same then v = 0 and
the temperature in the liquid and the solid is described by the one-dimensional heat
equation

o ) = 5 (K50 =0 @)

(b) Now suppose that the densities in the solid and the liquid phases are different. Integrate
(1) over a domain 21 < x < xo that contains the interface (so z1 < s(t) and x5 > s(t)).
Divide the integral into x; < x < s(t) and s(t) < z < x9 and take the limit as
x1 — s(t)” and 2 — s(t)T to show that the following jump condition is satisfied by
the density:
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(¢) By performing an identical process for (2) and (3) obtain the jump conditions
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(d) Explain how these reduce to the Stefan condition presented in lectures when the solid
and liquid densities are equal.

2. Linear stability of a two-dimensional Stefan problem
Consider the linear stability of the free boundary problem depicted in Figure 2.2 in the limit
St — 0. Assume that the free boundary is moving at constant speed V under a constant
temperature gradient —A; > in each phase before being perturbed, so the solutions take the
form
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and the position of the free boundary is given by
x=Vit+E&(y,t).

By linearising the problem with respect to u;, ts and &, show that perturbations with
wavenumber k£ > 0 and growth rate o are possible provided

o AL+ K)o

Vk M\ — KX



3. One-dimensional welding

(a) Derive the dimensionless one-dimensional welding problem (2.31).

(b) Show that the normalised heating coefficient is given by
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where V is the applied voltage. Assuming that we require ¢ = O(1) to melt the plate,
roughly how high must the voltage be to achieve melting?



