Private-Key Encryption

Federico Pintore!

"Mathematical Institute

UNIVERSITY OF

0),430)328D,

1 of 40

Outline

0 Computational Secrecy
9 Pseudo-Random Generators and Stream Ciphers

e More Security Definitions: CPA and CCA

0 Pseudo-Random Functions/Permutations

Outline

° Computational Secrecy

Computational Security

Definition (Concrete version)

An encryption scheme is (¢, €)-secure if any adversary running for
time at most 7 succeeds in breaking the scheme with probability at
most e.

Definition (Asymptotic version)

An encryption scheme is secure if any probabilistic
polynomial-time algorithm in n (PPT) succeeds in breaking the
scheme with at most negligible probability (in #).

| A

A\

The running times of the encryption scheme and of the PPT
algorithm, and the success probability of the latter are functions
of n.

4 of 40
I

Notation

Polynomial time algorithm in #: its running time f(n) belongs to
O(p(n)) for a given constant positive polynomial p(n) € N[n]
(3N, cs.tf(n) <cp(n)foralln > N).

Negligible function g(n): for each positive polynomial p(n) € Nin],
there exists N s.t. g(n) < 1/p(n) foralln > N.

Probabilistic Algorithm: the algorithm has access to a random
source.

50f40

Perfect Indistinguishability

Perfect Indistinguishability Experiment Privk®* "

Challenger Ch Adversary A

mo,my,|mo|=|m|

b<s{0,1}

Enelm), Outputs their guess b/

Definition

An encryption scheme is perfectly indistinguishable if for every
adversary A the following holds:

Pr[PrivkPEe N = 1] = 1/2

Where PrivafgeCt_'ND — 1if ¥’ = b, and 0 otherwise.

Computational Indistinguishability

Adversarial Indistinguishability Experiment PrivKSy,

Challenger Ch Adversary A

mo,my,|mo|=|mi|

b<s{0,1}

c=Enc(k,my

) Outputs their guess b’

Definition

An encryption scheme is computationally indistinguishable if, for
all PPT adversary A, there exists a negligible function negl(n) s.t.

Pr[PrivKS: = 1] < 1/2 + negl(n)

Vyr}?ore PrivK& = 1if ' = b, and 0 otherwise.

* Does a computationally indistinguishable private-key encryption
scheme exist?

* Does a computationally indistinguishable private-key encryption
scheme exist?

e Does a computationally indistinguishable private-key encryption
scheme with |k| < |m| exist?

80of40

* Does a computationally indistinguishable private-key encryption
scheme exist?

e Does a computationally indistinguishable private-key encryption
scheme with |k| < |m| exist?

What if we use pseudo-random generators?

80of40

Outline

9 Pseudo-Random Generators and Stream Ciphers

Pseudo-Random Generators (PRGs)

e Pseudorandomness is a property of a distribution on strings.
Say you have a distribution X on ¢-bit strings that assigns some
probability to every string in {0, 1}*. Pseudorandomness means
that sampling form X is indistinguishable from sampling a
uniform string of length ¢.

10 of 40

Pseudo-Random Generators (PRGs)

e Pseudorandomness is a property of a distribution on strings.
Say you have a distribution X on ¢-bit strings that assigns some
probability to every string in {0, 1}*. Pseudorandomness means
that sampling form X is indistinguishable from sampling a
uniform string of length ¢.

« |deally, we want a PRG to efficiently produce, from short seeds,
longer bit strings that appear uniform.

10 of 40

Pseudo-Random Generators PRGs

Definition

LetG : {0,1}" — {0,1}*™ a deterministic polynomial-time
algorithm in n, where ((n) > n. G is a secure pseudorandom
generator if for all PPT distinguisher D (also called statistical test),
the advantage

Advl(’;i)(n) = | Pr[D(r) = 1] — Pr[D(G(s)) = 1]| < negl(n)

where the probabilities are taken over uniform choice of
s € {0,1}", r € {0,1}*") and the randomness of D.

e D outputs 1 when their guess is pseudorandom string.
» /(n) is called the expansion factor of G.

11 of 40

Pseudorandom Generators

e Do PRGs exist? Can we construct them?

12 of 40

Pseudorandom Generators

e Do PRGs exist? Can we construct them?

e Notif NP =P

12 of 40
I

Pseudorandom Generators

e Do PRGs exist? Can we construct them?

e Notif NP=P

e What is the weakest assumption under which we can construct
PRGs?

12 of 40

Pseudorandom Generators

Do PRGs exist? Can we construct them?

Not if NP = P

What is the weakest assumption under which we can construct
PRGs?

It is the existence of one-way functions (i.e. easy to compute-
hard to invert)

12 of 40

Pseudorandom Generators

Do PRGs exist? Can we construct them?

Not if NP = P

What is the weakest assumption under which we can construct
PRGs?

It is the existence of one-way functions (i.e. easy to compute-
hard to invert)

Practical constructions using stream and block ciphers

12 of 40
I

Fixed-length Encryption scheme using a PRG

Let G be a pseudorandom generator with expansion factor ¢(n).
For messages of length ¢(n), we define the following encryption
scheme E = (KeyGen, Enc, Dec):
* KeyGen(n) : It picks a uniform bit string k of length n, i.e.

ke {0,1}".
e Enc: it takes as input a key k € {0, 1}" and a message

m € {0,1}*™ it outputs

¢ < Enc(G(k),m) =G(k) &m

* Dec : it takes as input a key k € {0,1}" and a ciphertext
¢ € {0,1}") it outputs

m < Dec(G(k),c) = G(k) @ c.

13 of 40

If G is a secure PRG, then the encryption scheme E derived from
G is computationally indistinguishable.

(By reduction) Let A a PPT adversary against the scheme E. A is
exploited as a subroutine to construct a distinguisher D.

o D receives a bit string w € {0, 1}

o D runs A to obtain two messages mg, m; € {0, 1}*"

e D chooses arandom b € {0,1} ad sends ¢ = w @& my, to A

* upon reception of »’ from A, D outputs 1 if b = b’, 0 otherwise.

| Pr[D(r) = 1] = Pr[D(G(s)) = 1]| = | Pr[PrivKZ5p = 1]—
Pr[PrivKS: = 1] = [1/2 — Pr[PrivKS}; = 1]| < negl(n)

O

14.01.40. v

Stream Ciphers

e Terminology is not standard: it is either considered to be
practical instantiations of pseudo-random generators or the
encryption scheme which uses it.

e They produce as many random-looking bits as exactly needed.

* They are more flexible (no upper bound on the number of bits)
and efficient (each application takes the exact number of
random-looking bits that it requests)

15 of 40
I

Stream Ciphers

e A stream cipher consists of two main deterministic algorithms:

e Init(s, IV): takes a seed s and an optional initialization vector 1V,
and outputs an initial state sty

* GetBits(sz;): takes the i-th state information st; and outputs a bit
y and an updated state, i.e. sty

16 of 40

Stream Ciphers and PRGs

Construction of a PRG Gy:

sty + Init(s, IV)

fori=1,---,¢;
(y,', St,') < GetBits(sti_l)
return y;,--- , Yy

17 of 40
I

Stream Ciphers and PRGs

Construction of a PRG Gy:

sty + Init(s, IV)

fori=1,---,¢;
(y,', Sti) < GetBitS(Sti_l)
return y;,--- , Yy

A stream cipher is secure if:

e it takes no IV

e for any positive polynomial ¢(n) € N[n| with ¢(n) > n, Gy is a
secure PRG

17 of 40
I

Examples of Stream Ciphers

Linear-Feedback Shift Registers (LFSRs)

RC4 by Ron Rivest 1987 (recent attack: AlFardan et al. 2013)

eStream: Salsa 20, ChaCha (2008), and SOSEMANUK

eStream competition page:
http://competitions.cr.yp.to/estream.html

18 of 40
I

http://competitions.cr.yp.to/estream.html

RC4

The state in RC4 consists of the triplet (S, i,j). S is a 256-byte

array that contains a permutation of the numbers 0, - - - , 255.
Both i,j € {0,--- ,255}.

» The key can be up to 256 byte long.

19 of 40

RC4- the Init() algorithm

Input: a 16-byte key
Output: Initial state (S, i,))
fori=1,---,255:
S[i] + i» it sets S to the identity permutation
k[i] < k[i mod 16]» it expands the key to 256 bytes by repetition
j=0
fori=1,.---,255;
jJj+S[i]+k[] mod 256
Swap S[i] and S[j] » “pseudo-random” swapping of S’s elements
i<0,j<0
return (S, 1,j)

20 of 40

RC4- the GetBits() algorithm

Input: Current state (S, /)

Output: byte y, updated state (S, i,)

i< i+1 mod 256

j«j+S[i] mod 256 » changing j in a “pseudo-random” way
Swap S[i] and SJj]

t < S[i] + S[j] mod 256

y « S[i]

return (S,i,j),y

21 of 40

RC4: Security Analysis

e Biases in the second output byte of RC4: the probability that it
is 0 is 1/128 instead of 1/256 for S = 256.

» Biases in further bytes

» Conclusion: not secure, nevertheless, “its usage is still running
at about 30% of all TLS traffic” (Garman et al. March 2015)

22 of 40

RC4: Security Analysis [AlFardan et al. 2013]

100%

80%

60%

Recovery rate

m;ﬁv,

"ol |

A

: PVW%

0 16 32 48 64 8 9 112 128 144 160 176 192 208 224 24D 256
Byte position

Figure: Recovery rate of the single-byte bias attack (based on 256
experiments)

23 of 40
I

Outline

e More Security Definitions: CPA and CCA

24 of 40

More security definitions are needed...

e Encryption schemes from secure PRGs are computationally
indistinguishable

e But what about multiple encryptions?

* What if the adversary wants to be challenged on two vectors of
messages instead of two single messages?

» Obviously, he can trivially win the game (why?)

25 of 40
I

More security definitions are needed...

e Encryption schemes from secure PRGs are computationally
indistinguishable

e But what about multiple encryptions?

* What if the adversary wants to be challenged on two vectors of
messages instead of two single messages?

» Obviously, he can trivially win the game (why?)
» Conclusion: deterministic encryption schemes are NOT secure

under the multiple encryptions model.

25 of 40
I

CPA Indistinguishability Experiment Privk’ys,

Challenger Ch Adversary A
k = KeyGen(n) Access to an oracle Enc(k, -)

mo,my, |mo|=|m |
(_

b+ {0,1}

=Enc(k,
=Enollm), Access to an oracle Enc(k, -)

Outputs their guess &’

Definition
An encryption scheme E is CPA-secure if for all PPT A it holds:

Adv(n) = Pr[PrivKi{”%(n) =1] < 1/2 +negl(n)

Where PrivK%.(n) = 1 if &’ = b, and 0 otherwise.
26 of 40 ’

CPA-security for multiple encryptions

* A PPT adversary A has access to an oracle LRy ;, where k is a
key and b is a random bit.

» A queries the oracle on pair of messages (mo i, m; 1),
(MQQ, m172), ceey receiving Enc(k, mb71>, Enc(k, mb72>, ..

» A submits a guess b’ € {0, 1}

27 of 40
I

CPA-security for multiple encryptions

* A PPT adversary A has access to an oracle LRy ;, where k is a
key and b is a random bit.

» A queries the oracle on pair of messages (mo i, m; 1),
(I’)’L()g, m172), ceey receiving Enc(k, mb71), Enc(k, mb72), ..

» A submits a guess b’ € {0, 1}

If a private-key encryption scheme E is CPA-secure, it is
CPA-secure for multiple encryptions.

27 of 40
I

CPA-security for multiple encryptions

* A PPT adversary A has access to an oracle LRy ;, where k is a
key and b is a random bit.

» A queries the oracle on pair of messages (mo i, m; 1),
(I’)’L()g, m172), ceey receiving Enc(k, mb71), Enc(k, mb72), ..

» A submits a guess b’ € {0, 1}

If a private-key encryption scheme E is CPA-secure, it is
CPA-secure for multiple encryptions.

The encryption cannot be deterministic (.4 can just query on
(m,m) and (m', m))

27 of 40
I

cca

CCA Indistinguishability Experiment PrivK®;

Challenger Ch Adversary A
k = KeyGen(n) Access to two oracles Enc(k, -), Dec(k, -)

mo,my,|mo|=|m|
%

b+ {0,1}

=Eneltm), ccess to two oracles Enc(k, -), Dec(k, -)°

Outputs their guess &’

Definition
An encryption scheme E is CCA-secure if for all PPT A it holds:

Adv(n) = Pr[PrivK%(n) = 1] < 1/2 4 negl(n)

28 of 40

Outline

Q Pseudo-Random Functions/Permutations

29 of 40

Pseudo-Random Functions

* A generalisation of the notion of pseudo-random generators:
we now consider a “random-looking” function.

e |tis the pseudo-randomness of a distribution on functions.
* We are interested in keyed functions, i.e.

F: {0, 1}% x {0, 1} — {0, 1}

Once k is chosen Fy : {0, 1} — {0,1}f, x — F(k,x) is a
single-input function.

 Fis length-preserving if the lie, = lin = Lou.

e Fis pseudo-random if the function Fy, for a uniform key «, is
indistinguishable from a function chosen uniformly at random
from the set of all functions with the same domain and range.

30 of 40
I

Pseudo-Random Functions

Definition

Let Func[X, Y] be the set of all functions fromX to Y.

F: K x X — Y Is a secure Pseudo-Random Function (PRF) if F
e s efficiently computable

e for all PPT distinguishers A

Advg;(n) = | Pr[A O (n) = 1] — Pr[AO0 (n) = 1]] < negl(n)

where f € Func|X, Y], k € K, and A has access to the function in
question, i.e. either f() and F().

v

Note that [Func[X, Y]| = |x|I"].

31 of 40

Pseudo-Random Permutations

A pseudo-random function F : K x X — Y is an efficient
pseudo-random permutation if the following hold:

* Fyisinjective and |X| = |Y|

e F is deterministic and efficiently computable

 F, ' is efficiently computable

320f40
I

Pseudo-Random Permutations

A pseudo-random function F : K x X — Y is an efficient
pseudo-random permutation if the following hold:

* Fyisinjective and |X| = |Y|

e F is deterministic and efficiently computable

 F, ' is efficiently computable

In practice: F : {0, 1}* x {0,1}" — {0,1}", where;

e 3DES: n = 64 bits, k = 168 bits

e AES: n = 128 bits, k = 128, 192, 256 bits

32 of 40
I

Strong Pseudo-Random Permutations

Definition

Let Perm, be the set of all permutations from {0, 1}" to {0, 1}".
LetF:{0,1}" x {0,1}" — {0, 1}" be an efficient length-preserving,
keyed permutation. F is a strong pseudo-random permutation if,
for all PPT distinguishers D, there exists a negligible function
negl(n) such that

| Pe[D/ 07" O () = 1] — PeDPOF O () = 1]] < negl(n)

where f € Perm,, k € {0, 1}*, and D has access to the functions in
question, i.e. either f(),f~"() or Fx(), F; ' ().

e Strong PRP =- secure PRP

e |Perm,| =2"!
33 of 40
I

Encryption using PRP

Let F: {0,1}" x {0,1}" — {0, 1}" be a pseudo-random
permutation. We define the following encryption scheme
E = (KeyGen, Enc, Dec):

* KeyGen : it takes n and outputs a key k € {0, 1}".

* Enc: it takes a key k € {0, 1}" and a message m, it picks a
random r < {0, 1}", and outputs

(co,c1) < (r,Fx(r) @ m).
» Dec: it takes a key k and a ciphertext ¢ = (¢, ¢;) and outputs
m < (Fi(co) @ c1).

34 0f 40
I

If F is a secure pseudo-random permutation then the encryption
scheme E is CPA-secure.

Let E' be a variant of E with a random permutation instead of F;.

Suppose that a PPT adversary A can make ¢(n) queries to the
encryption oracle (g(n) € O(p(n))).
Let . be the first component of the challenge cipher-text.

e case 1: r. didn’t appear in any of the encryption queries. Then
r. I8 @ uniform string and the probability to win the game is 1/2
(OTP is perfectly secret)

e r. appeared in at least one of the queries. The probability of
this event is at most ¢(n)/2".

Thus Pr[PrivK%z, (n) = 1] < 1/2 + q(n) /2"

35 0f.40.

We use A to construct a distinguisher D for the PRP.

On a query m € {0, 1}", D queries the oracle O on a uniform
r € {0, 1}", receiving y. Then they reply with (r,y + m).

If A wins the game, D outputs 1 (0 otherwise).

Pr{D/V(n) = 1] = Pr[PrivK®%, (n) = 1]
Pr(D"0 (n) = 1] = Pr[PrivK% (n) = 1]
Since F is a secure PRP we have

| Pt[D"0(n) = 1] — Pr[D'O(n) = 1]| < negl(n)

Thus Pr[Privke2 (n) = 1] < 1/2 + g(n)/2" + negl(n). O

36 of 40
I

Notes:

e the sum of two negligible functions is a negligible function

» the product of a positive polynomial in N[r| and a negligible
function is a negligible function

37 of 40
I

Further Reading (1)

[Nadhem J AlFardan, Daniel J Bernstein, Kenneth G Paterson,
Bertram Poettering, and Jacob CN Schuldt.
On the security of RC4 in TLS.
In USENIX Security, pages 305-320, 2013.

[Boaz Barak and Shai Halevi.
A model and architecture for pseudo-random generation with
applications to/dev/random.
In Proceedings of the 12th ACM conference on Computer and
communications security, pages 203—212. ACM, 2005.

[[Daniel J Bernstein.
The Salsa20 Family of Stream Ciphers.
In New stream cipher designs, pages 84—97. Springer, 2008.

38 of 40
I

Further Reading (2)

ﬁ Lenore Blum, Manuel Blum, and Mike Shub.
A simple unpredictable pseudo-random number generator.
SIAM Journal on computing, 15(2):364—383, 1986.

[Christian Cachin.
Entropy measures and unconditional security in cryptography.
PhD thesis, SWISS FEDERAL INSTITUTE OF
TECHNOLOGY ZURICH, 1997.

[3 Scott Fluhrer, ltsik Mantin, and Adi Shamir.
Weaknesses in the key scheduling algorithm of RC4.
In Selected areas in cryptography, pages 1-24. Springer,
2001.

39 of 40
I

Further Reading (3)

[§ Christina Garman, Kenneth G Paterson, and Thyla van der
Merwe.
Attacks only get better: Password recovery attacks against
RC4 in TLS.
2015.

[3 Itsik Mantin and Adi Shamir.
A practical attack on broadcast RCA4.
In Fast Software Encryption, pages 152—164. Springer, 2002.

40 of 40
I

	Computational Secrecy
	Pseudo-Random Generators and Stream Ciphers
	More Security Definitions: CPA and CCA
	Pseudo-Random Functions/Permutations

