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Computational Security

Definition (Concrete version)
An encryption scheme is (t, ε)-secure if any adversary running for
time at most t succeeds in breaking the scheme with probability at
most ε.

Definition (Asymptotic version)
An encryption scheme is secure if any probabilistic
polynomial-time algorithm in n (PPT) succeeds in breaking the
scheme with at most negligible probability (in n).

The running times of the encryption scheme and of the PPT
algorithm, and the success probability of the latter are functions
of n.
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Notation

Polynomial time algorithm in n: its running time f (n) belongs to
O(p(n)) for a given constant positive polynomial p(n) ∈ N[n]
(∃N, c s.t f (n) ≤ cp(n) for all n ≥ N).

Negligible function g(n): for each positive polynomial p(n) ∈ N[n],
there exists N s.t. g(n) ≤ 1/p(n) for all n ≥ N.

Probabilistic Algorithm: the algorithm has access to a random
source.
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Perfect Indistinguishability

Perfect Indistinguishability Experiment PrivKperfect−ind
A,E

Challenger Ch Adversary A
m0,m1,|m0|=|m1|←−−−−−−−−−

b←$ {0, 1}
c=Enc(k,mb)−−−−−−−→ Outputs their guess b′

Definition
An encryption scheme is perfectly indistinguishable if for every
adversary A the following holds:

Pr[PrivKperfect−IND
A,E = 1] = 1/2

Where PrivKperfect−IND
A,E = 1 if b′ = b, and 0 otherwise.
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Computational Indistinguishability

Adversarial Indistinguishability Experiment PrivKeav
A,E

Challenger Ch Adversary A
m0,m1,|m0|=|m1|←−−−−−−−−−

b←$ {0, 1}
c=Enc(k,mb)−−−−−−−→ Outputs their guess b′

Definition
An encryption scheme is computationally indistinguishable if, for
all PPT adversary A, there exists a negligible function negl(n) s.t.

Pr[PrivKeav
A,E = 1] ≤ 1/2 + negl(n)

Where PrivKeav
A,E = 1 if b′ = b, and 0 otherwise.
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• Does a computationally indistinguishable private-key encryption
scheme exist?

• Does a computationally indistinguishable private-key encryption
scheme with |k| ≤ |m| exist?

What if we use pseudo-random generators?
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Pseudo-Random Generators (PRGs)

• Pseudorandomness is a property of a distribution on strings.
Say you have a distribution X on `-bit strings that assigns some
probability to every string in {0, 1}`. Pseudorandomness means
that sampling form X is indistinguishable from sampling a
uniform string of length `.

• Ideally, we want a PRG to efficiently produce, from short seeds,
longer bit strings that appear uniform.
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Pseudo-Random Generators PRGs

Definition

Let G : {0, 1}n → {0, 1}`(n) a deterministic polynomial-time
algorithm in n, where `(n) > n. G is a secure pseudorandom
generator if for all PPT distinguisher D (also called statistical test),
the advantage

Advprg
G,D(n) = |Pr[D(r) = 1]− Pr[D(G(s)) = 1]| ≤ negl(n)

where the probabilities are taken over uniform choice of
s ∈ {0, 1}n, r ∈ {0, 1}`(n) and the randomness of D.

• D outputs 1 when their guess is pseudorandom string.
• `(n) is called the expansion factor of G.
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Pseudorandom Generators

• Do PRGs exist? Can we construct them?

• Not if NP = P

• What is the weakest assumption under which we can construct
PRGs?

• It is the existence of one-way functions (i.e. easy to compute-
hard to invert)

• Practical constructions using stream and block ciphers
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Fixed-length Encryption scheme using a PRG

Let G be a pseudorandom generator with expansion factor `(n).
For messages of length `(n), we define the following encryption
scheme E = (KeyGen,Enc,Dec):
• KeyGen(n) : It picks a uniform bit string k of length n, i.e.

k ∈ {0, 1}n.
• Enc : it takes as input a key k ∈ {0, 1}n and a message

m ∈ {0, 1}`(n), it outputs

c← Enc(G(k),m) = G(k)⊕ m

• Dec : it takes as input a key k ∈ {0, 1}n and a ciphertext
c ∈ {0, 1}`(n), it outputs

m← Dec(G(k), c) = G(k)⊕ c.
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Theorem
If G is a secure PRG, then the encryption scheme E derived from
G is computationally indistinguishable.

Proof.
(By reduction) Let A a PPT adversary against the scheme E. A is
exploited as a subroutine to construct a distinguisher D.

• D receives a bit string w ∈ {0, 1}`(n)

• D runs A to obtain two messages m0,m1 ∈ {0, 1}`(n)

• D chooses a random b ∈ {0, 1} ad sends c = w⊕ mb to A
• upon reception of b′ from A, D outputs 1 if b = b′, 0 otherwise.

|Pr[D(r) = 1]− Pr[D(G(s)) = 1]| = |Pr[PrivKeav
A,OTP = 1]−

Pr[PrivKeav
A,E = 1]| = |1/2− Pr[PrivKeav

A,E = 1]| ≤ negl(n)
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Stream Ciphers

• Terminology is not standard: it is either considered to be
practical instantiations of pseudo-random generators or the
encryption scheme which uses it.

• They produce as many random-looking bits as exactly needed.

• They are more flexible (no upper bound on the number of bits)
and efficient (each application takes the exact number of
random-looking bits that it requests)
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Stream Ciphers

• A stream cipher consists of two main deterministic algorithms:

• Init(s, IV): takes a seed s and an optional initialization vector IV,
and outputs an initial state st0

• GetBits(sti): takes the i-th state information sti and outputs a bit
y and an updated state, i.e. sti+1
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Stream Ciphers and PRGs

Construction of a PRG G`:
st0 ← Init(s, IV)

for i = 1, · · · , `;
(yi, sti)← GetBits(sti−1)

return y1, · · · , y`

A stream cipher is secure if:
• it takes no IV
• for any positive polynomial `(n) ∈ N[n] with `(n) > n, G` is a

secure PRG
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Examples of Stream Ciphers

• Linear-Feedback Shift Registers (LFSRs)

• RC4 by Ron Rivest 1987 (recent attack: AlFardan et al. 2013)

• eStream: Salsa 20, ChaCha (2008), and SOSEMANUK

• eStream competition page:
http://competitions.cr.yp.to/estream.html
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RC4

• The state in RC4 consists of the triplet (S, i, j). S is a 256-byte
array that contains a permutation of the numbers 0, · · · , 255.
Both i, j ∈ {0, · · · , 255}.

• The key can be up to 256 byte long.
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RC4- the Init() algorithm

Input: a 16-byte key
Output: Initial state (S, i, j)

for i = 1, · · · , 255 :

S[i]← iI it sets S to the identity permutation
k[i]← k[i mod 16]I it expands the key to 256 bytes by repetition

j = 0
for i = 1, · · · , 255;

j← j + S[i] + k[i] mod 256
Swap S[i] and S[j] I “pseudo-random” swapping of S’s elements

i← 0, j← 0
return (S, i, j)

20 of 40



RC4- the GetBits() algorithm

Input: Current state (S, i, j)

Output: byte y, updated state (S, i, j)

i← i + 1 mod 256
j← j + S[i] mod 256 I changing j in a “pseudo-random” way
Swap S[i] and S[j]

t← S[i] + S[j] mod 256
y← S[t]

return (S, i, j), y
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RC4: Security Analysis

• Biases in the second output byte of RC4: the probability that it
is 0 is 1/128 instead of 1/256 for S = 256.

• Biases in further bytes

• Conclusion: not secure, nevertheless, “its usage is still running
at about 30% of all TLS traffic” (Garman et al. March 2015)
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RC4: Security Analysis [AlFardan et al. 2013]

Figure: Recovery rate of the single-byte bias attack (based on 256
experiments)
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More security definitions are needed...

• Encryption schemes from secure PRGs are computationally
indistinguishable

• But what about multiple encryptions?

• What if the adversary wants to be challenged on two vectors of
messages instead of two single messages?

• Obviously, he can trivially win the game (why?)

• Conclusion: deterministic encryption schemes are NOT secure
under the multiple encryptions model.
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CPA Indistinguishability Experiment PrivKcpa
A,E

Challenger Ch Adversary A
k = KeyGen(n) Access to an oracle Enc(k, ·)

m0,m1,|m0|=|m1|←−−−−−−−−−
b← {0, 1}

c=Enc(k,mb)−−−−−−−→ Access to an oracle Enc(k, ·)
Outputs their guess b′

Definition
An encryption scheme E is CPA-secure if for all PPT A it holds:

Advcpa
A,E(n) = Pr[PrivKcpa

A,E(n) = 1] ≤ 1/2 + negl(n)

Where PrivKcpa
A,E(n) = 1 if b′ = b, and 0 otherwise.
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CPA-security for multiple encryptions

• A PPT adversary A has access to an oracle LRk,b, where k is a
key and b is a random bit.

• A queries the oracle on pair of messages (m0,1,m1,1),
(m0,2,m1,2), . . . , receiving Enc(k,mb,1), Enc(k,mb,2), . . .

• A submits a guess b′ ∈ {0, 1}

Theorem
If a private-key encryption scheme E is CPA-secure, it is
CPA-secure for multiple encryptions.

The encryption cannot be deterministic (A can just query on
(m,m) and (m′,m))
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CCA Indistinguishability Experiment PrivKcca
A,E

Challenger Ch Adversary A
k = KeyGen(n) Access to two oracles Enc(k, ·),Dec(k, ·)

m0,m1,|m0|=|m1|←−−−−−−−−−
b← {0, 1}

c=Enc(k,mb)−−−−−−−→ Access to two oracles Enc(k, ·),Dec(k, ·)c

Outputs their guess b′

Definition
An encryption scheme E is CCA-secure if for all PPT A it holds:

Advcca
A,E(n) = Pr[PrivKcca

A,E(n) = 1] ≤ 1/2 + negl(n)
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Pseudo-Random Functions

• A generalisation of the notion of pseudo-random generators:
we now consider a “random-looking” function.

• It is the pseudo-randomness of a distribution on functions.
• We are interested in keyed functions, i.e.

F : {0, 1}`key × {0, 1}`in → {0, 1}`out

Once k is chosen Fk : {0, 1}`in → {0, 1}`out , x 7→ F(k, x) is a
single-input function.

• F is length-preserving if the `key = `in = `out.
• F is pseudo-random if the function Fk, for a uniform key k, is

indistinguishable from a function chosen uniformly at random
from the set of all functions with the same domain and range.
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Pseudo-Random Functions

Definition
Let Func[X,Y] be the set of all functions from X to Y.
F : K × X → Y is a secure Pseudo-Random Function (PRF) if F
• is efficiently computable
• for all PPT distinguishers A

Advprf
F,A(n) = |Pr[Af ()(n) = 1]− Pr[AFk()(n) = 1]| ≤ negl(n)

where f ∈ Func[X,Y], k ∈ K, and A has access to the function in
question, i.e. either f () and Fk().

Note that |Func[X,Y]| = |X||Y|.
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Pseudo-Random Permutations

A pseudo-random function F : K × X → Y is an efficient
pseudo-random permutation if the following hold:

• Fk is injective and |X| = |Y|
• F is deterministic and efficiently computable
• F−1

k is efficiently computable

In practice: F : {0, 1}k × {0, 1}n → {0, 1}n, where;
• 3DES: n = 64 bits, k = 168 bits
• AES: n = 128 bits, k = 128, 192, 256 bits
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Strong Pseudo-Random Permutations

Definition
Let Permn be the set of all permutations from {0, 1}n to {0, 1}n.
Let F : {0, 1}n × {0, 1}n → {0, 1}n be an efficient length-preserving,
keyed permutation. F is a strong pseudo-random permutation if,
for all PPT distinguishers D, there exists a negligible function
negl(n) such that

|Pr[Df (),f−1()(n) = 1]− Pr[DFk(),F
−1
k ()(n) = 1]| ≤ negl(n)

where f ∈ Permn, k ∈ {0, 1}k, and D has access to the functions in
question, i.e. either f (), f−1() or Fk(),F−1

k ().

• Strong PRP⇒ secure PRP
• |Permn| = 2n!
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Encryption using PRP

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a pseudo-random
permutation. We define the following encryption scheme
E = (KeyGen,Enc,Dec):
• KeyGen : it takes n and outputs a key k ∈ {0, 1}n.
• Enc: it takes a key k ∈ {0, 1}n and a message m, it picks a

random r ← {0, 1}n, and outputs

(c0, c1)← (r,Fk(r)⊕ m).

• Dec: it takes a key k and a ciphertext c = (c0, c1) and outputs

m← (Fk(c0)⊕ c1).
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Theorem
If F is a secure pseudo-random permutation then the encryption
scheme E is CPA-secure.

Proof.
Let E′ be a variant of E with a random permutation instead of Fk.

Suppose that a PPT adversary A can make q(n) queries to the
encryption oracle (q(n) ∈ O(p(n))).

Let rc be the first component of the challenge cipher-text.
• case 1: rc didn’t appear in any of the encryption queries. Then

rc is a uniform string and the probability to win the game is 1/2
(OTP is perfectly secret)

• rc appeared in at least one of the queries. The probability of
this event is at most q(n)/2n.

Thus Pr[PrivKcpa
A,E′(n) = 1] ≤ 1/2 + q(n)/2n.
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Proof.
We use A to construct a distinguisher D for the PRP.

On a query m ∈ {0, 1}n, D queries the oracle O on a uniform
r ∈ {0, 1}n, receiving y. Then they reply with (r, y + m).

If A wins the game, D outputs 1 (0 otherwise).

Pr[Df ()(n) = 1] = Pr[PrivKcpa
A,E′(n) = 1]

Pr[DFk()(n) = 1] = Pr[PrivKcpa
A,E(n) = 1]

Since F is a secure PRP we have∣∣Pr[DFk()(n) = 1]− Pr[Df ()(n) = 1]
∣∣ ≤ negl(n)

Thus Pr[PrivKcpa
A,E(n) = 1] ≤ 1/2 + q(n)/2n + negl(n) .
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Notes:

• the sum of two negligible functions is a negligible function

• the product of a positive polynomial in N[n] and a negligible
function is a negligible function
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