Preamble

This sheet is split into two parts. Page one should be attempted after the lesson of Monday 8/10/2018 and page two should be attempted after the lesson of Thursday 11/10/2018.

Problem 1

Definition (Key Equivocation measure)

Let X and Y be random variables and let x_1, \ldots, x_n be the possible values of X and y_1, \ldots, y_n the possible values of Y. The equivocation, or conditional entropy, of X on Y is the quantity H(X|Y) defined by

$$H(X|Y) := -\sum_{i=1}^{n} \sum_{j=1}^{m} f_Y(y_j) \cdot f_{X|Y}(x_i|y_j) \cdot \log_2(f_{X|Y}(x_i|y_i))$$

where f_X , f_Y and $f_{X|Y}$ are the density functions for the corresponding distributions.

The **Key Equivocation** quantity measures the total information about the key revealed by the ciphertext and is formally defined as the quantity H(K|C).

Suppose that the key equivocation of a cryptosystem vanishes, i.e. that H(K|C) = 0. Prove that even a single observed ciphertext uniquely determines which key was used.

Problem 2

Definition (Probability ensemble)

If for every natural number $n \in \mathbb{N}$ we have a probability distribution X_n , then $\mathcal{X} = \{X_n\}_{n \in \mathbb{N}}$ is a probability ensemble.

Definition (Distinguisher)

A probabilistic polynomial-time algorithm \mathcal{D} that attempts to distinguish whether a sample from a set S came from one of two probability distributions on S is called a Distinguisher. If \mathcal{D} guesses the correct probability distribution from which the sample was made, we say that \mathcal{D} outputs 1 and outputs 0 otherwise.

Definition (Computational Indistinguishability)

Two probability ensembles $\mathcal{X} = \{X_n\}_{n \in \mathbb{N}}$ and $\mathcal{Y} = \{Y_n\}_{n \in \mathbb{N}}$ are computationally indistinguishable, denoted $\mathcal{X} \stackrel{c}{\equiv} \mathcal{Y}$, if for every probabilistic polynomial-time distinguisher \mathcal{D} there exists a negligible function negl such that

$$\left|\Pr_{x\leftarrow X_n}[\mathcal{D}(1^n,x)=1]-\Pr_{y\leftarrow Y_n}[\mathcal{D}(1^n,y)=1]\right|\leq \mathsf{negl}(n).$$

Let $X = \{X_n\}_{n \in \mathbb{N}}$ and $X = \{Y_n\}_{n \in \mathbb{N}}$ be computationally indistinguishable probability ensembles.

(a) Prove that for any probabilistic polynomial-time algorithm \mathcal{A} it holds that $\{\mathcal{A}(X_n)\}_{n\in\mathbb{N}}$ and $\{\mathcal{A}(Y_n)\}_{n\in\mathbb{N}}$ are computationally indistinguishable, where $\mathcal{A}(X)$ denotes the distribution generated by running $\mathcal{A}(x)$ on all samples $x \leftarrow X$.

(b) Prove that the above may no longer hold if \mathcal{A} does not run in polynomial-time.

Problem 3

If the best algorithm today for finding the prime factors of an *n*-bit number takes $2^{c \cdot n^{\frac{1}{3}} (\log n)^{\frac{2}{3}}}$ clock cycles, then (assuming that c = 1) estimate the size of numbers which cannot be factored in the next 100 years on a 4Ghz¹ computer.

 $^{{}^{1}}$ Ghz is shorthand for Giga-hertz and is a measure of how many clock-cycles a computer can perform a second. 1Ghz = 10^{9} clock cycles.

Sheet 1

Problem 4

Let G be a pseudorandom generator where $|G(s)| \ge 2 \cdot |s|$.

- (a) Define $G' := G(s0^{|s|})$. Is G' necessarily a pseudorandom generator?
- (b) Define $G'' := G(s_1 \dots s_{n/2})$ where $s = s_1 \dots s_n$. Is G'' necessarily a pseudorandom generator?

Problem 5

Let G be a pseudorandom generator and define G'(s) to be the output of G truncated to n bits (where |s| is of length n). Prove that the function $F_k(x) = G'(k) \oplus x$ is not pseudorandom.

Problem 6

Let $\Pi_1 := (\text{Gen}_1, \text{Enc}_1, \text{Dec}_1)$ and $\Pi_2 := (\text{Gen}_2, \text{Enc}_2, \text{Dec}_2)$ be two encryption schemes for which it is known that at least one is CPA-secure. It is unfortunately unknown whether Π_1 or Π_2 is insecure. Show how to construct an encryption scheme Π that is guaranteed to be CPA-secure as long as at least one of Π_1 or Π_2 is CPA-secure. Try to provide a full proof of your answer.

Problem 7

Let G be a pseudorandom generator. Prove that

$$G'(x_1, \ldots, x_n) := G(x_1)||G(x_2)|| \ldots ||G(x_n)|$$

where $|x_1| = \dots |x_n|$ is a pseudorandom generator.

Problem 8

In the lectures you were given the definition of the $\mathsf{PrivK}_{A,\Pi}^{\mathsf{eav}}(n)$:

- 1. The adversary \mathcal{A} is given input 1^n , and outputs a pair of messages m_0, m_1 with $|m_0| = |m_1|$.
- 2. A key k is generated by running $\text{Gen}(1^n)$, and a uniform bit $b \in \{0, 1\}$ is chosen. The *Challenge* Ciphertext $c \leftarrow \text{Enc}_k(m_b)$ is computed and given to \mathcal{A} .
- 3. \mathcal{A} outputs a bit b'.
- 4. The output of the experiment is defined to be 1 if b' = b and 0 otherwise. If $\mathsf{Priv}\mathsf{K}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1$ we say that \mathcal{A} succeeds.

Prove that the following definitions are equivalent. This shows, in particular, that the first is an equivalent definition of perfect secrecy.

Definition (Indistinguishability in the presence of an eavesdropper)

A private-key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ is EAV-secure, if for any adversary \mathcal{A} it holds that

$$\Pr\left[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1\right] = 1/2.$$

Definition (Perfect Secrecy)

A private-key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ is perfectly secret, if for every probability distribution over \mathcal{M} , every $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ for which $\Pr[C = c] > 0$:

$$\Pr[M = m \mid C = c] = \Pr[M = m].$$