
Introduction to Cryptography 2019 Sheet 1 Due: 4pm Tuesday 29/10/2019

Preamble
This sheet is split into two parts. Page one should be attempted after the lesson of Monday
8/10/2018 and page two should be attempted after the lesson of Thursday 11/10/2018.

Problem 1
Definition (Key Equivocation measure)
Let X and Y be random variables and let x1, . . . , xn be the possible values of X and y1, . . . , yn the
possible values of Y . The equivocation, or conditional entropy, of X on Y is the quantity H(X|Y )
defined by

H(X|Y ) := −
n∑

i=1

m∑
j=1

fY (yj) · fX|Y (xi|yj) · log2(fX|Y (xi|yi))

where fX , fY and fX|Y are the density functions for the corresponding distributions.

The Key Equivocation quantity measures the total information about the key revealed by the
ciphertext and is formally defined as the quantity H(K|C).

Suppose that the key equivocation of a cryptosystem vanishes, ie. that H(K|C) = 0. Prove that
even a single observed ciphertext uniquely determines which key was used.

Problem 2
Definition (Probability ensemble)
If for every natural number n ∈ N we have a probability distribution Xn, then X = {Xn}n∈N is a
probability ensemble.

Definition (Distinguisher)
A probabilistic polynomial-time algorithm D that attempts to distinguish whether a sample from a
set S came from one of two probability distributions on S is called a Distinguisher. If D guesses
the correct probability distribution from which the sample was made, we say that D outputs 1 and
outputs 0 otherwise.

Definition (Computational Indistinguishability)
Two probability ensembles X = {Xn}n∈N and Y = {Yn}n∈N are computationally indistinguishable,

denoted X c≡ Y, if for every probabilistic polynomial-time distinguisher D there exists a negligible
function negl such that∣∣∣ Pr

x←Xn

[D(1n, x) = 1]− Pr
y←Yn

[D(1n, y) = 1]
∣∣∣ ≤ negl(n).

Let X = {Xn}n∈N and X = {Yn}n∈N be computationally indistinquishable probability ensembles.

(a) Prove that for any probabilistic polynomial-time algorithm A it holds that {A(Xn)}n∈N and
{A(Yn)}n∈N are computationally indistinguishable, where A(X) denotes the distribution
generated by running A(x) on all samples x← X.

(b) Prove that the above may no longer hold if A does not run in polynomial-time.

Problem 3
If the best algorithm today for finding the prime factors of an n-bit number takes 2c·n

1
3 (logn)

2
3 clock

cycles, then (assuming that c = 1) estimate the size of numbers which cannot be factored in the
next 100 years on a 4Ghz1 computer.

1Ghz is shorthand for Giga-hertz and is a measure of how many clock-cycles a computer can perform a second.
1Ghz = 109 clock cycles.
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Problem 4
Let G be a pseudorandom generator where |G(s)| ≥ 2 · |s|.

(a) Define G′ := G(s0|s|). Is G′ necessarily a pseudorandom generator?

(b) Define G′′ := G(s1 . . . sn/2) where s = s1 . . . sn. Is G′′ necessarily a pseudorandom generator?

Problem 5
Let G be a pseudorandom generator and define G′(s) to be the output of G truncated to n bits
(where |s| is of length n). Prove that the function Fk(x) = G′(k)⊕ x is not pseudorandom.

Problem 6
Let Π1 := (Gen1,Enc1,Dec1) and Π2 := (Gen2,Enc2,Dec2) be two encryption schemes for which it
is known that at least one is CPA-secure. It is unfortunately unknown whether Π1 or Π2 is insecure.
Show how to construct an encryption scheme Π that is guaranteed to be CPA-secure as long as at
least one of Π1 or Π2 is CPA-secure. Try to provide a full proof of your answer.

Problem 7
Let G be a pseudorandom generator. Prove that

G′(x1, . . . , xn) := G(x1)||G(x2)|| . . . ||G(xn)

where |x1| = . . . |xn| is a pseudorandom generator.

Problem 8
In the lectures you were given the definition of the PrivKeav

A,Π(n):

1. The adversary A is given input 1n, and outputs a pair of messages m0,m1 with |m0| = |m1|.

2. A key k is generated by running Gen(1n), and a uniform bit b ∈ {0, 1} is chosen. The Challenge
Ciphertext c← Enck(mb) is computed and given to A.

3. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise. If PrivKeav
A,Π(n) = 1

we say that A succeeds.

Prove that the following definitions are equivalent. This shows, in particular, that the first is
an equivalent definition of perfect secrecy.

Definition (Indistinquishability in the presence of an eavesdropper)
A private-key encryption scheme Π = (Gen,Enc,Dec) is EAV-secure, if for any adversary A it holds
that

Pr
[
PrivKeav

A,Π(n) = 1
]

= 1/2.

Definition (Perfect Secrecy)
A private-key encryption scheme Π = (Gen,Enc,Dec) is perfectly secret, if for every probability
distribution over M, every m ∈M, and every ciphertext c ∈ C for which Pr[C = c] > 0:

Pr[M = m | C = c] = Pr[M = m].
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