Message Authentication Code

Federico Pintore¹

¹Mathematical Institute

Outline

2 Message Authentication Code (MAC)

Outline

2 Message Authentication Code (MAC)

- We want parties to *securely* communicate over insecure channels.
- Encrypting messages is only one part of security.
- What if the messages were modified in transit?
- What about authenticity?

Encryption does not guarantee integrity

- Consider the OTP scheme, which is a perfectly secret encryption scheme.
- From a given ciphertext, you can produce a new *valid* ciphertext, by just flipping a single bit!
- Perfect secrecy is not violated here.
- But, perfect secrecy *simply* doesn't imply message integrity.
- Different cryptographic tools should be used to achieve secrecy and integrity.

Outline

2 Message Authentication Code (MAC)

Message Authentication Code (MAC)

- Message authentication code is the cryptographic tool to be used to ensure message integrity.
- Informally speaking, the MAC's goal is to prevent an adversary from tampering with the messages.
- Parties need to share a secret key as in the encryption!

Definition

A MAC consists of the following three probabilistic polynomial-time algorithms (KeyGen, Mac, Verify):

- KeyGen(1ⁿ): takes the security parameter n and outputs a key k
 s.t. |k| ≥ n
- Mac_k(m ∈ {0,1}*): is a tagging algorithm, takes a key k and a message m and outputs a tag t.
- Verify_k(m, t): a deterministic algorithm that outputs a bit b, 0 for invalid and 1 for valid.

 $Mac_k(\cdot)$ may be randomised or deterministic.

- Correctness of MAC: $\forall n, \forall k \leftarrow \text{KeyGen}(1^n) \text{ and } \forall m \in \{0, 1\}^*$, Verify_k(m, Mac_k(m)) = 1 holds.
- Fixed-length MAC: if it is just defined for messages m ∈ {0,1}^{ℓ(n)}, we call the scheme a *fixed-length MAC* for messages of length ℓ(n).
- Canonical Verification: when Mac is deterministic, recomputes the tag and checks for equality.

- An adversary should not be able to efficiently produce a valid tag on a new message that was not authenticated before.
- Taking as realistic a scenario where the adversary can see message/tag pairs, in the security definition the adversary is given access to a tagging oracle.

Security of MAC - Formal Definition

Given S = (KeyGen, Mac, Verify), an adversary A, and a security parameter n, we define the following experiment:

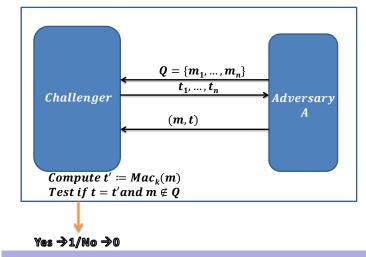
Experiment (Mac $_{A,S}^{Unforg}$)

- Key generation: $k \leftarrow \text{KeyGen}(1^n)$.
- Tag queries: the adversary A is given oracle access to Mac_k().
 The set of all queried messages is Q.
- Adversary's output: the adversary A eventually outputs (m, t)
- Experiment's output: if

$$\mathsf{Verify}_k(m,t) = 1 \land m \not\in Q$$

outputs 1, otherwise outputs 0.

MAC^{unforg} Game



A MAC scheme *S* is said to be *Existentially unforgeable under an adaptive chosen-message attack* if no PPT adversary A can win the previous game with non-negligible probability:

Definition

A message authentication code S = (KeyGen, Mac, Verify) is secure if for all probabilistic polynomial-time adversary A, the following holds

$$\Pr[\mathsf{Mac}_{\mathcal{A},S}^{\mathsf{Unforg}}(n) = 1] \le \mathsf{negl}(n)$$
.

- An adversary cannot change the message without being detected by the receiver if it has a valid tag.
- However, the adversary can replay and send the same message again, with the same tag.
- The receiver cannot detect this malicious behaviour.
- Common techniques to prevent replay attacks:
 - Time-stamps: add the current time to the beginning of the message before authenticating it.
 - Counters: users maintain synchronised state.

Security of MAC - Formal Definition (2)

Given S = (KeyGen, Mac, Verify), an adversary A, and a security parameter n, we define the following experiment:

Experiment (Mac^{s-unforg})</sup>

- Key generation: $k \leftarrow \text{KeyGen}(1^n)$.
- Tag queries: the adversary A is given oracle access to Mac_k().
 The set of all pairs queried message/tag is Q.
- Adversary's output: the adversary A eventually outputs (m, t)
- Experiment's output: if

$$\mathsf{Verify}_k(m,t) = 1 \land (m,t) \not\in Q$$

outputs 1, otherwise outputs 0.

If a MAC scheme is strongly secure, then adversaries win if they produce tags on any messages (including already authenticated ones!).

Definition

A message authentication code S = (KeyGen, Mac, Verify) is strongly secure if for all probabilistic polynomial-time adversary A, the following holds

$$\Pr[\mathsf{Mac}_{\mathcal{A},S}^{\mathsf{s}-\mathsf{unforg}}(n)=1] \le \mathsf{negl}(n) \,.$$

If the Mac algorithm in S is deterministic, and the verification is canonical, then secure MACs are strongly secure as well.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- An adversary may be able to obtain the time necessary to reject a pair message/tag.
- In the case of deterministic MAC, if the MAC verification does not use time-independent string comparison, then the adversary can exploit the time differences to deduce new bytes of the tag!
- This is a realistic attack. Xbox 360 had a difference of 2.2 milliseconds in comparing j or j + 1 bytes.
- Attackers managed to exploit this.
- Conclusion: MAC verification should compare all the bytes.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- An adversary may be able to obtain the time necessary to reject a pair message/tag.
- In the case of deterministic MAC, if the MAC verification does not use time-independent string comparison, then the adversary can exploit the time differences to deduce new bytes of the tag!
- This is a realistic attack. Xbox 360 had a difference of 2.2 milliseconds in comparing j or j + 1 bytes.
- Attackers managed to exploit this.
- Conclusion: MAC verification should compare all the bytes.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- An adversary may be able to obtain the time necessary to reject a pair message/tag.
- In the case of deterministic MAC, if the MAC verification does not use time-independent string comparison, then the adversary can exploit the time differences to deduce new bytes of the tag!
- This is a realistic attack. Xbox 360 had a difference of 2.2 milliseconds in comparing j or j + 1 bytes.
- Attackers managed to exploit this.
- Conclusion: MAC verification should compare all the bytes.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- An adversary may be able to obtain the time necessary to reject a pair message/tag.
- In the case of deterministic MAC, if the MAC verification does not use time-independent string comparison, then the adversary can exploit the time differences to deduce new bytes of the tag!
- This is a realistic attack. Xbox 360 had a difference of 2.2 milliseconds in comparing j or j + 1 bytes.
- Attackers managed to exploit this.
- Conclusion: MAC verification should compare all the bytes.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- An adversary may be able to obtain the time necessary to reject a pair message/tag.
- In the case of deterministic MAC, if the MAC verification does not use time-independent string comparison, then the adversary can exploit the time differences to deduce new bytes of the tag!
- This is a realistic attack. Xbox 360 had a difference of 2.2 milliseconds in comparing *j* or *j* + 1 bytes.
- Attackers managed to exploit this.
- Conclusion: MAC verification should compare all the bytes.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- An adversary may be able to obtain the time necessary to reject a pair message/tag.
- In the case of deterministic MAC, if the MAC verification does not use time-independent string comparison, then the adversary can exploit the time differences to deduce new bytes of the tag!
- This is a realistic attack. Xbox 360 had a difference of 2.2 milliseconds in comparing *j* or *j* + 1 bytes.
- Attackers managed to exploit this.
- Conclusion: MAC verification should compare all the bytes.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- An adversary may be able to obtain the time necessary to reject a pair message/tag.
- In the case of deterministic MAC, if the MAC verification does not use time-independent string comparison, then the adversary can exploit the time differences to deduce new bytes of the tag!
- This is a realistic attack. Xbox 360 had a difference of 2.2 milliseconds in comparing *j* or *j* + 1 bytes.
- Attackers managed to exploit this.
- Conclusion: MAC verification should compare all the bytes.
 I7 of 42

Definition

Given a length-preserving pseudorandom function F, a fixed-length MAC S for messages of length n consists of the two following algorithms:

- $Mac(k \in \{0,1\}^n, m \in \{0,1\}^n)$: it outputs the tag $t \leftarrow F_k(m)$.
- Verify $(k \in \{0, 1\}^n, m \in \{0, 1\}^n, t \in \{0, 1\}^n)$: it outputs 1 iff $F_k(m) = t$

If $|m| \neq |k|$, then Mac outputs \perp and Verify outputs 0.

A fixed-Length MAC from a PRF

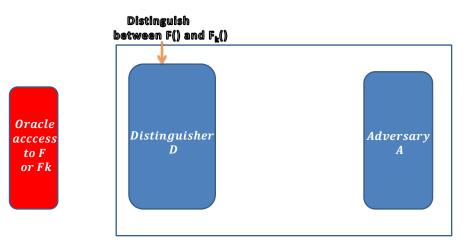
Theorem

If *F* is a secure pseudorandom function, then the fixed-length MAC for messages of length n is secure.

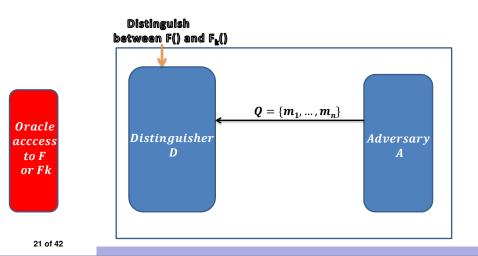
Steps of the proof:

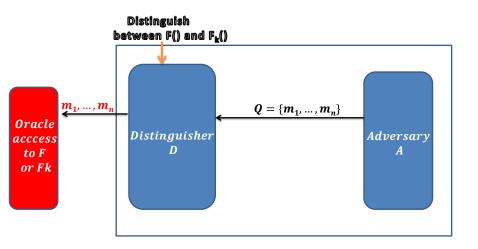
- consider a variation S' of S, where F_k is replaced by a truly random function $f : \{0, 1\}^n \to \{0, 1\}^n$.
- Let A be the adversary trying to attack S.
- Define a distinguisher *D* for *F* (it is given access to some function and needs to tell whether this function is pseudorandom or truly random).
- *D* emulates the MAC experiment for *A* and check if it succeeds in producing a valid tag on a new message *m*.
- if *A* manages to produce a valid tag, *D* will guess that its oracle is "pseudo-random" (1), otherwise it outputs "truly random" (0).

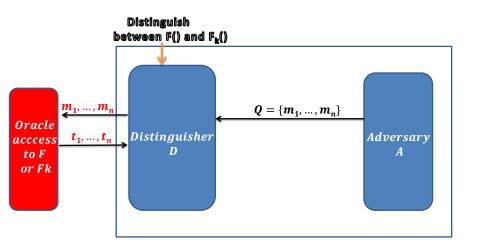
F in the left box is the truly random function $f : \{0,1\}^n \to \{0,1\}^n$.

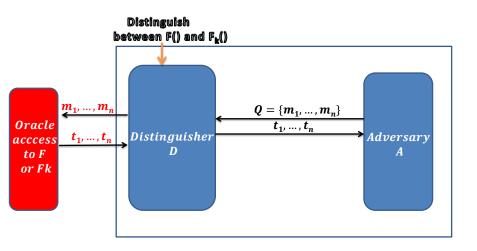


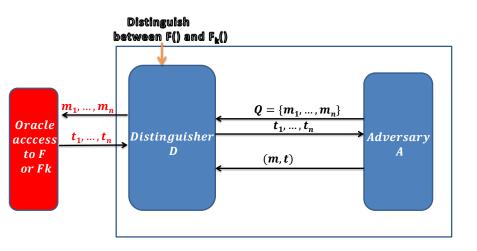
In the "adaptive" setting, the messages m_1, \ldots, m_n will be sent separately.

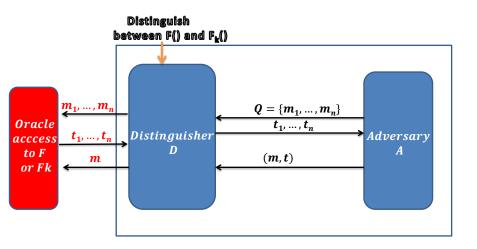


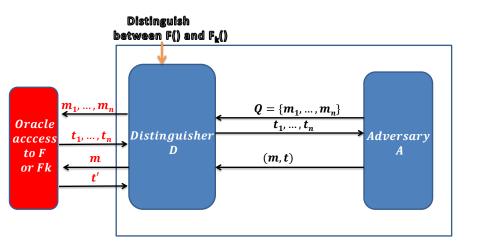


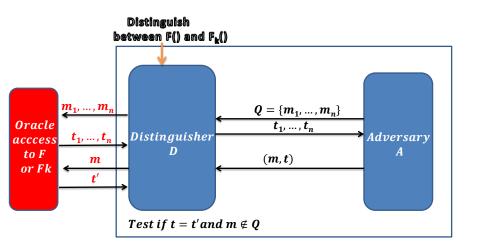


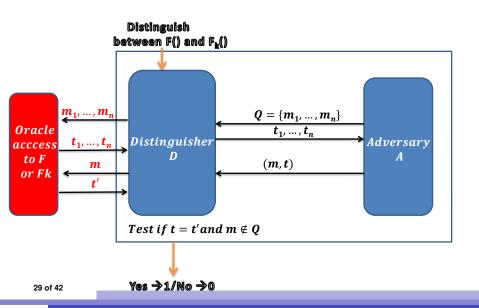










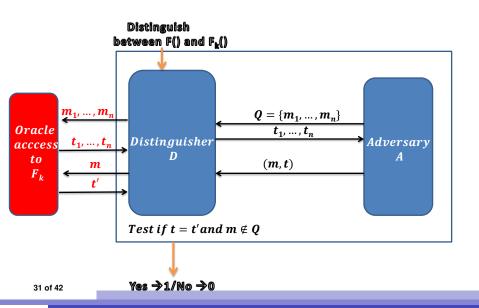


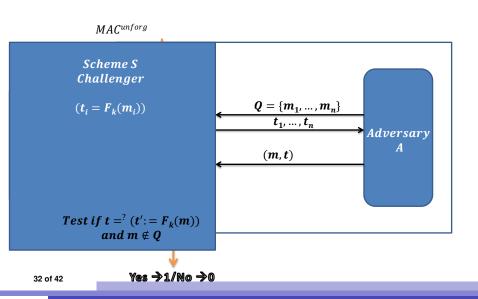
A fixed-Length MAC from a PRF

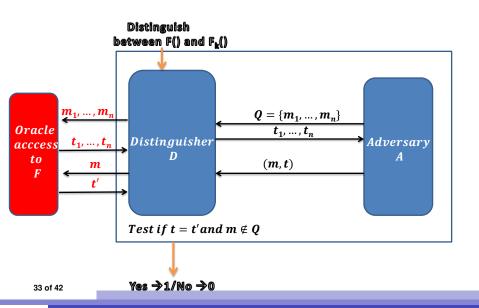
Steps of the Proof

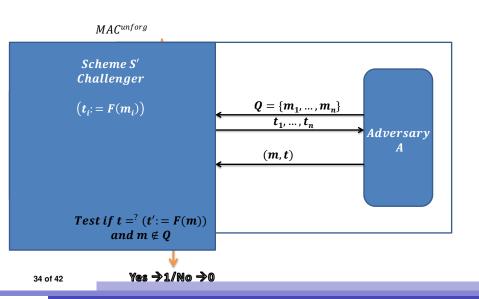
We can distinguish between two cases:

- *D*'s oracle is a pseudo-random function: in this case, the view of A that is run as a subroutine by D and its view in the experiment $Mac_{A,S}^{Unforg}(n)$ are distributed identically. Moreover, D outputs 1 exactly when $Mac_{A,S}^{Unforg}(n)$ outputs 1.
- D's oracle is a truly-random function: in this case, the view of A that is run as a subroutine by D and its view in the experiment Mac^{Unforg}_{A,S'}(n) are distributed identically. Moreover, D outputs 1 exactly when Mac^{Unforg}_{A,S'}(n) outputs 1.









Sketch Proof.

As a result, we have that

$$\Pr[\mathsf{Mac}_{\mathcal{A},S'}^{\mathsf{Unforg}}(n) = 1] = \Pr[D^{f()}(n) = 1]$$
(1)

and

$$\Pr[\mathsf{Mac}_{\mathcal{A},S}^{\mathsf{Unforg}}(n) = 1] = \Pr[D^{F_k()}(n) = 1]$$
(2)

A fixed-Length MAC from a PRF

Steps of the Proof

Since F is a secure PRF, it holds:

$$|\Pr[D^{f()}(n) = 1] - \Pr[D^{F_k()}(n) = 1]| =$$

 $= |\Pr[\mathsf{Mac}_{\mathcal{A},S'}^{\mathsf{Unforg}}(n) = 1] - \Pr[\mathsf{Mac}_{\mathcal{A},S}^{\mathsf{Unforg}}(n) = 1]| \leq \mathsf{negl}(n).$

For any message $m \notin Q$, the value t = f(m) is uniformly distributed in $\{0, 1\}^n$ from the point of view of the adversary A. So:

$$\Pr[\mathsf{Mac}_{\mathcal{A},S'}^{\mathsf{Unforg}}(n) = 1] \le 2^{-n}.$$

The relations above then give:

$$\Pr[\mathsf{Mac}_{\mathcal{A},S}^{\mathsf{Unforg}}(n) = 1] \le 2^{-n} + \mathsf{negl}(n) \,.$$

36 of 42

From fixed length MAC to MAC for arbitrary-length messages.

- If the PRF has a bigger bolck length, the MAC is secure for longer messages.
- Problem: existing pseudo-random functions used in practice (block ciphers) can just take short fixed-length inputs!
- Question: How to build a MAC for arbitrary-length messages?

- Block re-ordering attack: change the order of blocks. Namely, if (t_1, t_2) is a valid tag on (m_1, m_2) where $m_1 \neq m_2$, then (t_2, t_1) is a valid tag on (m_2, m_1) , with $m_1, m_2 \neq m_2, m_1$. Solution: authenticate a block index with each block.
- Truncation attack: the attacker removes blocks from the end of the message and their corresponding blocks from the tag. Solution: authenticate the message length with each block
- Mix-and-match attack: given the valid tags (t_1, t_2, t_3) and (t'_1, t'_2, t'_3) on the messages (m_1, m_2, m_3) and (m'_1, m'_2, m'_3) , output (t_1, t'_2, t_3) on the message (m_1, m'_2, m_3) . Solution: authenticate a *random message identifier* along with each block.

- Block re-ordering attack: change the order of blocks. Namely, if (t_1, t_2) is a valid tag on (m_1, m_2) where $m_1 \neq m_2$, then (t_2, t_1) is a valid tag on (m_2, m_1) , with $m_1, m_2 \neq m_2, m_1$. Solution: authenticate a block index with each block.
- Truncation attack: the attacker removes blocks from the end of the message and their corresponding blocks from the tag. Solution: authenticate the message length with each block
- Mix-and-match attack: given the valid tags (t_1, t_2, t_3) and (t'_1, t'_2, t'_3) on the messages (m_1, m_2, m_3) and (m'_1, m'_2, m'_3) , output (t_1, t'_2, t_3) on the message (m_1, m'_2, m_3) . Solution: authenticate a *random message identifier* along with each block.

- Block re-ordering attack: change the order of blocks. Namely, if (t_1, t_2) is a valid tag on (m_1, m_2) where $m_1 \neq m_2$, then (t_2, t_1) is a valid tag on (m_2, m_1) , with $m_1, m_2 \neq m_2, m_1$. Solution: authenticate a block index with each block.
- Truncation attack: the attacker removes blocks from the end of the message and their corresponding blocks from the tag. Solution: authenticate the message length with each block
- Mix-and-match attack: given the valid tags (t_1, t_2, t_3) and (t'_1, t'_2, t'_3) on the messages (m_1, m_2, m_3) and (m'_1, m'_2, m'_3) , output (t_1, t'_2, t_3) on the message (m_1, m'_2, m_3) . Solution: authenticate a *random message identifier* along with each block.

- Block re-ordering attack: change the order of blocks. Namely, if (t_1, t_2) is a valid tag on (m_1, m_2) where $m_1 \neq m_2$, then (t_2, t_1) is a valid tag on (m_2, m_1) , with $m_1, m_2 \neq m_2, m_1$. Solution: authenticate a block index with each block.
- Truncation attack: the attacker removes blocks from the end of the message and their corresponding blocks from the tag. Solution: authenticate the message length with each block
- Mix-and-match attack: given the valid tags (t_1, t_2, t_3) and (t'_1, t'_2, t'_3) on the messages (m_1, m_2, m_3) and (m'_1, m'_2, m'_3) , output (t_1, t'_2, t_3) on the message (m_1, m'_2, m_3) . Solution: authenticate a *random message identifier* along with each block.

- Block re-ordering attack: change the order of blocks. Namely, if (t_1, t_2) is a valid tag on (m_1, m_2) where $m_1 \neq m_2$, then (t_2, t_1) is a valid tag on (m_2, m_1) , with $m_1, m_2 \neq m_2, m_1$. Solution: authenticate a block index with each block.
- Truncation attack: the attacker removes blocks from the end of the message and their corresponding blocks from the tag. Solution: authenticate the message length with each block
- Mix-and-match attack: given the valid tags (t_1, t_2, t_3) and (t'_1, t'_2, t'_3) on the messages (m_1, m_2, m_3) and (m'_1, m'_2, m'_3) , output (t_1, t'_2, t_3) on the message (m_1, m'_2, m_3) . Solution: authenticate a *random message identifier* along with each block.

- Block re-ordering attack: change the order of blocks. Namely, if (t_1, t_2) is a valid tag on (m_1, m_2) where $m_1 \neq m_2$, then (t_2, t_1) is a valid tag on (m_2, m_1) , with $m_1, m_2 \neq m_2, m_1$. Solution: authenticate a block index with each block.
- Truncation attack: the attacker removes blocks from the end of the message and their corresponding blocks from the tag. Solution: authenticate the message length with each block
- Mix-and-match attack: given the valid tags (t_1, t_2, t_3) and (t'_1, t'_2, t'_3) on the messages (m_1, m_2, m_3) and (m'_1, m'_2, m'_3) , output (t_1, t'_2, t_3) on the message (m_1, m'_2, m_3) . Solution: authenticate a *random message identifier* along with each block.

A MAC from a fixed-length one

Definition

Let $S_1 = (\text{KeyGen}_1, \text{Mac}_1, \text{Verify}_1)$ be a fixed-length MAC for messages of length *n*. We define a MAC *S* for arbitrary-length messages as follows:

• Mac(k ∈ {0,1}ⁿ, m ∈ {0,1}*):

- it takes a key k and a messge m, where $|m| = \ell < 2^{n/4}$.
- *it then parses* m *into* d *blocks of length* n/4, *i.e.* m_1, \dots, m_d .
- if the last block is not of size n/4, we pad it with 0s
- *it uniformly chooses* $r \in \{0, 1\}^{n/4}$
- For $i = 1, \dots, d$, compute $t_i \leftarrow Mac_1(k, r||\ell||i||m_i)$, where i, ℓ are encoded as strings of length n/4.
- *Output* $t = (r, t_1, \cdots, t_d)$.
- Verify $(k, m, (r, t_1, \dots, t_d))$: parse m into d' blocks, then output 1 iff d' = d AND Verify $_1(k, r||\ell||i||m_i, t_i) = 1$ for $1 \le i \le d'$.

Theorem

If S_1 is a secure fixed-length MAC for messages of length n, then S as defined above is a secure MAC for arbitrary-length messages.

Another way to build a secure MAC for arbitrary-length messages is to use hash functions, which will be covered soon!

Further Reading (1)

▶ N.J. Al Fardan and K.G. Paterson.

Lucky thirteen: Breaking the TLS and DTLS record protocols. In *Security and Privacy (SP), 2013 IEEE Symposium on*, pages 526–540, May 2013.

 J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. In Proceedings of the ninth annual ACM symposium on Theory of computing, pages 106–112. ACM, 1977.

Jean Paul Degabriele and Kenneth G Paterson.
 On the (in) security of IPsec in MAC-then-Encrypt configurations.

In *Proceedings of the 17th ACM conference on Computer and communications security*, pages 493–504. ACM, 2010.

Ted Krovetz and Phillip Rogaway.

The software performance of authenticated-encryption modes. In *Fast Software Encryption*, pages 306–327. Springer, 2011.

Douglas R. Stinson.

Universal hashing and authentication codes.

Designs, Codes and Cryptography, 4(3):369–380, 1994.