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Message Integrity

• We want parties to securely communicate over insecure
channels.

• Encrypting messages is only one part of security.

• What if the messages were modified in transit?

• What about authenticity?
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Encryption does not guarantee integrity

• Consider the OTP scheme, which is a perfectly secret
encryption scheme.

• From a given ciphertext, you can produce a new valid
ciphertext, by just flipping a single bit!

• Perfect secrecy is not violated here.

• But, perfect secrecy simply doesn’t imply message integrity.

• Different cryptographic tools should be used to achieve secrecy
and integrity.
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Message Authentication Code (MAC)

• Message authentication code is the cryptographic tool to be
used to ensure message integrity.

• Informally speaking, the MAC’s goal is to prevent an adversary
from tampering with the messages.

• Parties need to share a secret key as in the encryption!
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MAC - Formal Definition

Definition
A MAC consists of the following three probabilistic polynomial-time
algorithms (KeyGen,Mac,Verify):
• KeyGen(1n): takes the security parameter n and outputs a key k

s.t. |k| ≥ n
• Mack(m ∈ {0, 1}∗): is a tagging algorithm, takes a key k and a

message m and outputs a tag t.
• Verifyk(m, t): a deterministic algorithm that outputs a bit b, 0 for

invalid and 1 for valid.

Mack(·) may be randomised or deterministic.
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MAC

• Correctness of MAC: ∀n,∀k← KeyGen(1n) and ∀m ∈ {0, 1}∗,
Verifyk(m,Mack(m)) = 1 holds.

• Fixed-length MAC: if it is just defined for messages
m ∈ {0, 1}`(n), we call the scheme a fixed-length MAC for
messages of length `(n).

• Canonical Verification: when Mac is deterministic, recomputes
the tag and checks for equality.
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Security of MAC - Intuition

• An adversary should not be able to efficiently produce a valid
tag on a new message that was not authenticated before.

• Taking as realistic a scenario where the adversary can see
message/tag pairs, in the security definition the adversary is
given access to a tagging oracle.
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Security of MAC - Formal Definition

Given S = (KeyGen,Mac,Verify), an adversary A, and a security
parameter n, we define the following experiment:

Experiment (MacUnforg
A,S )

• Key generation: k← KeyGen(1n).
• Tag queries: the adversary A is given oracle access to Mack().

The set of all queried messages is Q.
• Adversary’s output: the adversary A eventually outputs (m, t)
• Experiment’s output: if

Verifyk(m, t) = 1 ∧ m 6∈ Q

outputs 1, otherwise outputs 0.
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𝑸 = {𝒎𝟏, … , 𝒎𝒏} 

𝑪𝒐𝒎𝒑𝒖𝒕𝒆 𝒕′ ≔ 𝑴𝒂𝒄𝒌(𝒎) 
𝑻𝒆𝒔𝒕 𝒊𝒇 𝒕 = 𝒕′𝒂𝒏𝒅 𝒎 ∉ 𝑸 

𝒕𝟏, … , 𝒕𝒏 

(𝒎, 𝒕) 

𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆𝒓 
 

𝑨𝒅𝒗𝒆𝒓𝒔𝒂𝒓𝒚 
 𝑨 

𝑀𝐴𝐶𝑢𝑛𝑓𝑜𝑟𝑔 Game  
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Security of MAC - Formal Definition

A MAC scheme S is said to be Existentially unforgeable under an
adaptive chosen-message attack if no PPT adversary A can win
the previous game with non-negligible probability:

Definition
A message authentication code S = (KeyGen,Mac,Verify) is
secure if for all probabilistic polynomial-time adversary A, the
following holds

Pr[MacUnforg
A,S (n) = 1] ≤ negl(n) .
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MAC and Replay attacks

• An adversary cannot change the message without being
detected by the receiver if it has a valid tag.

• However, the adversary can replay and send the same
message again, with the same tag.

• The receiver cannot detect this malicious behaviour.
• Common techniques to prevent replay attacks:
◦ Time-stamps: add the current time to the beginning of the

message before authenticating it.
◦ Counters: users maintain synchronised state.
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Security of MAC - Formal Definition (2)

Given S = (KeyGen,Mac,Verify), an adversary A, and a security
parameter n, we define the following experiment:

Experiment (Macs−unforg
A,S )

• Key generation: k← KeyGen(1n).
• Tag queries: the adversary A is given oracle access to Mack().

The set of all pairs queried message/tag is Q.
• Adversary’s output: the adversary A eventually outputs (m, t)
• Experiment’s output: if

Verifyk(m, t) = 1 ∧ (m, t) 6∈ Q

outputs 1, otherwise outputs 0.
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Strongly Secure MAC

If a MAC scheme is strongly secure, then adversaries win if they
produce tags on any messages (including already authenticated
ones!).

Definition
A message authentication code S = (KeyGen,Mac,Verify) is
strongly secure if for all probabilistic polynomial-time adversary A,
the following holds

Pr[Macs−unforg
A,S (n) = 1] ≤ negl(n) .

If the Mac algorithm in S is deterministic, and the verification is
canonical, then secure MACs are strongly secure as well.
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MAC - Side Channel Attacks

• When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

• This is not what happens in the real systems!
• An adversary may be able to obtain the time necessary to

reject a pair message/tag.
• In the case of deterministic MAC, if the MAC verification does

not use time-independent string comparison, then the
adversary can exploit the time differences to deduce new bytes
of the tag!

• This is a realistic attack. Xbox 360 had a difference of 2.2
milliseconds in comparing j or j + 1 bytes.

• Attackers managed to exploit this.
• Conclusion: MAC verification should compare all the bytes.
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A fixed-Length MAC from a PRF

Definition
Given a length-preserving pseudorandom function F, a
fixed-length MAC S for messages of length n consists of the two
following algorithms:
• Mac(k ∈ {0, 1}n,m ∈ {0, 1}n): it outputs the tag t← Fk(m).
• Verify(k ∈ {0, 1}n,m ∈ {0, 1}n, t ∈ {0, 1}n): it outputs 1 iff

Fk(m) = t

If |m| 6= |k|, then Mac outputs ⊥ and Verify outputs 0.
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A fixed-Length MAC from a PRF

Theorem
If F is a secure pseudorandom function, then the fixed-length MAC
for messages of length n is secure.

Steps of the proof:
• consider a variation S′ of S, where Fk is replaced by a truly

random function f : {0, 1}n → {0, 1}n.
• Let A be the adversary trying to attack S.
• Define a distinguisher D for F (it is given access to some

function and needs to tell whether this function is
pseudorandom or truly random).

• D emulates the MAC experiment for A and check if it succeeds
in producing a valid tag on a new message m.

• if A manages to produce a valid tag, D will guess that its oracle
is “pseudo-random” (1), otherwise it outputs “truly random” (0).

19 of 42



F in the left box is the truly random function f : {0, 1}n → {0, 1}n.

𝑫𝒊𝒔𝒕𝒊𝒏𝒈𝒖𝒊𝒔𝒉𝒆𝒓  
𝑫 

𝑨𝒅𝒗𝒆𝒓𝒔𝒂𝒓𝒚 
 𝑨 

𝑶𝒓𝒂𝒄𝒍𝒆  
𝒂𝒄𝒄𝒄𝒆𝒔𝒔  

𝒕𝒐 𝑭  
𝒐𝒓 𝑭𝒌 
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In the “adaptive” setting, the messages m1, . . . ,mn will be sent
separately.

𝑸 = {𝒎𝟏, … , 𝒎𝒏} 

𝑫𝒊𝒔𝒕𝒊𝒏𝒈𝒖𝒊𝒔𝒉𝒆𝒓  
𝑫 

𝑨𝒅𝒗𝒆𝒓𝒔𝒂𝒓𝒚 
 𝑨 

𝑶𝒓𝒂𝒄𝒍𝒆  
𝒂𝒄𝒄𝒄𝒆𝒔𝒔  

𝒕𝒐 𝑭  
𝒐𝒓 𝑭𝒌 
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A fixed-Length MAC from a PRF

Steps of the Proof
We can distinguish between two cases:
• D’s oracle is a pseudo-random function: in this case, the view

of A that is run as a subroutine by D and its view in the
experiment MacUnforg

A,S (n) are distributed identically. Moreover, D

outputs 1 exactly when MacUnforg
A,S (n) outputs 1.

• D’s oracle is a truly-random function: in this case, the view of A
that is run as a subroutine by D and its view in the experiment
MacUnforg

A,S′ (n) are distributed identically. Moreover, D outputs 1

exactly when MacUnforg
A,S′ (n) outputs 1.
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𝒕𝒐 𝑭  
𝒐𝒓 𝑭𝒌 

𝑻𝒆𝒔𝒕 𝒊𝒇 𝒕 =? (𝒕′: = 𝑭(𝒎)) 
𝒂𝒏𝒅 𝒎 ∉ 𝑸 

𝑺𝒄𝒉𝒆𝒎𝒆 𝑺′ 
𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆𝒓 

 
 𝒕𝒊: = 𝑭 𝒎𝒊   

𝑀𝐴𝐶𝑢𝑛𝑓𝑜𝑟𝑔 
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Sketch Proof.
As a result, we have that

Pr[MacUnforg
A,S′ (n) = 1] = Pr[Df ()(n) = 1] (1)

and
Pr[MacUnforg

A,S (n) = 1] = Pr[DFk()(n) = 1] (2)
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A fixed-Length MAC from a PRF

Steps of the Proof
Since F is a secure PRF, it holds:

|Pr[Df ()(n) = 1]− Pr[DFk()(n) = 1]| =

= |Pr[MacUnforg
A,S′ (n) = 1]− Pr[MacUnforg

A,S (n) = 1]| ≤ negl(n).

For any message m 6∈ Q, the value t = f (m) is uniformly distributed
in {0, 1}n from the point of view of the adversary A. So:

Pr[MacUnforg
A,S′ (n) = 1] ≤ 2−n.

The relations above then give:

Pr[MacUnforg
A,S (n) = 1] ≤ 2−n + negl(n) .
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From fixed length MAC to MAC for
arbitrary-length messages.

• If the PRF has a bigger bolck length, the MAC is secure for
longer messages.

• Problem: existing pseudo-random functions used in practice
(block ciphers) can just take short fixed-length inputs!

• Question: How to build a MAC for arbitrary-length messages?
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A general MAC from a fixed-length one

Potential attacks:
• Block re-ordering attack: change the order of blocks. Namely, if

(t1, t2) is a valid tag on (m1,m2) where m1 6= m2, then (t2, t1) is a
valid tag on (m2,m1), with m1,m2 6= m2,m1.
Solution: authenticate a block index with each block.

• Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

• Mix-and-match attack: given the valid tags (t1, t2, t3) and
(t′1, t′2, t′3) on the messages (m1,m2,m3) and (m′1,m′2,m′3), output
(t1, t′2, t3) on the message (m1,m′2,m3).
Solution: authenticate a random message identifier along with
each block.
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A MAC from a fixed-length one

Definition
Let S1 = (KeyGen1,Mac1,Verify1) be a fixed-length MAC for
messages of length n. We define a MAC S for arbitrary-length
messages as follows:
• Mac(k ∈ {0, 1}n,m ∈ {0, 1}∗):
◦ it takes a key k and a messge m, where |m| = ` < 2n/4.
◦ it then parses m into d blocks of length n/4, i.e. m1, · · · ,md.
◦ if the last block is not of size n/4, we pad it with 0s
◦ it uniformly chooses r ∈ {0, 1}n/4

◦ For i = 1, · · · , d, compute ti ← Mac1(k, r||`||i||mi), where i, ` are
encoded as strings of length n/4.

◦ Output t = (r, t1, · · · , td).

• Verify(k,m, (r, t1, · · · , td)): parse m into d′ blocks, then output 1
iff d′ = d AND Verify1(k, r||`||i||mi, ti) = 1 for 1 ≤ i ≤ d′.
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A general MAC from a fixed-length one

Theorem
If S1 is a secure fixed-length MAC for messages of length n, then S
as defined above is a secure MAC for arbitrary-length messages.

Another way to build a secure MAC for arbitrary-length messages
is to use hash functions, which will be covered soon!
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