Message Authentication Code

Federico Pintore !

"Mathematical Institute

UNIVERSITY OF

0),430)328D,

1 0of 42

Outline

a Message Integrity

e Message Authentication Code (MAC)

Outline

0 Message Integrity

Message Integrity

e We want parties to securely communicate over insecure
channels.

Encrypting messages is only one part of security.

What if the messages were modified in transit?

What about authenticity?

4 of 42

Encryption does not guarantee integrity

* Consider the OTP scheme, which is a perfectly secret
encryption scheme.

e From a given ciphertext, you can produce a new valid
ciphertext, by just flipping a single bit!

» Perfect secrecy is not violated here.
» But, perfect secrecy simply doesn’t imply message integrity.
« Different cryptographic tools should be used to achieve secrecy

and integrity.

5 of 42

Outline

e Message Authentication Code (MAC)

Message Authentication Code (MAC)

e Message authentication code is the cryptographic tool to be
used to ensure message integrity.

* Informally speaking, the MAC’s goal is to prevent an adversary
from tampering with the messages.

e Parties need to share a secret key as in the encryption!

7 of 42

MAC - Formal Definition

Definition

A MAC consists of the following three probabilistic polynomial-time

algorithms (KeyGen, Mac, Verify):

* KeyGen(1"): takes the security parameter n and outputs a key k
S.t k| >n

e Macy(m € {0, 1}*): is a tagging algorithm, takes a key k and a
message m and outputs a tag t.

* Verify,(m,t): a deterministic algorithm that outputs a bit b, 0 for
invalid and 1 for valid.

Macy(-) may be randomised or deterministic.

8 of 42

MAC

» Correctness of MAC: Vn, Vk <+ KeyGen(1") and Vm € {0, 1},
Verify, (m, Macy(m)) = 1 holds.

» Fixed-length MAC: if it is just defined for messages
m € {0,1}*™ we call the scheme a fixed-length MAC for
messages of length ((n).

e Canonical Verification: when Mac is deterministic, recomputes
the tag and checks for equality.

9 of 42

Security of MAC - Intuition

e An adversary should not be able to efficiently produce a valid
tag on a new message that was not authenticated before.

» Taking as realistic a scenario where the adversary can see
message/tag pairs, in the security definition the adversary is
given access to a tagging oracle.

10 of 42
I

Security of MAC - Formal Definition

Given S = (KeyGen, Mac, Verify), an adversary .4, and a security
parameter n, we define the following experiment:

Experiment (Maciﬂorg)

* Key generation: k < KeyGen(1").

» Tag queries: the adversary A is given oracle access to Macy().
The set of all queried messages is Q.

» Adversary’s output: the adversary A eventually outputs (m,t)
» Experiment’s output: if

Verify,(m,t) =1 Am & Q

outputs 1, otherwise outputs 0.

11 0f 42

MAC*forg Game

Q={m,...m}

Challenger - g Adversary
A

Computet' := Mac,(m)
Testift=tandm ¢ Q

!

12 of 42 Yes >1/No >0

Security of MAC - Formal Definition

A MAC scheme S is said to be Existentially unforgeable under an
adaptive chosen-message attack if no PPT adversary A can win
the previous game with non-negligible probability:

Definition

A message authentication code S = (KeyGen, Mac, Verify) is
secure if for all probabilistic polynomial-time adversary A, the
following holds

PrMac <" (n) = 1] < negl(n).

13 of 42
I

MAC and Replay attacks

e An adversary cannot change the message without being
detected by the receiver if it has a valid tag.

e However, the adversary can replay and send the same
message again, with the same tag.

e The receiver cannot detect this malicious behaviour.

» Common techniques to prevent replay attacks:

o Time-stamps: add the current time to the beginning of the
message before authenticating it.
o Counters: users maintain synchronised state.

14 of 42

Security of MAC - Formal Definition (2)

Given S = (KeyGen, Mac, Verify), an adversary .4, and a security
parameter n, we define the following experiment:

- s—unforg
Experiment (Mac’, ¢)

* Key generation: k < KeyGen(1").

» Tag queries: the adversary A is given oracle access to Macy().
The set of all pairs queried message/tag is Q.

* Adversary’s output: the adversary A eventually outputs (m,t)
* Experiment’s output: if

Verify, (m,t) = 1 A (m,t) € Q

outputs 1, otherwise outputs 0.

15 of 42

Strongly Secure MAC

If a MAC scheme is strongly secure, then adversaries win if they
produce tags on any messages (including already authenticated
ones!).

Definition

A message authentication code S = (KeyGen, Mac, Verify) is
strongly secure if for all probabilistic polynomial-time adversary A,
the following holds

Pr[Mac §""%(n) = 1] < negl(n).

If the Mac algorithm in S is deterministic, and the verification is
canonical, then secure MACs are strongly secure as well.

16 of 42
I

MAC - Side Channel Attacks

e When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

17 of 42
I

MAC - Side Channel Attacks

e When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

e This is not what happens in the real systems!

17 of 42
I

MAC - Side Channel Attacks

e When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

e This is not what happens in the real systems!

e An adversary may be able to obtain the time necessary to
reject a pair message/tag.

17 of 42

MAC - Side Channel Attacks

e When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

e This is not what happens in the real systems!

* An adversary may be able to obtain the time necessary to
reject a pair message/tag.

¢ In the case of deterministic MAC, if the MAC verification does
not use time-independent string comparison, then the
adversary can exploit the time differences to deduce new bytes
of the tag!

17 of 42
I

MAC - Side Channel Attacks

e When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

e This is not what happens in the real systems!

* An adversary may be able to obtain the time necessary to
reject a pair message/tag.

¢ In the case of deterministic MAC, if the MAC verification does
not use time-independent string comparison, then the
adversary can exploit the time differences to deduce new bytes
of the tag!

e This is a realistic attack. Xbox 360 had a difference of 2.2
milliseconds in comparing j or j + 1 bytes.

17 of 42
I

MAC - Side Channel Attacks

e When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

e This is not what happens in the real systems!

* An adversary may be able to obtain the time necessary to
reject a pair message/tag.

¢ In the case of deterministic MAC, if the MAC verification does
not use time-independent string comparison, then the
adversary can exploit the time differences to deduce new bytes
of the tag!

e This is a realistic attack. Xbox 360 had a difference of 2.2
milliseconds in comparing j or j + 1 bytes.

e Attackers managed to exploit this.

17 of 42
I

MAC - Side Channel Attacks

When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

This is not what happens in the real systems!

An adversary may be able to obtain the time necessary to
reject a pair message/tag.

In the case of deterministic MAC, if the MAC verification does
not use time-independent string comparison, then the
adversary can exploit the time differences to deduce new bytes
of the tag!

This is a realistic attack. Xbox 360 had a difference of 2.2
milliseconds in comparing j or j + 1 bytes.

Attackers managed to exploit this.

Conclusion: MAC verification should compare all the bytes.

17 of 42
I

A fixed-Length MAC from a PRF

Definition
Given a length-preserving pseudorandom function F, a

fixed-length MAC S for messages of length n consists of the two
following algorithms:

e Mac(k € {0,1}*,m € {0,1}"): it outputs the tag t + Fi(m).

e Verify(k € {0,1}",m € {0,1}",¢ € {0,1}"): it outputs 1 iff
Fk(m) =t

If |m| # |k|, then Mac outputs L and Verify outputs 0.

18 of 42
I

A fixed-Length MAC from a PRF

IfF is a secure pseudorandom function, then the fixed-length MAC
for messages of length n is secure.

Steps of the proof:

e consider a variation S’ of S, where F; is replaced by a truly
random function f : {0, 1}" — {0, 1}".

e Let A be the adversary trying to attack S.

» Define a distinguisher D for F (it is given access to some
function and needs to tell whether this function is
pseudorandom or truly random).

e D emulates the MAC experiment for .4 and check if it succeeds
in producing a valid tag on a new message m.

e if A manages to produce a valid tag, D will guess that its oracle

+ds,, pseudo-random” (1), otherwise it outputs “truly random” (0).

F in the left box is the truly random function f : {0, 1}" — {0, 1}".

Distinguish
between F() and Fy()

Distinguisher
D

Adversary

A

20 of 42

In the “adaptive” setting, the messages m;, ..., m, will be sent
separately.

Distinguish
between F() and Fy()

Q={m,...m}

Oracle
Distinguisher
D

Adversary

A

21 of 42

Distinguish
between F() and Fy()

Q={my... m,}

Distinguisher
D

Adversary

A

22 of 42

Distinguish
between F() and Fy()

Q={my... m,}

Distinguisher
D

Adversary

A

23 of 42

Distinguish
between F() and Fy()

Q={my... m,}

Distinguisher - g Adversary
D A

24 of 42

Distinguish
between F() and Fy()

Distinguisher - g Adversary
D A

25 of 42

Distinguish
between F() and Fy()

Distinguisher - g Adversary
D A

26 of 42

Distinguish
between F() and Fy()

g Adversary
A

27 of 42

Distinguish
between F() and Fy()

g Adversary
A

Testift=t'andm ¢ Q

28 of 42

Distinguish
between F() and Fy()

g Adversary
A

Testift=t'andm ¢ Q

29 of 42 III ii‘ Hi iﬁ

A fixed-Length MAC from a PRF

Steps of the Proof
We can distinguish between two cases:

e D’s oracle is a pseudo-random function: in this case, the view
of A that is run as a subroutine by D and its view in the

experiment MacU”f°rg() are distributed identically. Moreover, D
outputs 1 exactly when MacU”forg() outputs 1.

e D’s oracle is a truly-random function: in this case, the view of A

that is run as a subroutine by D and its view in the experiment
Macj?;?rg (n) are distributed identically. Moreover, D outputs 1

exactly when Macj'j;‘,’rg (n) outputs 1.

30 of 42

Distinguish
between F() and Fy()

g Adversary
A

Testift=t'andm ¢ Q

31 0f42 III ii‘ Hi iﬁ

MACunfarg

Scheme S
Challenger
(t; = Fi(my)) e Q={my .. m,}
ty, . L, R
g Adversary
(m, 0 4

32 0f 42 III ii‘ HI iﬁ

Distinguish
between F() and Fy()

g Adversary
A

Testift=t'andm ¢ Q

33 of 42 III ii‘ Hi iﬁ

MACunfarg

Scheme S’
Challenger
(tz= F(mi)) Q={my..,m,}
ty, .. L, R
g Adversary
(m, 0 4

34 of 42 III ii‘ HI iﬁ

Sketch Proof.

As a result, we have that

PriMacys"®(n) = 1] = Pr[D/0(n) = 1] (1)
and

Pr[Mac’"%(n) = 1] = Pr[D"0(n) = 1] 2)

35 of 42
I

A fixed-Length MAC from a PRF

Steps of the Proof
Since F is a secure PREF, it holds:

| Pe[DO(n) = 1] — Pe(D0(n) = 1]| =
= | Pr[Mac}"® (n) = 1] — PriMac¢"® (n) = 1]| < negl(n).

For any message m ¢ Q, the value t = f(m) is uniformly distributed
in {0, 1}" from the point of view of the adversary A. So:

Pr[Macys9(n) = 1] < 27"
The relations above then give:
[MacU”forg()=1] <27" +negl(n).

36 of 42 <
I

From fixed length MAC to MAC for
arbitrary-length messages.

* If the PRF has a bigger bolck length, the MAC is secure for
longer messages.

e Problem: existing pseudo-random functions used in practice
(block ciphers) can just take short fixed-length inputs!

* Question: How to build a MAC for arbitrary-length messages?

37 of 42
I

A general MAC from a fixed-length one

Potential attacks:

» Block re-ordering attack: change the order of blocks. Namely, if
(t1,1) is a valid tag on (m;, m;) where m; # my, then (t,, 1) is a
valid tag on (mz,ml), with my,my 75 my,mj.

38 of 42
I

A general MAC from a fixed-length one

Potential attacks:

» Block re-ordering attack: change the order of blocks. Namely, if
(t1,1) is a valid tag on (m;, m;) where m; # my, then (t,, 1) is a
valid tag on (mz,ml), with my,my 75 my,mj.

Solution: authenticate a block index with each block.

38 of 42

A general MAC from a fixed-length one

Potential attacks:

» Block re-ordering attack: change the order of blocks. Namely, if
(t1,1) is a valid tag on (m;, m;) where m; # my, then (t,, 1) is a
valid tag on (mz,ml), with my,my 75 my,mj.

Solution: authenticate a block index with each block.

e Truncation attack: the attacker removes blocks from the end of

the message and their corresponding blocks from the tag.

38 of 42
I

A general MAC from a fixed-length one

Potential attacks:

» Block re-ordering attack: change the order of blocks. Namely, if
(t1,1) is a valid tag on (m;, m;) where m; # my, then (t,, 1) is a
valid tag on (mz,ml), with my,my 75 my,mj.

Solution: authenticate a block index with each block.
e Truncation attack: the attacker removes blocks from the end of

the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

38 of 42
I

A general MAC from a fixed-length one

Potential attacks:

» Block re-ordering attack: change the order of blocks. Namely, if
(t1,1) is a valid tag on (m;, m;) where m; # my, then (t,, 1) is a
valid tag on (mz,ml), with my,my 75 my,mj.

Solution: authenticate a block index with each block.

e Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

e Mix-and-match attack: given the valid tags (1, 72, #3) and
(1,1, ;) on the messages (m;,m,, m3) and (m, m5, m5), output
(t1,1,13) on the message (my, m}, m3).

38 of 42
I

A general MAC from a fixed-length one

Potential attacks:

» Block re-ordering attack: change the order of blocks. Namely, if
(t1,1) is a valid tag on (m;, m;) where m; # my, then (t,, 1) is a
valid tag on (mz,ml), with my,my 75 my,mj.

Solution: authenticate a block index with each block.

e Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

* Mix-and-match attack: given the valid tags (11, 12, 3) and
(1,1, ;) on the messages (m;,m,, m3) and (m, m5, m5), output
(t1,1,,13) on the message (m;,m), m3).
Solution: authenticate a random message identifier along with
each block.

38 of 42
I

A MAC from a fixed-length one

Definition
Let S, = (KeyGen,, Mac,, Verify,) be a fixed-length MAC for

messages of length n. We define a MAC S for arbitrary-length
messages as follows:

* Mac(k € {0,1}",m € {0,1}%):

it takes a key k and a messge m, where |m| = ¢ < 2"/*.

it then parses m into d blocks of length n/4, i.e. my,--- ,m,.

if the last block is not of size n/4, we pad it with Os

it uniformly chooses r € {0,1}"/*

Fori=1,---,d, computet; < Mac,(k, r||¢||i||m;), where i, { are
encoded as strings of length n/4.

o Qutputt= (rty, - ,tz).

e Verify(k,m, (r,t1,--- ,t4)): parse m into d’ blocks, then output 1
iffd = d AND Verity, (k, r||¢|]i||m;, t;) =1 for1 <i<d'.
39 of 42
S

O O O O O

4

A general MAC from a fixed-length one

If S is a secure fixed-length MAC for messages of length n, then S
as defined above is a secure MAC for arbitrary-length messages.

Another way to build a secure MAC for arbitrary-length messages
is to use hash functions, which will be covered soon!

40 of 42
I

Further Reading (1)

» N.J. Al Fardan and K.G. Paterson.
Lucky thirteen: Breaking the TLS and DTLS record protocols.
In Security and Privacy (SP), 2013 IEEE Symposium on, pages
526—-540, May 2013.

» J Lawrence Carter and Mark N Wegman.
Universal classes of hash functions.
In Proceedings of the ninth annual ACM symposium on Theory
of computing, pages 106—112. ACM, 1977.

» Jean Paul Degabriele and Kenneth G Paterson.
On the (in) security of IPsec in MAC-then-Encrypt
configurations.
In Proceedings of the 17th ACM conference on Computer and
communications security, pages 493-504. ACM, 2010.
41 of 42
I

Further Reading (2)

» Ted Krovetz and Phillip Rogaway.
The software performance of authenticated-encryption modes.
In Fast Software Encryption, pages 306—327. Springer, 2011.

» Douglas R. Stinson.
Universal hashing and authentication codes.
Designs, Codes and Cryptography, 4(3):369—-380, 1994.

42 of 42

	Message Integrity
	Message Authentication Code (MAC)

