Message Authentication Code

Federico Pintore!

"Mathematical Institute

UNIVERSITY OF

0),430)328D,

1 of 46

Outline

@ cBCc-MAC
e Authenticated Encryption

e Padding Oracle Attacks

0 Information Theoretic MACs

Outline

@ cBc-mac

Basic CBC-MAC

Definition
Let F be a pseudorandom function. The basic CBC-MAC is
defined as follows:
e Mac(k € {0,1}",m): it takes a key k and a message m of length
n-L - where L = {(n) - and does the following:
o parses masm,--- ,my, where |m;| = n;
o Initializes ty < 0", and fori = 1,--- ,L computes

05 4= Fk(t,',l (&) m,-)
o outputs the tag t; .
o Verify(k € {0,1}",m,1): if/m| = n- L and t = Mac(k, m) outputs
1, outputs 0 otherwise.

4 of 46

CBC-MAC

A The previous construction is only secure for messages
of given lenght!

CBC-MAC

A The previous construction is only secure for messages
of given lenght!

There are ways to (securely) modify the construction to handle
arbitrary-length messages.

5 of 46

CBC-MAC

A The previous construction is only secure for messages
of given lenght!

There are ways to (securely) modify the construction to handle
arbitrary-length messages.

» prepend |m|, encoded as an n-bit string, to the message m;

5 of 46

CBC-MAC

A The previous construction is only secure for messages
of given lenght!

There are ways to (securely) modify the construction to handle
arbitrary-length messages.

» prepend |m|, encoded as an n-bit string, to the message m;

e change the key generation to choose two uniform, independent
keys, ki, k; € {0,1}". Then 1, «+CBC-MAC(m, k;) is computed
and the output tag is ¢ < F, ().

5 of 46

CBC-MAC and CBC-mode encryption
|
~
‘ |
| J
e CBC-mode encryption has a random IV whereas CBC-MAC
has a fixed one (i.e. 0") and they are only secure under these
conditions;
e CBC-mode encryption outputs all the intermediate values ¢; as

parts of the ciphertext whereas CBC-MAC only outputs the final

tag # (and only secure in this case).
6 of 46

Outline

9 Authenticated Encryption

Authenticated Encryption

A primitive to achieve both secrecy and integrity simultaneously.

No standard terminology or definitions yet.

CAESAR - Competition for Authenticated Encryption: Security,
Applicability, and Robustness.
http://competitions.cr.yp.to/caesar.html

Level of secrecy that we want: CCA-security.

Level of integrity: a variant of existential unforgeability under
chosen-message attacks for encryption schemes.

8 of 46

http://competitions.cr.yp.to/caesar.html

Unforgeable Encryption

We define the unforgeable game for an encryption scheme

S = (KeyGen, Enc, Dec) as follows:

* KeyGen(n): output a key k.

e Adversary’s capabilities: access to an encryption oracle
Enc(k, -). All its queries will be stored in a list Q.

e Adversary’s output: a ciphertext c.

* Winning conditions: compute m « Dec(k, ¢) and output 1 if
om# L
°om¢gQ

Definition

A private key encryption scheme S is unforgeable if for all PPT
adversaries A, we have Pr[PrivK'{{’"% (n) = 1] < negl (n)

9 of 46

Authenticated Encryption: A Definition

Definition

A private-key encryption scheme is an authenticated encryption
scheme is it is both CCA-secure and unforgeable.

* Not any combination of a secure encryption scheme and a
secure would yield an authenticated encryption scheme.

10 of 46
I

Authenticated Encryption: A Definition

Definition

A private-key encryption scheme is an authenticated encryption
scheme is it is both CCA-secure and unforgeable.

* Not any combination of a secure encryption scheme and a
secure would yield an authenticated encryption scheme.

e Lesson: you can't just combine two secure cryptographic
modules/tools and expect the combination to be automatically
secure!

10 of 46

Authenticated Encryption from secure MAC
and ENC

Any authenticated encryption is also CCA-secure.

« there exist CCA-secure encryption schemes that are not
unforgeable;

* we do not really have an encryption which is only CCA secure
and more efficient than authenticated encryptions.

We are only interested in combining a CPA-secure encryption with
a secure MAC.

11 of 46
I

Authenticated Encryption: How to combine
MAC and ENC?

e Mac and Enc: compute them independently and in parallel,
¢ < Enc(k;,m) and t < Mac(ky, m)

e Enc then Mac:
¢ < Enc(k;,m) then r + Mac(k;, ¢)

e Mac then Enc:

t < Mac(kp, m) then ¢ < Enc(k;, m||r)

12 of 46

MAC and Encrypt

If the MAC is deterministic (like most MACs used in practice), the
scheme is not even CPA-secure!

» CPA security implies CPA security for multiple encryptions;

« if the attacker submits (m, m) and (m,m’), from the challenge
ciphertexts can easily guess which messages were encrypted.

13 of 46
I

Encrypt then MAC: formal description

Given a private-key encryption scheme S = (Enc, Dec) and a
message authentication code MAC = (Mac, Verify), we define a
private-key encryption scheme S’ = (KeyGen', Enc’, Dec’) as
follows:
» KeyGen'(n): chooses independent, uniform keys

ke, km € {0, 1}".
e Enc'(k, ky,m): computes ¢ + Enc(k.,m) and then

t <+ Mac(kn, ¢). The ciphertext is (c, 7).
e Dec/((c, 1), ke, kim):

o if Verify(ky, c, 1) = 1 then outputs Dec(k,,)

o otherwise, outputs L.

14 of 46
I

Encrypt then MAC

In this case: CPA-secure S + strongly secure MAC —-
CCA-security and integrity of S'.

* (c,t) is a valid ciphertext if Verify(ky,c,t) = 1;

« if the MAC is strongly secure, then an adversary cannot
generate a new ciphertext (i.e. not obtained from the encryption
oracle);

« therefore, S’ is unforgeable and the adversary cannot benefit
from the decryption oracle of the CCA game;

e CPA-security of the encryption scheme S is enough.

15 of 46

Authenticated Encryption: an Application and
Potential attacks

An authenticated encryption is not enough, on its own, to provide
security over a communication session.

Possible attacks:

e Re-ordering attack: change the order in which the message
were supposed to be delivered (force ¢, to arrive before ¢;).

e Replay attack: replay a previously sent valid ciphertext.

¢ Reflection attack: change the direction of the message and
resend to the sender instead of the receiver.

Solutions: use counters for the first two problems, and different
encryption keys for different directions, i.e. Ka_.p # Kp_,4.

16 of 46

MAC then Encrypt

It is not guaranteed to be an authenticated encryption!

» the CBC mode encryption is CPA-secure but not CCA-secure;

¢ the padding oracle attack applies!

my m, m,

v G < G

17 of 46

Outline

9 Padding Oracle Attacks

18 of 46

A Padding Oracle Attack

¢ |In CBC mode, the number of bits of a message should be
multiple of the block length

19 of 46
I

A Padding Oracle Attack

¢ |In CBC mode, the number of bits of a message should be
multiple of the block length

e if it is not, we pad the message. PKCS#5 is a famous and
standardised approach.

19 of 46
I

A Padding Oracle Attack

¢ |In CBC mode, the number of bits of a message should be
multiple of the block length

e if it is not, we pad the message. PKCS#5 is a famous and
standardised approach.

e Assume that |m| = L and block length = 7 (both in bytes). Let
L =r-t+d. Therefore, b =t — d is the number of bytes that

need to be padded to the message.

19 of 46

A Padding Oracle Attack

In CBC mode, the number of bits of a message should be
multiple of the block length

if it is not, we pad the message. PKCS#5 is a famous and
standardised approach.

Assume that |m| = L and block length = ¢ (both in bytes). Let
L =r-t+d. Therefore, b =t — d is the number of bytes that
need to be padded to the message.

Exceptionally, if » = 0, we pad ¢ bytes, therefore 1 < b < L.

19 of 46
I

A Padding Oracle Attack

In CBC mode, the number of bits of a message should be

multiple of the block length

e if it is not, we pad the message. PKCS#5 is a famous and
standardised approach.

e Assume that |m| = L and block length = 7 (both in bytes). Let
L =r-t+d. Therefore, b =t — d is the number of bytes that
need to be padded to the message.

» Exceptionally, if » = 0, we pad ¢ bytes, therefore 1 < b < L.

e We append to the message the integer b represented in either

1-byte or two hexadecimal digits.

19 of 46

A Padding Oracle Attack

In CBC mode, the number of bits of a message should be

multiple of the block length

e if it is not, we pad the message. PKCS#5 is a famous and
standardised approach.

e Assume that |m| = L and block length = 7 (both in bytes). Let
L =r-t+d. Therefore, b =t — d is the number of bytes that
need to be padded to the message.

» Exceptionally, if » = 0, we pad ¢ bytes, therefore 1 < b < L.

e We append to the message the integer b represented in either
1-byte or two hexadecimal digits.

e Examples: 1 byte needed, then we append 00000001 to the

end of the message; 2 bytes needed, then we append

00000010[|00000010.

19 of 46

A Padding Oracle Attack

In CBC mode, the number of bits of a message should be
multiple of the block length

if it is not, we pad the message. PKCS#5 is a famous and
standardised approach.

Assume that |m| = L and block length = ¢ (both in bytes). Let
L =r-t+d. Therefore, b =t — d is the number of bytes that
need to be padded to the message.

Exceptionally, if 5 = 0, we pad ¢ bytes, therefore 1 <b < L.
We append to the message the integer b represented in either
1-byte or two hexadecimal digits.

Examples: 1 byte needed, then we append 00000001 to the
end of the message; 2 bytes needed, then we append
00000010[|00000010.

The padded message, which is called encoded data, will then

108 encrypted using CBC-mode encryption.
S

Authenticate then encrypt

Decryption: first, decrypt the ciphertext; then, check the
correctness of the padding; finally, check on the validity of the tag.

20 of 46
I

Authenticate then encrypt

Decryption: first, decrypt the ciphertext; then, check the
correctness of the padding; finally, check on the validity of the tag.

¢ Read the value b of the last byte, and check if it is the same
value in the last b bytes.

20 of 46
I

Authenticate then encrypt

Decryption: first, decrypt the ciphertext; then, check the

correctness of the padding; finally, check on the validity of the tag.

¢ Read the value b of the last byte, and check if it is the same
value in the last b bytes.

e |f the padding is correct, drop the last b bytes and get the
original plaintext, otherwise output “padding error”.

20 of 46

Authenticate then encrypt

Decryption: first, decrypt the ciphertext; then, check the
correctness of the padding; finally, check on the validity of the tag.

Read the value b of the last byte, and check if it is the same
value in the last b bytes.

If the padding is correct, drop the last b bytes and get the
original plaintext, otherwise output “padding error”.

This is a great source of information to the adversary, you can
think of it as a limited decryption oracle.

Adversaries can send ciphertexts and learn whether or not they
are padded correctly (receiving the padding error)!

This way the adversary can recover the whole message for any
ciphertext of his choice.

20 of 46

A Padding Oracle Attack

e We will take the example of a 3-block ciphertext, IV, ¢, ¢;, that
corresponds to the message m;, m, (unknown to the attacker).

21 0f 46
I

A Padding Oracle Attack

e We will take the example of a 3-block ciphertext, IV, ¢, ¢;, that
corresponds to the message m;, m, (unknown to the attacker).
* By definition, m, = F; ' (c2) ® c1. The block m, should end with
0xb - - - 0xb
——

b times

21 0f 46
I

A Padding Oracle Attack

e We will take the example of a 3-block ciphertext, IV, ¢, ¢;, that
corresponds to the message m;, m; (unknown to the attacker).
* By definition, my = F; ' (c2) ® c1. The block m, should end with
0xb - - - 0xb
——
b times
» Key idea: given ¢| = ¢; @ A, for any string A, if you try to
decrypt the new ciphertext IV, ¢}, c; then you will get m|, m),
where m), = m, @ A.

21 0f 46
I

A Padding Oracle Attack

e We will take the example of a 3-block ciphertext, IV, ¢, ¢;, that
corresponds to the message m;, m; (unknown to the attacker).
* By definition, my = F; ' (c2) ® c1. The block m, should end with
0xb - - - 0xb
\w_/
b times
» Key idea: given ¢| = ¢; @ A, for any string A, if you try to
decrypt the new ciphertext IV, ¢}, c; then you will get m|, m),
where m), = m, @ A.

e Exploiting this, the adversary can learn b, and consequently the
length of the original plaintext.

21 0f 46
I

A Padding Oracle Attack
Step 1: learn b (number of padded bytes).

22 of 46

A Padding Oracle Attack

23 of 46

A Padding Oracle Attack

24 of 46

A Padding Oracle Attack

25 of 46

Second step, recover the plaintext byte by byte.
The adversary modifies ¢; with the perturbation

Ay =0x0---0x00xn 0xb + 1 +b---0xb+1+b

b times

26 of 46

%

T No padding error, so
this byte is now 5!

31 0f 46

%

No padding error, so this byte'is now 5!
Simple computation will lead to finding the byte

32 of 46

MAC then Encrypt

e The decryption may fail for two different reasons: incorrect
padding or invalid tag!

* What if the attacker can distinguish between the two errors?

» Okay, we return a single error message in both cases (even
though it is not ideal!)

e What about the difference in time to return each of them?
(Some attacks on Secure Socket Layer (SSL) were based on
this ideal)

33 0f 46
I

Outline

° Information Theoretic MACs

34 of 46

Information Theoretic MACs

» All the MACs we have talked about so far have computational
security, i.e. the adversary’s running time is bounded

e Can we build a MAC that is secure even in the presence of
unbounded adversaries?

* We cannot get a perfectly secure MAC since adversaries can
guess a valid tag with probability 1/2/, if ¢ is the length of the
tags.

e Information theoretic MACs: success probability cannot be
better than 1/2'. Are they achievable?

* Yes, BUT with a bound on the number of messages that can be
authenticated!

35 of 46
I

Information Theoretic MACs

Most basic case: only one message can be authenticated.

Definition (One-time message authentication experiment)

» KeyGen: returns a key k

» Single tag query: adversary A sends a message m’' and gets a
tagt on it

* Adversary’s output: (m, 1)

e Experiment’s output: 1 iff

Verify(k,m,t) = 1 and m # m'’

We drop the security parameter n, as we are dealing with
unbounded adversaries!

36 of 46
I

Information Theoretic MACs

Definition

A message authentication code S is one-time e-secure, if for all
adversaries A (including unbounded ones):

PrMac!, {" = 1] < e

370f46
I

Information Theoretic MACs

* We need to first define strongly universal functions (also called
pairwise-independent).

38 of 46
I

Information Theoretic MACs

* We need to first define strongly universal functions (also called
pairwise-independent).

* Given a keyed function 2 : £ x M — T, where h(k,m) is often
written as i (m), we have that Vim # m’, and Vt,¢ € T it holds

Prii(m) =t Ae(m') = 1) = 1/|T?

where the probability is taken over uniform choice of k € K.

38 of 46

Information Theoretic MAC: a construction
from a strongly universal function

Given a strongly universal function 4 : £ x M — T, we define a

messages authentication code MAC with message space M as

follows:

e KeyGen : outputs a uniformly chosen key k <+ K

e Mac(k,m): outputs the tag Ay (m)

o Verify(k,m,t): outputs 1 iff m € M and t = h(m), otherwise
outputs 0

39 of 46

Information Theoretic MAC: a construction
from a strongly universal function

Given a strongly universal function h : K x M — T, a message
authentication code that is based on h is one-time 1/|T|-secure.

40 of 46
I

Let A be an adversary against the MAC scheme, who queries '’
and gets ¢. Finally, they output the forgery (m, t). The probability
that (m,) is a valid forgery is the following:

Pr[Mac!, (" = ZPr [Macl ¢ =1 A (m') =1
= ZPr [he(m) =t Ay (m') = 1]
-3

T

41 of 46

Strongly Universal Function: a Concrete
Construction

Consider Z,, for some prime p. Let M =T = Z,, and let
K =7, x Z,. we define a keyed function £, as

hap(m) =a-m+b mod p

For any prime p, the function h is strongly universal. I

420f 46
I

Information Theoretic MAC: its limitations

IfS is a one-time 27" - secure MAC with constant size keys, then

|k| > 2n.

43 of 46
I

Information Theoretic MAC: its limitations

Theorem

IfS is a ¢-time 27" -secure MAC with constant size keys, then
k| > (£ + 1)n.

Corollary

If the key-length of a given MAC is bounded, then it is not
information-theoretic secure when authenticating an unbounded
number of messages.

| A

A\

44 of 46

Further Reading (1)

» N.J. Al Fardan and K.G. Paterson.
Lucky thirteen: Breaking the TLS and DTLS record protocols.
In Security and Privacy (SP), 2013 IEEE Symposium on, pages
526—-540, May 2013.

» J Lawrence Carter and Mark N Wegman.
Universal classes of hash functions.
In Proceedings of the ninth annual ACM symposium on Theory
of computing, pages 106—112. ACM, 1977.

» Jean Paul Degabriele and Kenneth G Paterson.
On the (in) security of IPsec in MAC-then-Encrypt
configurations.
In Proceedings of the 17th ACM conference on Computer and
communications security, pages 493-504. ACM, 2010.

45 of 46

Further Reading (2)

» Ted Krovetz and Phillip Rogaway.
The software performance of authenticated-encryption modes.
In Fast Software Encryption, pages 306—327. Springer, 2011.

» Douglas R. Stinson.
Universal hashing and authentication codes.
Designs, Codes and Cryptography, 4(3):369—-380, 1994.

46 of 46

	CBC-MAC
	Authenticated Encryption
	Padding Oracle Attacks
	Information Theoretic MACs

