
Hash Functions

Federico Pintore 1

1Mathematical Institute,
University of Oxford

1 of 35



Outline

1 Definition and Notions of Security

2 The Merkle-damgård Transform

3 MAC using Hash Functions

4 Cryptanalysis: Generic Attacks

2 of 35



Outline

1 Definition and Notions of Security

2 The Merkle-damgård Transform

3 MAC using Hash Functions

4 Cryptanalysis: Generic Attacks

3 of 35



Introduction

• Informally speaking, hash functions take long bit strings and
output shorter bit strings, called digests.

• They are used almost everywhere in Cryptography.

• If you imagine that hash functions are truly random (modelled
as random oracles), then proving the security of some
cryptographic schemes becomes achievable (e.g. RSA-OAEP).

• A debate/controversy over the soundness of the random oracle
model.

4 of 35



Keyed Hash Functions - A Definition

Definition
A keyed hash function with output length `(n) consists of two PPT
algorithms (KeyGen,H), defined as follows:
• KeyGen(1n) : it takes a security parameter n and outputs a

key s.
• H(s, x ∈ {0, 1}∗) : it takes a key s and a string x ∈ {0, 1}∗, and

outputs a string Hs(x) ∈ {0, 1}`(n)

If H is defined only for inputs x ∈ {0, 1}`′(n), then the keyed hash
function is said fixed-length. We consider only compression
functions, i.e. `′(n) > `(n).

5 of 35



Security Notions - Collision Resistance

• A keyed hash function determines a keyed function

H : KeySet× InSet→ OutSet

where InSet is {0, 1}∗ or {0, 1}`′(n), and OutSet = {0, 1}`(n).

• We use the notation Hs(x) := H(s, x).

• Given a key s, it should be infeasible for any PPT algorithm to
find x 6= x′ s.t. Hs(x) = Hs(x′) (i.e., a collision).

• Since the domain is larger than its range, collisions always
exist, but we want them to be hard to find.

• This time the key is not a secret, i.e. collision resistance should
hold even when the key s is in the adversary’s hands.

6 of 35



Collision Resistance

Given a keyed hash function (KeyGen,H), an adversary A, and a
security parameter n, we define the collision-finding experiment
Hashcoll

A,H(n) as follows:

• A key s is generated by KeyGen and is given to A.
• Adversary’s output: two strings x and x′.
• Experiment’s output: 1 iff x 6= x′ and Hs(x) = Hs(x′)

Definition
A keyed hash function (KeyGen,H) is collision resistant if for all
PPT adversaries A we have

Pr[Hashcoll
A,H(n) = 1] ≤ negl(n)

7 of 35



Hash Functions in Practice

• They are unkeyed.

• What’s the reason of using keyed functions?

• Theoretically speaking, you can always output a collision using
a constant-time algorithm (a colliding pair - hardcoded in the
algorithm itself - is output).

• It is impossible to hardcode a colliding pair for every possible
key.

• However, colliding pairs are unknown and computationally hard
to find for hash functions used in practice.

8 of 35



Weaker Security Notions

• Second-preimage or target-collision resistance: given s and a
uniform x, it is infeasible for any PPT adversary to find x′ s.t.
x 6= x′ and yet Hs(x) = Hs(x′)

• Preimage resistance or one-wayness: given s and a uniform y,
it is infeasible for any PPT adversary to find x s.t. Hs(x) = y

Note that:

collision resist. ⇒ second preimage resist. ⇒ preimage resist.

9 of 35



Outline

1 Definition and Notions of Security

2 The Merkle-damgård Transform

3 MAC using Hash Functions

4 Cryptanalysis: Generic Attacks

10 of 35



How to Design a Hash Function?

• First, consider a collision-resistant, fixed-length hash function.

• Second, apply a domain extension method to deal with
arbitrary-length inputs.

• This should maintain the collision-resistance property.

• Merkle-Damgård transform is a very famous approach for
domain extension.

• It has been used for MD5 and the SHA family.

• Theoretical implication of Merkle-Damgård transform: if you
can compress by a single bit, then you can compress by an
arbitrary amount of bits!

11 of 35



The Merkle-Damgård Transform

Given a fixed-length hash function (KeyGen, h), with input lenght
2n and output length n, we construct an arbitrary-length hash
function (KeyGen,H) as follows:
• KeyGen : it remains unchanged.
• H : it takes a key s and a string x ∈ {0, 1}∗ of length L < 2n, and

does the following:
◦ Pad x with zeros to get a bit string of length B · n. Consider the n-bit

blocks x1, · · · , xB and set xB+1 ← L, where L is encoded as an n-bit
string.

◦ Set z0 ← 0n (also called IV)
◦ Compute zi ← hs(zi−1||xi), for i = 1, · · · ,B + 1.
◦ Output zB+1.

12 of 35



The Merkle-Damgård Transform

[Katz-Lindell]

Theorem
If (KeyGen, h) is collision-resistant, then so is (KeyGen,H).

13 of 35



The Merkle-Damgård Transform

Proof.
We show that a collision in Hs leads to a collision in hs.
Let x 6= x′ of length L and L′ s.t. Hs(x) = Hs(x′).
We pad x and x′ to get x1, · · · , xB, xB+1 and x′1, · · · , x′B′ , x′B′+1, where
xB+1 = L and x′B′+1 = L′.

• L 6= L′: then Hs(x) = zB+1 = hs(zB,L) = hs(z′B′ ,L′) = z′B′+1 =
Hs(x′). Hence zB||L 6= z′B′ ||L′ is a collision for hs.

• L = L′: in this case B = B′. Consider Ii = zi−1||xi and
I′i = z′i−1||x′i for i = 1, . . . ,B + 2, where IB+2 = zB+1= z′B+1 = I′B+2.
Let N be the largest integer for which IN 6= I′N (which exists
since x 6= x′). Note that N ≤ B + 1.
IN+1 = zN ||xN+1 = z′N ||x′N+1 = I′N+1 ⇒ hs(IN) = zN = z′N = hs(I′N).

14 of 35



Outline

1 Definition and Notions of Security

2 The Merkle-damgård Transform

3 MAC using Hash Functions

4 Cryptanalysis: Generic Attacks

15 of 35



MAC using Hash Functions

• We present a different approach to construct a MAC for
arbitrary-length messages.

• The idea is simple and widely used in practice (e.g. HMAC).

• Firstly, use a collision-resistant hash function (KeyGen,H) to
hash an arbitrary-long message m down to a fixed-length string
Hs(m).

• Secondly, apply a fixed-length MAC to Hs(m).

16 of 35



Hash-and-MAC

Given a fixed-length MAC Smac = (Mac,Verify) for messages of
length `(n), and a hash function (KeyGen,H) with output length
`(n), we define a new MAC

S′mac = (KeyGen′,Mac′,Verify′)

for arbitrary-length messages as follows.

• KeyGen′(1n): it takes a security parameter n, and outputs a
uniform key k ∈ {0, 1}n and runs the key generator of the hash
function to get s. The final key is (k, s).

• Mac′((k, s),m ∈ {0, 1}∗): it outputs t← Mack(Hs(m)).
• Verify′((k, s),m ∈ {0, 1}∗, t): it outputs 1 iff Verifyk(H

s(m), t) = 1.

17 of 35



HMAC

• The idea is to build a secure MAC for arbitrary-length
messages directly from a hash function.

• What about defining Mack(m) = Hs(k||m)?

• It is NOT secure (if H was constructed using the
Merkle-Damgård transform).

• HMAC is a standardised secure MAC that uses two layers of
hashing.

18 of 35



HMAC

• The idea is to build a secure MAC for arbitrary-length
messages directly from a hash function.

• What about defining Mack(m) = Hs(k||m)?

• It is NOT secure (if H was constructed using the
Merkle-Damgård transform).

• HMAC is a standardised secure MAC that uses two layers of
hashing.

18 of 35



HMAC
Let h be a fixed-length hash function with input length n + n′ and
output length n. Let H be the hash function obtained from applying
the Merkle-Damgård transform on h. Let opad and ipad be two
fixed strings of length n′.

We define a MAC for arbitrary-length messages as follows:

• KeyGen(n): it runs the key generator of the hash function H to
get a key s. It also chooses a uniform k ∈ {0, 1}n′ . It outputs the
key (s, k).

• Mac((s, k),m ∈ {0, 1}∗): it outputs

t← Hs((k ⊕ opad)||Hs((k ⊕ ipad)||m)
)

• Verify((s, k),m ∈ {0, 1}∗, t): outputs 1 iff

t ?
= Hs((k ⊕ opad)||Hs((k ⊕ ipad)||m)

)
19 of 35



HMAC

We are assuming n + ` < n′ (the length of the message is
encoded as a `-bit string).

20 of 35



Analysis of HMAC

• HMAC can be viewed as an instantiation of the hash-and-MAC
technique.

• HMAC is very efficient and widely used in practice.

• The use of the key in the inner computation allows for hash
functions satisfying a weaker assumption to be used, namely
hash functions that are weakly collision resistant (in this case,
the adversary has access to a hash oracle to Hs

kin
(), where kin is

a secret value that replaces IV in the Merkle-Damgaard
transform).

• Independent keys should be used in the inner and outer
computations

• For efficiency reasons, ipad and opad are used to derive two
keys from the single key k.

21 of 35



Analysis of HMAC

• HMAC can be viewed as an instantiation of the hash-and-MAC
technique.

• HMAC is very efficient and widely used in practice.
• The use of the key in the inner computation allows for hash

functions satisfying a weaker assumption to be used, namely
hash functions that are weakly collision resistant (in this case,
the adversary has access to a hash oracle to Hs

kin
(), where kin is

a secret value that replaces IV in the Merkle-Damgaard
transform).

• Independent keys should be used in the inner and outer
computations

• For efficiency reasons, ipad and opad are used to derive two
keys from the single key k.

21 of 35



Outline

1 Definition and Notions of Security

2 The Merkle-damgård Transform

3 MAC using Hash Functions

4 Cryptanalysis: Generic Attacks

22 of 35



Generic attacks: The Birthday Attack

• Suppose there are N people in a room. What is the probability
that two people have the same birthday?

• How many people do we need to have a probability larger than
1/2 ?

• Answer is 23:

Pr[all distinct] =
365
365
· 364

365
· 363

365
· . . . · 365− 22

365
<

1
2

23 of 35



Generic attacks: The Birthday Attack

• Suppose there are N people in a room. What is the probability
that two people have the same birthday?

• How many people do we need to have a probability larger than
1/2 ?

• Answer is 23:

Pr[all distinct] =
365
365
· 364

365
· 363

365
· . . . · 365− 22

365
<

1
2

23 of 35



Generic attacks: The Birthday Attack

• Suppose you choose q elements randomly in a set of N
elements. What is the probability that two elements are equal?

• How large should q be with respect to N to have a probability
larger than 1/2 ?

• Let us try to solve it in a formal way...

24 of 35



Generic attacks: The Birthday Attack

• Suppose you choose q elements randomly in a set of N
elements. What is the probability that two elements are equal?

• How large should q be with respect to N to have a probability
larger than 1/2 ?

• Let us try to solve it in a formal way...

24 of 35



The Birthday Problem

• Assume that you are throwing q balls to N bins. Let Coll denote
the event that two balls end up being in the same bin. We can
show that

q(q− 1)/4N ≤ Pr[Coll] ≤ q(q− 1)/2N

• Upper bound: Let Colli denote the event that the i-th ball falls
into an already occupied bin. Then Pr[Colli] ≤ (i− 1)/N as
there are at most i− 1 occupied bins.

Pr[Coll] = Pr[
q∨

i=1

Colli] ≤

≤
q∑

i=1

Pr[Colli] ≤ 0/N + · · ·+ (q− 1)/N =
q(q− 1)

2N

25 of 35



The Birthday Problem
Lower bound: Let NoColli denote the event of not having any
collision after throwing the i-th ball. It holds

Pr[NoColli|NoColli−1] = (N − (i− 1))/N (1)

which is the probability of not falling in any of the previous i− 1
bins (with Pr[NoColl1] = 1). Hence:

Pr[Coll] = Pr[NoCollq] (2)

and we have

Pr[NoCollq] = Pr[NoCollq ∩ NoCollq−1] =

= Pr[NoCollq|NoCollq−1] · Pr[NoCollq−1]

Iterating the above reasoning, we obtain:

Pr[NoCollq] =
q−1∏
i=1

Pr[NoColli+1|NoColli] (3)
26 of 35



The Birthday Problem
From equations (1), (2) and (3)

Pr[Coll] =
q−1∏
i=1

(
1− i

N

)
(4)

Since 1− x ≤ e−x when x ≤ 1, and given that i/N < 1, thus

Pr[Coll] ≤ e−
∑q−1

i=1 (i/N) = e−q(q−1)/2N . (5)

Therefore
Pr[Coll] ≥ 1− e−q(q−1)/2N

where
1− e−q(q−1)/2N ≥ q(q− 1)/4N

if q <
√

2N, since e−x ≤ 1− x/2 when |x| ≤ 1.
27 of 35



Hash Functions: the Birthday Attack

• How does the birthday attack apply to hash functions?
• We have a probability ≈ 1/2 when q ≈ N1/2.
• For a hash function with output length `, the range is of size 2`.
• When q ≈ 2`/2, the probability of finding a collision is ≈ 1/2.
• In practice, to make finding collisions as difficult as exaustive

search over 128-bit keys, you need a hash function with output
length of at least 256 bits.

• This is necessary, but not sufficient!
• There are no generic attacks for preimage and second

preimage resistance!

28 of 35



A Better Birthday Attack

• The original birthday attack uses lots of memory storage. It has
to store O(q) = O

(
2`/2

)
values.

• Managing storage for 260 bytes is often more difficult that
executing 260 CPU instructions.

• Can we do better?

29 of 35



A Better Birthday Attack

• It is based on a cycle-finding algorithm of Floyd.
• We choose a random input x0.
• We compute xi ← H(xi−1) and x2i ← H(H(x2(i−1))) for

i = 1, 2, . . . , where xi = H(i)(x0).
• We compare xi and x2i after each iteration.
• If they are equal, then the collision happens somewhere in

x0, · · · , x2i−1.
• We try to find the smallest value of j for which xj = xj+i. The

collision will then be (xj−1, xj+i−1).
• The algorithm has same time complexity and success

probability as the general birthday attack, but only O(1)
memory, namely, storage of two hashes in each iteration!

30 of 35



A better Birthday Attack
Floyd’s cycle finding idea:
https://visualgo.net/bn/cyclefinding

31 of 35

https://visualgo.net/bn/cyclefinding


A Better Birthday Attack
We are given H : {0, 1}∗ → {0, 1}`, and we aim to find x, x′ s.t.
H(x) = H(x′).

x0←$ {0, 1}`+1

x′, x← x0

for i = 1, 2, · · · do
x← H(x) = H(i)(x0)

x′ ← H(H(x′)) = H(2i)(x0)

if x = x′ break
x′ ← x, x← x0

for j = 1 · · · , i

if H(x) = H(x′) return x, x′

else x← H(x) = H(j)(x0)

x′ ← H(x′) = H(i+j)(x0)

32 of 35



Further Reading (1)

I Mihir Bellare and Phillip Rogaway.
Random oracles are practical: A paradigm for designing
efficient protocols.
In Proceedings of the 1st ACM conference on Computer and
communications security, pages 62–73. ACM, 1993.

I Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche.
Keccak sponge function family main document.
Submission to NIST (Round 2), 3:30, 2009.

33 of 35



Further Reading (2)

I Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and
Prashant Puniya.
Merkle-damgård revisited: How to construct a hash function.
In Advances in Cryptology–CRYPTO 2005, pages 430–448.
Springer, 2005.

I Pierre Karpman, Thomas Peyrin, and Marc Stevens.
Practical free-start collision attacks on 76-step sha-1.
In Advances in Cryptology–CRYPTO 2015, pages 623–642.
Springer, 2015.

I Neal Koblitz and Alfred J Menezes.
The random oracle model: a twenty-year retrospective.
Designs, Codes and Cryptography, pages 1–24, 2015.

34 of 35



Further Reading (3)

I Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone.
Handbook of applied cryptography.
CRC press, 1996.

I Marc Stevens.
New collision attacks on sha-1 based on optimal joint
local-collision analysis.
In Advances in Cryptology–EUROCRYPT 2013, pages
245–261. Springer, 2013.

35 of 35


	Definition and Notions of Security
	The Merkle-damgård Transform
	MAC using Hash Functions
	Cryptanalysis: Generic Attacks

