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The Random Oracle Model

• Let Π be a cryptosystem using a hash function H. Sometimes it
is NOT enough for H to be collision resistant/preimage resistant
to be able to write a security proof of Π.

• Instead of using cryptosystems that have no proofs at all, an
alternative approach is to “idealise” the cryptographic hash
functions!

• Let us consider a hash function that is truly random.
• Additionally, assume that this random function is public, and it

can be evaluated only querying it as an oracle (or a black box)!
• If you don’t idealise hash functions in your proofs, then your

cryptosystem is said to be secure in the standard model,
otherwise, it is only secure in the random oracle model (ROM).

• In the real world, each ideal hash function is instantiated by an
appropriate hash function.
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The Random Oracle Model

• What do we mean by appropriate hash functions?

• No clear definition!
• Concrete hash functions are deterministic and fixed, they

cannot behave like random functions!
• What does a proof in the random oracle buy us?
• Perhaps, the scheme doesn’t have “inherent design flaws”! (the

only possible attacks are those due to weaknesses in the used
hash functions)

• Why is it widely used?
• So far, there have been no successful real-world attacks on

real-world schemes that are proven secure in the ROM.
Additionally, schemes that are proven secure in the ROM are
usually efficient.
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The Random Oracle Model: definitions and
proofs

• In ROM security definitions, the probability is taken over the
random choice of H, whereas in the real world, you instantiate
H by a deterministic function.

• In ROM security proofs, the adversary needs to query H,
instead of execute H itself.

• If x has not been queried yet to H, then the value H(x) is still
considered uniform.

• Extractability: When A queries x to H in a proof by reduction,
the challenger learns x.

• Programmability: In a proof by reduction, the challenger sets
the (uniformly distributed) values of H(xi) to answer the
adversary’s queries!
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Hash Functions: Additional Applications

• Fingerprinting: The digest H(x) of a file x (which could be a
virus) acts as a fingerprint/identifier of the file

• Deduplication: Particularly important in cloud storage. You
send a hash of the file you want to store to the service (e.g.
DropBox); they check if the file already exists, in that case they
don’t need to store it again, a pointer to it would be enough.
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Hash Functions: Additional Applications

• Merkle Trees: Suppose you have n files x1, · · · , xn, where n is a
power of 2. Instead of hashing them all, i.e. H(x1, · · · , xn),
Ralph Merkle proposed a solution that works as follows:
◦ Compute h1,2 ← H(x1, x2), · · · , hn−1,n ← H(xn−1, xn).
◦ Compute

h1,2,3,4 ← H(h1,2, h3,4), · · · , hn−3,n−2,n−1,n ← H(hn−3,n−2, hn−1,n)
◦ The process is iterated, until the root h1,··· ,n is computed.

• Merkle Tree can be thought of as an alternative to the Merkle
Damgård transform to extend the domain of fixed-length
collision-resistant hash functions.

• Its drawback: it is not collision-resistant if n is not fixed!
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Hash Functions: Additional Applications

• Password Hashing: a hash of the password is usually stored
instead of the password itself.

• What if the password is chosen from a small space?
• Is it enough to have a preimage resistance hash function H?
• ONLY if you are sampling your password uniformly from a large

space, i.e. {0, 1}n with suitable n.
• In practice: if your password is a random combination of 8

alphanumeric characters, the space is S = 628 ≈ 247.6.
• There is an attack (that requires some preprocessing) which

only uses time and space N2/3 ≈ 232.
• There are mechanisms that can be used to mitigate this threat

(adding a long random salt, etc.).
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Commitment Schemes

• A commitment scheme allows a party to commit to a value v by
producing a commitment on it.

• The commitment keeps the value v hidden, i.e. it reveals
nothing about it. This property is called hiding.

• The party cannot change it later on, i.e. it cannot open to two
different values v1, v2. This property is called binding.

• Think of it as a sealed envelope!

• It is a very important cryptographic tool, which can be built
using hash functions!
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Commitments Schemes

Definition
A commitment scheme consists of two algorithms, KeyGen and
Commit, defined as follows
• KeyGen(n) : it outputs public parameters p;
• Commit(p,m ∈ {0, 1}n, r ∈ {0, 1}n) : it takes the public

parameters, a message m and a random value r, and it outputs
com(m)

The sender can at anytime reveal the message m to the receiver
by sending (m, r). The receiver can easily verify the correctness of
the sender’s claim by testing Commit(p,m, r) ?

= com(m)

Informally speaking, a commitment scheme is secure if it is both
binding and hiding.
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Commitments Schemes

• Suppose that we have a hash function that is modelled as a
random oracle. We can define a commitment scheme where
Commit← H(m||r).

• Binding: follows from the fact that the hash function is
collision-resistant.

• Hiding: follows from the fact that r is chosen uniformly from
{0, 1}n.

• There are other commitment schemes that don’t assume the
existence of a random oracle, i.e. they are proven secure in the
standard model.
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Constructing hash functions

Hash functions are commonly constructed in two steps:

• a fixed-length collision-resistant hash function h is constructed;

• to allow for arbitrary-length inputs, some techniques may be
applied to extend h (e.g. Merkle-Damgård transform).
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Hash Functions From Block Ciphers

• We can use a special block cipher to build a fixed-length
collision-resistant hash function h.

• There are different ways to do this.

• Davies-Meyer method is the most common one.

• Given a block cipher with n as key-length and ` as block-length,
h is defined as follows:

h : {0, 1}n+` →{0, 1}`

(k, x) 7→ h(k, x) = Fk(x)⊕ x.
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Hash Functions From Block Ciphers

• The assumption that F is a strong pseudo-random permutation
is NOT enough to prove collision resistance of h.

• We need to rely on something similar to the random oracle
model’s idea.

• F is modeled as an ideal cipher.

• This means having a public oracle for evaluating a random
keyed permutation F : {0, 1}n × {0, 1}` → {0, 1}`, and its
inverse F−1.

• Each party has to query the oracle to compute F(k, x) or
F−1(k, y) (similar to the ROM).
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MD5

• Designed in 1991. It has output length equal to 128.

• It is totally broken, collisions can be found in less than a minute
on a PC!

• Given a message:
◦ the bit 1 is appended,
◦ the bit 0 is appended until the bit string has a length congruent to

448 modulo 512,
◦ the original length of the message is appended, encoded as a

64-bit string.

• The padded message is divided into blocks of length 512. Each
block is divided into 16 chunks Mj of 32 bits each.
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MD5

• In processing a block, 64 operations are executed.

• They are grouped in four rounds, each of 16 operations.

• We have 4 non-linear functions, F,G,H, I, one for each round.

• Mg denotes a 32-bit chunk, where g is a function of the
operation’s index i.

• Ki denotes a 32-bit constant, different for each operation.

• ≪s denotes a left bit rotation by s places; s varies for each
operation.

• Addition is done modulo 232.
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MD5

Figure: One MD5 operation in the first round (From wikipedia)
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MD5

It uses 4 functions. Each of them takes as input three 32-bit string
and generate as output one 32-bit string:
• F(B,C,D) = (B ∧ C) ∨ (¬B ∧ D)

• G(B,C,D) = (B ∧ D) ∨ (C ∧ ¬D)

• H(B,C,D) = B⊕ C ⊕ D

• I(B,C,D) = C ⊕ (B ∨ ¬D)

If i is the operations’ counter, then g = i when i ∈ {0, . . . , 15},
g = 5i + 1 (mod 16) when i ∈ {16, . . . , 31}, g = 3i + 1 (mod 16)
when i ∈ {32, . . . , 47}, g = 7i + 1 (mod 16) when i ∈ {48, . . . , 63}.
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MD5

From Cryptool software.
22 of 34



Secure Hash Algorithms: SHA-1 and SHA-2

• A family of cryptographic hash functions standardized by NIST.

• First, they all use Davies-Meyer construction to build a
fixed-length collision-resistant hash function from a block cipher.

• The block ciphers were specifically designed for this purpose.

• The block cipher SHACAL-1 - with 160-bit block length - for
SHA1. The block cipher SHACAL-2 - with 256-bit block length -
for SHA2. The key length is 512-bit in both of them.

• Second, they are extended to handle arbitrary-length inputs
using Merkle-Damgård transform.
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SHA-1

• SHA-1 was introduced in 1995. It has 160-bit output length.
• After the padding, each 512-bit block is extended into eighty

32-bit chunks. For each chunk Wt, an operation is executed.
• In theory, collisions can be found significantly better that the

birthday attack, i.e. much less 280 hash function evaluations.
• In practice, no collisions of this type. But highly recommended

to move to SHA-2 (or perhaps to SHA-3). SHAttered- Move
now to SHA-2!

• Very recent attack (see references at the last slide).
• Example that shows the steps of SHA-1:
http://www.metamorphosite.com/
one-way-hash-encryption-sha1-data-software
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SHA-1

Figure: From Wikipedia
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SHA-2: SHA-256

• Similar to MD5 and SHA-1. It has 256-bit output length.
• After the padding, each of the N 512-bit blocks M(1), . . . ,M(N) is

extended into sixty-four 32-bit chunks. For each chunk Wt, an
operation is executed.

• Fix the initial hash values A(0), · · · ,H(0) with the fractional parts
of the square roots of the first eight primes.

• Compute Hash(i) = Hash(i−1) + C(M(i),Hash(i−1)) where C is the
fixed-length collision-resistant hash function

• Output Hash(N) as the hash of the message M.
• For detailed description see: http://www.iwar.org.uk/
comsec/resources/cipher/sha256-384-512.pdf
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SHA-2
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SHA-256

The logical functions are as follows:
• Ch(E,F,G) = (E ∧ F)⊕ (¬E ∧ G)

• Ma(A,B,C) = (A ∧ B)⊕ (A ∧ C)⊕ (B ∧ C)

• Σ0(A) = (A ≫ 2)⊕ (A ≫ 13)⊕ (A ≫ 22)
• Σ1(E) = (E ≫ 6)⊕ (E ≫ 11)⊕ (E ≫ 25)

The constant words, K0, · · · ,K63 are the first 32 bits of the
fractional parts of the cube roots of the first sixty-four primes.
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SHA-3 (Keccak)

• In 2012, Keccak was announced as the winner of the NIST
competition (was called SHA-3) to design a new cryptographic
hash function.

• All candidates were of 256- and 512-bit output length.
• Its structure is different from SHA-1 and SHA-2.
• it uses an unkeyed permutation with 1600-bit block length!
• For instance, Davies-Meyer construction uses a keyed

permutation
• it doesn’t use Merkle-Damgård to extend the fixed-length

collision-resistant hash function to deal with arbitrary-length
inputs.

• Sponge construction is the new approach that it uses instead of
Merkle-Damgård.
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SHA-3 (Keccak)

• The permutation f operates on blocks of length b.
• A rate r is fixed.
• The output length is d.
• The initial message is padded using pad, which returns a string

of length n · r. We divide the string into n blocks M0, . . . ,Mn−1 of
length r.

• Initialise the state S as a string of b zeros.
• For each Mi, extend it at the end with c = b− r zeros; xor the

obtained string with S; apply the permutation f .
• Initialise Z to be the empty string.
• While the length of Z is less than d append the first r bits of S to

Z and apply f to S to obtain a new state.
• Truncate Z to d bits.
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Keccak- Sponge Function

Complete description:
http://sponge.noekeon.org/CSF-0.1.pdf
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