
Public Key Cryptography

Federico Pintore 1

1Mathematical Institute,
University of Oxford

1 of 76

Outline

1 New directions in Cryptography

2 Discrete Logarithm and Diffie-Hellman Algorithm

3 Public Key Encryption: security notions

4 ElGamal Encryption Scheme

5 Cramer-Shoup Encryption Scheme

2 of 76

Course main reference

3 of 76

Outline

1 New directions in Cryptography

2 Discrete Logarithm and Diffie-Hellman Algorithm

3 Public Key Encryption: security notions

4 ElGamal Encryption Scheme

5 Cramer-Shoup Encryption Scheme

4 of 76

Private keys

• Assuming that two communicating parties share a secret key,
private-key cryptography ensures secrecy and integrity.

• How can communicating parties share a secret key?

• They may have access to a secure channel (e.g. being in the
same place at some time, or using a trusted courier).

• A secure channel is usually slow and costly!

• It does not work well for open systems.

• Each user has to securely store a big number of private keys.

5 of 76

Private keys

• Assuming that two communicating parties share a secret key,
private-key cryptography ensures secrecy and integrity.

• How can communicating parties share a secret key?

• They may have access to a secure channel (e.g. being in the
same place at some time, or using a trusted courier).

• A secure channel is usually slow and costly!

• It does not work well for open systems.

• Each user has to securely store a big number of private keys.

5 of 76

Private keys

• Assuming that two communicating parties share a secret key,
private-key cryptography ensures secrecy and integrity.

• How can communicating parties share a secret key?

• They may have access to a secure channel (e.g. being in the
same place at some time, or using a trusted courier).

• A secure channel is usually slow and costly!

• It does not work well for open systems.

• Each user has to securely store a big number of private keys.

5 of 76

Private keys

• Assuming that two communicating parties share a secret key,
private-key cryptography ensures secrecy and integrity.

• How can communicating parties share a secret key?

• They may have access to a secure channel (e.g. being in the
same place at some time, or using a trusted courier).

• A secure channel is usually slow and costly!

• It does not work well for open systems.

• Each user has to securely store a big number of private keys.

5 of 76

Private keys

• Assuming that two communicating parties share a secret key,
private-key cryptography ensures secrecy and integrity.

• How can communicating parties share a secret key?

• They may have access to a secure channel (e.g. being in the
same place at some time, or using a trusted courier).

• A secure channel is usually slow and costly!

• It does not work well for open systems.

• Each user has to securely store a big number of private keys.

5 of 76

Private keys

• Assuming that two communicating parties share a secret key,
private-key cryptography ensures secrecy and integrity.

• How can communicating parties share a secret key?

• They may have access to a secure channel (e.g. being in the
same place at some time, or using a trusted courier).

• A secure channel is usually slow and costly!

• It does not work well for open systems.

• Each user has to securely store a big number of private keys.

5 of 76

Key-Distribution Centers (KDCs)

• A KDC is a trusted third party.

• Each user can share a key with the KDC through a secure
channel.

• When Alice and Bob want to communicate, they query the
KDC, which chooses a new, random key k and sends it over
(encrypted using kA to Alice, encrypted using kB to Bob).

• Each user has to store only one long-term secret key.

• However, each user must trust the KDC. Furthermore the KDC
is a single point of failure and a high-value target.

• Still requires the use of a private channel!
6 of 76

New Directions in Cryptography

In 1976, Diffie and Hellman published a paper, titled New
Directions in Cryptography, that revolutionised Cryptography.

• They proposed an interactive protocol allowing two parties to
share a secret key via communication over a public channel.

• They posed the first steps toward Public-key Cryptography, but
they did not give any candidate construction.

• In 1977, Ron Rivest, Adi Shamir and Len Adleman introduced
the RSA problem, and presented the first public-key encryption
and digital signature schemes based on its hardness.

7 of 76

Outline

1 New directions in Cryptography

2 Discrete Logarithm and Diffie-Hellman Algorithm

3 Public Key Encryption: security notions

4 ElGamal Encryption Scheme

5 Cramer-Shoup Encryption Scheme

8 of 76

Key-exchange protocol

It is a probabilistic protocol Π to generate a shared, secret key.

• Alice and Bob begin by holding the security parameter n.

• They run Π using independent random bits.

• At the end of the protocol, they output kA and kB, respectively.

Correctness: with overwhelming probability kA = kB.

9 of 76

The key-exchange Experiment KEeav
A,Π

Challenger Ch Adversary A
Execution of Π Access to the transcript trans
b← {0, 1}
If b = 0, k̂ = k

else k̂← {0, 1}n

k̂−−−−→
Outputs his guess b′

Definition
The key-exchange protocol Π is secure if, for all PPT A, the
following holds:

Adveav
A,Π(n) = Pr[KEeav

A,Π(n) = 1] ≤ 1/2 + negl(n)

10 of 76

The Discrete Logarithm Problem (Dlog)
Let G be a PPT group generation algorithm:

• On input n, it outputs a description of a cyclic group G, its order
q and a generator g ∈ G.

• ||q|| = blog2 qc+ 1 = n

• The group operation is efficient in G.

• Given h ∈ G, logg h denotes the unique x ∈ Zq s.t. h = gx.

• Discrete logarithm (DLog) problem relative to G:
given (G, q, g)← G(n) and a uniform h = gx, compute x.

• The DLog problem is hard relative to G if, for all PPT
adversaries A, the success probability is negligible in n.

• Can be harder or easier depending on the groupG.
11 of 76

Variants of Diffie-Hellman Problem

• Computational Diffie-Hellman (CDH): given uniform ga, gb ∈ G,
compute gab.

• If the DLog problem is easy relative to G, then also the CDH
problem is.

• The reverse implication is not clear.
• Decisional Diffie-Hellman (DDH): given h, ga, gb ∈ G, decide if

h = gab or it is a uniform bit-string.
• If the CDH problem is easy relative to G, then also the DDH

problem is.
• The reverse implication does not appear to be true.
• There is a huge list of members in the DH family of problems!

12 of 76

Diffie-Hellman Key Exchange Algorithm

• Public elements: (G, q, g)← G(n).

• Alice chooses random a ∈ Zq and sends hA = ga to Bob.

• Bob chooses random b ∈ Zq and sends hB = gb to Alice.

• Alice computes (gb)a = gab.

• Bob computes (ga)b = gab.

13 of 76

Diffie-Hellman security

• The hardness of the DLog problem is necessary for the security
of the Diffie-Hellman key exchange.

• It may be not sufficient.

• The security follows almost directly from the hardness of the
DDH problem.

14 of 76

Outline

1 New directions in Cryptography

2 Discrete Logarithm and Diffie-Hellman Algorithm

3 Public Key Encryption: security notions

4 ElGamal Encryption Scheme

5 Cramer-Shoup Encryption Scheme

15 of 76

Public Key Cryptosystems

In the public-key setting, a party generates a pair of keys: a public
key and a private key.

They can be used for obtaining:

• secrecy for messages it receives using a public-key
encryption scheme,

• integrity for messages it sends using a digital signature
scheme.

Key distribution can be done over public, but authenticated
channels. The need to store many secret keys is reduced.
Suitable for open systems.

16 of 76

Public Key Cryptosystems

A public-key encryption scheme consists of the following
algorithms:

• KeyGen(1n): is a randomised algorithm that takes the security
parameters as input and returns a pair of keys (PK,SK), the
public key PK and its matching secret key SK, respectively.

• Enc(PK,m): An algorithm (possibly randomised) that takes a
public key PK, a plaintext m and returns a ciphertext c.

• Dec(SK, c): A deterministic algorithm that takes the secret key
SK and a ciphertext c, and returns a message m ∈M∪⊥.

Correctness:

∀m ∈M,Pr[(SK,PK)← KeyGen(n) : Dec(Enc(PK,m),SK) = m] = 1

17 of 76

The eavesdropping indistinguishability Experiment PubKeav
A,E

Challenger Ch Adversary A
PK,SK← KeyGen(1n) Access to PK

m0,m1,|m0|=|m1|←−−−−−−−−−
b← {0, 1}

c=Enc(PK,mb)−−−−−−−−→ Outputs his guess b′

Definition
An encryption scheme E has indistinguishable encryptions in the
presence of an eavesdropper if for all PPT adversaries A the
following holds:

Adveav
A,E(n) = Pr[PubKeav

A,E(n) = 1] ≤ 1/2 + negl(n)

PubKeav
A,E(n) = 1 if b′ = b; it is 0 otherwise.

18 of 76

CPA security

Since the adversary A knows the public key PK, it has access to
an encryption oracle for free.

Consequently, if E has indistinguishable encryptions in the
presence of an eavesdropper, then it is CPA-secure.

This is in contrast to the private-key setting.

Also in the public-key setting, a deterministic encryption scheme
cannot be CPA-secure.

19 of 76

CCA Indistinguishability Experiment PubKcca
A,E

Challenger Ch Adversary A
PK,SK = KeyGen(n) Access to PK and to the oracle Dec(SK, ·)

m0,m1,|m0|=|m1|←−−−−−−−−−
b← {0, 1}

c=Enc(PK,mb)−−−−−−−−→ Access to the oracle Dec(SK, ·)c

Outputs his guess b′

Definition
An encryption scheme is CCA-secure if for all PPT adversaries A
the following holds:

Advcca
A,E(n) = Pr[PubKcca

A,E(n) = 1] ≤ 1/2 + negl(n)

20 of 76

Dealing with arbitrary-length messages

In the indistinguishability of multiple encryptions experiment, the
adversary is given access to a letf-or-right encryption oracle
which, on input a pair of messages m0,m1 (with |m0| = |m1|),
returns c← Enc(PK,mb).

Theorem
If a public-key encryption scheme is CPA-secure, then it also has
indistinguishable multiple encryptions.

• As a consequence, any CPA-secure public-key encryption
scheme for fixed-length messages (down to one bit!) can be
used as a CPA-secure public key-encryption scheme for
arbitrary-length messages.

21 of 76

Hybrid Encryption

• Let E be a public-key encryption scheme for `-bit messages.
Using E for encrypting an `′-bit message requires γ = d`′/`e
applications of E.

• A better approach to deal with arbitrary-length messages is
possible.

• Exploit a private-key encryption scheme to obtain a public-key
encryption scheme.

• Private-key encryption schemes are significantly faster (2 or 3
orders of magnitude) than public ones.

• This approach is called key-encapsulation mechanism (KEM),
and data-encapsulation mechanism (DEM).

22 of 76

KEM
A key-encapsulation mechanism (KEM) consists of the following
PPT algorithms:

• KeyGen(1n): takes the security parameter as input and returns
a pair of keys (PK,SK), the public key PK and its matching
secret key SK, respectively, each of length n.

• Encaps(PK, 1n): it returns a ciphertext c and a key k ∈ {0, 1}`(n).

• Decaps(SK, c): a deterministic algorithm that takes a secret key
SK and a ciphertext c, and returns a key k or ⊥.

Correctness:

Pr[(SK,PK)← KeyGen(n), (c, k)← Encaps(PK, 1n) :

: Decaps(SK, c) = k] = 1

23 of 76

Hybrid Encryption
A hybrid encryption scheme (KeyGenhy,Enchy,Dechy) is a
public-key encryption scheme obtained combining a KEM
(KeyGen,Encaps,Decaps) and a private-key encryption scheme
(KeyGen′,Enc,Dec) as follows:
• KeyGenhy(1n): is a randomized algorithm that takes the security

parameter as input and returns a pair of keys (PK,SK).
• Enchy(PK,m ∈ {0, 1}∗): takes a public key PK, a plaintext m and

does the following:
◦ Compute (c, k)← Encaps(PK, 1n).
◦ Compute c′ ← Enc(k,m).
◦ Output the ciphertext (c, c′).

• Dechy(SK, (c, c′)): takes a secret key SK and a ciphertext (c, c′)
and does the following:
◦ Compute k← Decaps(SK, c).
◦ Output m← Dec(k, c′).

24 of 76

Hybrid Encryption: Efficiency

• Fix n. Let α = cost(Encaps(·, 1n)) and β = cost(Enc(·, 1 bit)).
Suppose |m| > n. Then

cost(Enchy(·, 1 bit)) =
α+ β · |m|
|m|

=
α

|m|
+ β

• For sufficiently long m, cost(Enchy(1 bit)) approaches β, i.e.
cost(Enchy(1 bit)) ≈ cost(Enc(1 bit)). In other words, the cost of
encrypting one bit using the constructed public-key encryption
scheme is approximately the cost of encrypting one bit using
the private-key encryption scheme!

25 of 76

Security of KEM
Intuitively speaking, for a KEM to be CPA-secure, we require the
encapsulated key to be indistinguishable from a uniform key that is
independent of the ciphertext.

Experiment (CPA Indistinguishability KEMcpa
A,Π(n))

• Run KeyGen(1n) to get (PK,SK), then run Encaps(PK, 1n) to
generate (c, k), where we assume k ∈ {0, 1}n.

• Choose random b ∈ {0, 1}: if b = 0 set k̄ := k, otherwise choose
k̄ uniformly at random from {0, 1}n.

• The tuple (PK, c, k̄) is given to A, who outputs a bit b′.
• Experiment output: 1 if b′ = b, 0 otherwise.

A KEM Π is CPA-secure if, for all PPT adversaries A, we have

Advcpa
A,Π(n) = Pr[KEMcpa

A,Π(n) = 1] ≤ 1/2 + negl(n)
26 of 76

Security of the Hyprid Encryption Scheme

Theorem
If Π is a CPA-secure key-encapsulation mechanism and E is a
private-key encryption scheme which has indistinguishable
encryptions in the presence of an eavesdropper, the
corresponding hybrid encryption scheme Ehy is a CPA-secure
public-key encryption scheme.

27 of 76

Security of the Hybrid Encryption Scheme

Let Ahy be an adversary playing the PubKeav
Ahy,Shy(n) game. We

need to prove the following:

Pr[PubKeav
Ahy,Shy(n) = 1] ≤ 1

2
+ negl(n)

where

Pr[PubKeav
Ahy,Shy(n) = 1] =

1
2

Pr[Ahy outputs 0|m = m0]

+
1
2

Pr[Ahy outputs 1|m = m1]

28 of 76

Security of the Hybrid Encryption Scheme

𝑏 ← 0,1
 0: 𝑘 ← 𝐸𝑛𝑐𝑎𝑝𝑠 𝑝𝑘, 1𝑛

1: 𝑘′ ← {0,1}𝑛

𝐴ℎ𝑦 𝐴1
𝐾𝐸𝑀

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟

(𝑝𝑘, 𝑐, 𝑘)
(𝑚0, 𝑚1)

𝑐′ = 𝐸𝑛𝑐(𝑘 ,𝑚0) (𝑐, 𝑐′)

𝑏′ 𝑏′

𝐏𝐫 𝑨𝟏
′ 𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎 𝒃 = 𝟎 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎|𝒌 = 𝒌,𝒎 = 𝒎𝟎]

𝐏𝐫 𝑨𝟏
′ 𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏 𝒃 = 𝟏 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏|𝒌 = 𝒌′,𝒎 = 𝒎𝟎]

29 of 76

Security of the Hybrid Encryption Scheme

Since the key-encapsulation scheme Π is CPA-secure, we have:

Pr[KEMcpa
A1,Π

(n) = 1] =
1
2

Pr[A1 outputs 0|b = 0]+

+
1
2

Pr[A1 outputs 1|b = 1] =

=
1
2

Pr[Ahy outputs 0|k̄ = k,m = m0]+

+
1
2

Pr[Ahy outputs 1|k̄ = k′,m = m0] ≤

≤ 1
2

+ negl1(n)

30 of 76

Security of the Hybrid Encryption Scheme

𝐴ℎ𝑦 𝐴2
𝐾𝐸𝑀

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟

(𝑝𝑘, 𝑐, 𝑘)
(𝑚0, 𝑚1)

𝑐′ = 𝐸𝑛𝑐(𝑘 ,𝑚1) (𝑐, 𝑐′)

𝑏′ 1 − 𝑏′

𝐏𝐫 𝑨𝟐′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎 𝒃 = 𝟎 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏|𝒌 = 𝒌,𝒎 = 𝒎𝟏]

𝐏𝐫 𝑨𝟐′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏 𝒃 = 𝟏 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎|𝒌 = 𝒌′,𝒎 = 𝒎𝟏]

𝑏 ← 0,1
 0: 𝑘 ← 𝐸𝑛𝑐𝑎𝑝𝑠 𝑝𝑘, 1𝑛

1: 𝑘′ ← {0,1}𝑛

31 of 76

Security of the Hybrid Encryption Scheme

Since the key-encapsulation scheme Π is CPA-secure, we have:

Pr[KEMcpa
A2,Π

(n) = 1] =
1
2

Pr[A2 outputs 0|b = 0]+

+
1
2

Pr[A2 outputs 1|b = 1] =

=
1
2

Pr[Ahy outputs 1|k̄ = k,m = m1]+

+
1
2

Pr[Ahy outputs 0|k̄ = k′,m = m1] ≤

≤ 1
2

+ negl2(n)

32 of 76

Security of the Hybrid Encryption Scheme

𝑏 ← 0,1
𝑘′ ← 0,1 𝑛

c′ ← 𝐸𝑛𝑐(𝑘′, 𝑚𝑏)

𝐴ℎ𝑦 𝐴′
𝑃𝑟𝑖𝑣𝐾

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟

(𝑚0, 𝑚1)

𝑐 = 𝐸𝑛𝑐𝑎𝑝𝑠(𝑝𝑘, 1𝑛)
(𝑐, 𝑐′)

𝑏′ 𝑏′

(𝑚0, 𝑚1)

𝑐′

𝐏𝐫 𝑨′ 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎 𝒃 = 𝟎 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎|𝒌 = 𝒌′,𝒎 = 𝒎𝟎]

𝐏𝐫 𝑨′ 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏 𝒃 = 𝟏 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏|𝒌 = 𝒌′,𝒎 = 𝒎𝟏]

33 of 76

Security of the Hybrid Encryption Scheme

Since the private-key encryption scheme E has indistinguishable
encryptions in the presence of an eavesdropper, we have:

Pr[PrivKeav
A′,E(n) = 1] =

1
2

Pr[A′ outputs 0|b = 0]+

+
1
2

Pr[A′ outputs 1|b = 1] =

=
1
2

Pr[Ahy outputs 0|k̄ = k′,m = m0]+

+
1
2

Pr[Ahy outputs 1|k̄ = k′,m = m1] ≤

≤ 1
2

+ negl3(n)

34 of 76

Security of the Hybrid Encryption Scheme

The sum of negligible functions is negligible as well. Summing all
the above inequalities we obtain:

1
2

Pr[Ahy outputs 0|k̄ = k,m = m0] +
1
2

Pr[Ahy outputs 1|k̄ = k′,m = m0]

1
2

Pr[Ahy outputs 1|k̄ = k,m = m1] +
1
2

Pr[Ahy outputs 0|k̄ = k′,m = m1]

1
2

Pr[Ahy outputs 0|k̄ = k′,m = m0] +
1
2

Pr[Ahy outputs 1|k̄ = k′,m = m1]

≤ 3
2

+ negl(n)

35 of 76

Security of the Hybrid Encryption Scheme

Furthermore, we have:

1
2

Pr[Ahy outputs 1|k̄ = k′,m = m0]+

+
1
2

Pr[Ahy outputs 0|k̄ = k′,m = m0] =
1
2

and

1
2

Pr[Ahy outputs 0|k̄ = k′,m = m1]+

+
1
2

Pr[Ahy outputs 1|k̄ = k′,m = m1] =
1
2

36 of 76

Security of the Hybrid Encryption Scheme

Hence it remains

1
2

Pr[Ahy outputs 0|k̄ = k,m = m0]+

1
2

Pr[Ahy outputs 1|k̄ = k,m = m1] =

Pr[PubKeav
Ahy] ≤

1
2

+ negl(n)

which concludes the proof.

37 of 76

Security of the Hybrid Encryption Scheme

For the CCA-security of a key-encapsulation mechanism, we
consider an experiment similar to KEMcpa

A,Π(n), where the
adversary A is also given access to a decapsulation oracle
Decaps(SK, ·).

Theorem
If KEM is a CCA-secure key-encapsulation mechanism and E is a
CCA-secure private-key encryption scheme, the corresponding
hybrid encryption scheme Ehy is a CCA-secure public-key
encryption scheme.

38 of 76

Outline

1 New directions in Cryptography

2 Discrete Logarithm and Diffie-Hellman Algorithm

3 Public Key Encryption: security notions

4 ElGamal Encryption Scheme

5 Cramer-Shoup Encryption Scheme

39 of 76

ElGamal Encryption Scheme

The security of the scheme relies on the following main result.

• Lemma: Let G be a finite group. Given an arbitrary element
m ∈ G, if m is multiplied by an uniform group element k ∈ G, the
result k · m is a uniform group element as well.

• Proof: let g be an arbitrary element of G, then

Pr[k · m = g] = Pr[k = g · m−1].

and, because k is uniform, we obtain

Pr[k = g · m−1] = 1/|G|.

40 of 76

ElGamal Encryption Scheme - Construction

The ElGamal public-key encryption scheme is defined as follows:
• KeyGen(1n): on input 1n, it runs G to generate a description of a

cyclic group G - having order q, with ||q|| = n - together with a
generator g. Then, it picks a uniform x ∈ Zq to compute h← gx.
The public key is PK = (G, g, q, h) and the private/secret key is
SK = x. The message space is G.

• Enc(PK,m ∈ G): it chooses a uniform y ∈ Zq, and outputs the
following ciphertext

c = (c1, c2)← (gy, hy · m).

• Dec(SK, c): it outputs
m′ = c2/cx

1

Correctness: c2/cx
1 = hy · m/(gy)x = m.

41 of 76

ElGamal Encryption scheme - Example

Example (Katz-Lindell book)
Let q = 83 and p = 2q + 1 = 167. Let G denote the group of
quadratic residues mod p. Both p and q are primes, and G is a
subgroup of Z∗p with order q. Then, any element g ∈ G \ {1} is a
generator. Take g = 22 = 4 mod 167, pick x = 37 ∈ Z83, compute
h = gx = 437 mod 167 = 76. The public key becomes
PK = (p, q, g, h) = (167, 83, 4, 76)

• Enc(PK,m = 65 ∈ G): a it picks y = 71 and compute the
ciphertext,

c = (c1, c2) = (471, 7671 · 65) = (132, 44) mod 167

a65 is indeed in G as 65 = 302 mod 167.

42 of 76

ElGamal Encryption Scheme - Example

Example (Katz-Lindell book)
• Dec(SK, c):

m =c2/cx
1

=44/13237 mod 167

=44/124 mod 167

=44 · 124−1 mod 167

=44 · 66 mod 167

=65

43 of 76

Security of the ElGamal Encryption Scheme

Theorem
If the DDH problem is hard relative to G, then the ElGamal
encryption scheme is CPA-secure.

Sketch Proof.
Idea: we consider a PPT adversary A who is attacking the
ElGamal scheme S, and we construct a PPT distinguisher D that
attempts to solve the DDH problem relative to G. D first receives
an instance of the DDH problem, i.e. (G, q, g, h1 = gx1 , h2 = gx2 , h3),
and its challenge is to determine whether h3 = gx1x2 or h3 = gz for
uniform z ∈ Zq.

44 of 76

Security of ElGamal Encryption Scheme

Sketch Proof.
Algorithm D will simulate the ElGamal scheme to A as follows:
• On input (G, q, g, h1, h2, h3), it sets PK = (G, q, g, h1).
• On input (m0,m1) received from A, it picks b ∈ {0, 1}, sets

c1 = h2 and c2 = h3 · mb, and sends (c1, c2) to A.
• It receives the bit b′ from A, and outputs 1 if b′ = b, 0 otherwise.
Now, let S′ be a modified version of ElGamal, working as follows:
• It has the same key generation algorithm.
• Encryption algorithm: it chooses uniform y, z ∈ Zq, and outputs

the ciphertext (gy, gz · m). Note that the decryption algorithm
doesn’t work here, but we don’t actually need it in the
experiment PubKeav

A,S′(n) = 1.

45 of 76

Security of ElGamal Encryption Scheme

Sketch Proof.
For the modified encryption scheme S′, since c2 is a uniformly
distributed group element, we have

Pr[PubKeav
A,S′(n) = 1] = 1/2

Case 1 - random tuple: the view of the adversary A when run as
a subroutine by D is distributed identically to its view in experiment
PubKeav

A,S′ . Therefore

Pr[D(G, q, g, gx, gy, gz) = 1] = Pr[PubKeav
A,S′(n) = 1] = 1/2 (1)

46 of 76

Security of ElGamal Encryption Scheme

Sketch Proof.
Case 2 - DH tuple: the view of the adversary A when run as a
subroutine by D is distributed identically to its view in experiment
PubKeav

A,S. Therefore

Pr[D(G, q, g, gx, gy, gxy) = 1] = Pr[PubKeav
A,S(n) = 1] (2)

Concluding, if the DDH problem is hard relative to G, then

|Pr[D(G, q, g, gx, gy, gz) = 1]−Pr[D(G, q, g, gx, gy, gxy) = 1]| ≤ negl(n)
(3)

From equations (1), (2) and (3) we deduce

Pr[PubKeav
A,S(n)] ≤ 1/2 + negl(n)

47 of 76

ElGamal Encryption Scheme - CCA-secure?

• The ElGamal encryption scheme is malleable, hence it is not
CCA-secure.

• Malleability: given a ciphertext c, which is the encryption of a
message m, it is possible to generate the encryption c′ of a
message m′ having some known relation with m.

• Consider the public key (G, q, g, h), the ciphertext c = (c1, c2)
and its modification c′ = (c1, c′2 = α · c2), where α ∈ G. If c is the
encryption of m, we have c1 = gy, c2 = hy · m. Hence c′ is a valid
encryption of α · m.

48 of 76

A CPA-secure KEM based on DDH

Consider the key-encapsulation mechanism defined as follows:

• KeyGen(1n): it runs G to generate (G, q, g). It then chooses
x ∈ Zq and computes h = gx. It also specifies a hash function
H : G→ {0, 1}`(n). The public key is PK = (G, q, g, h,H) and the
private key is x.

• Encaps(PK): it chooses a uniform y ∈ Zq and outputs the
ciphertext c := gy and the key H(hy).

• Decaps(SK, c): it outputs H(cx).

If H is modelled as a random oracle, then the above KEM is
CPA-secure based on the hardness of the CDH problem relative
to G (weaker assumption).

49 of 76

Outline

1 New directions in Cryptography

2 Discrete Logarithm and Diffie-Hellman Algorithm

3 Public Key Encryption: security notions

4 ElGamal Encryption Scheme

5 Cramer-Shoup Encryption Scheme

50 of 76

Cramer-Shoup Encryption Scheme

• The first public-key encryption scheme that can be proven
CCA-secure in the standard model.

• It is based on the ElGamal Encryption Scheme.

• Its CCA-security relies on the hardness of the DDH problem.

51 of 76

Cramer-Shoup Encryption Scheme

• KeyGen(n): first, it runs G(n) to obtain a description of a cyclic
group G - having prime order q, where ||q|| = blog2 q + 1c = n -
and a couple of generators g1, g2 for G. Then, it picks uniform
x1, x2, y1, y2, z1, z2 ∈ Zq and computes:

◦ c← gx1
1 gx2

2
◦ d ← gy1

1 gy2
2

◦ h← gz1
1 gz2

2

The public key is PK = (G, q, g1, g2, c, d, h,H), where
H : {0, 1}∗ → Zq is a collision-resistant hash function. The
private/secret key is SK = (x1, x2, y1, y2, z1, z2). The message
space is G.

52 of 76

Cramer-Shoup Encryption Scheme

• Enc(PK,m ∈ G): it chooses a uniform k ∈ Zq, and computes:

◦ u1 = gk
1, u2 = gk

2
◦ e = hkm
◦ α = H(u1, u2, e)
◦ v = ckdkα

The ciphertext is CT = (u1, u2, e, v)

53 of 76

Cramer-Shoup Encryption Scheme

• Dec(CT,SK):
◦ It computes α = H(u1, u2, e).
◦ If ux1

1 ux2
2 (uy1

1 uy2
2)α 6= v, it outputs ⊥.

◦ Otherwise it outputs m′ = e/(uz1
1 uz2

2)

Correctness:

m′ = e/(uz1
1 uz2

2) = hkm/gkz1
1 gkz2

2 = hkm/hk = m

54 of 76

Cramer-Shoup: Security Proof
Let A be an arbitrary PPT adversary in experiment PubKcca

A,CS,
where CS it the Cramer-Shoup scheme. A is exploited to construct
a distinguisher D for the DDH problem relative to G.

Proof.
Distinguisher D(G, q, g1, g2, g3, g4)

• x1, x2, y1, y2, z1, z2 ← Zq.
• PK = (G, q, g1, g2, c := gx1

1 gx2
2 , d := gy1

1 gy2
2 , h := gz1

1 gz2
2 ,H).

• (m0,m1)← A(PK,Dec(SK, ·)).
• b← {0, 1}.
• e∗ = gz1

3 gz2
4 mb, α∗ = H(g3, g4, e∗),

CT∗ = (g3, g4, g
z1
3 gz2

4 mb, g
x1+α∗y1
3 gx2+α∗y2

4).
• b′ ← A(PK,CT∗,Dec(SK, ·)CT∗).
• The distinguisher outputs 1 if b′ = b, otherwise 0.55 of 76

Cramer-Shoup: Security Proof

Proof.
Decryption queries:

On input (u1, u2, e, v) ∈ G4, D computes α = H(u1, u2, e). If

ux1+αy1
1 ux2+αy2

2 6= v

it outputs ⊥, otherwise it outputs

m′ =
e

uz1
1 uz2

2
.

56 of 76

Cramer-Shoup: Security Proof

Proof.
Fact 1: ∣∣Pr[D = 1|DH]− Pr[D = 1|Random]

∣∣ ≤ negl(n)

[It follows from the DDH assumption.]

Fact 2:
Pr[D = 1|DH] = Pr[b′ = b|A attacks CS]

Fact 3: ∣∣Pr[D = 1|Random]
∣∣ ≤ 1

2
+ negl(n)

57 of 76

Cramer-Shoup: Security Proof

Proof.
Proof of Fact 2;

When D gets a valid DH tuple, then there exist γ, r s.t.:

(g1, g2 = gγ1 , g3 = gr
1, g4 = gr

2).

It is easy to verify that the distribution of PK, CT∗ and the
decryption answers are exactly the same of those obtained from
the proper Cramer-Shoup challenger (and not from the
distinguisher who is simulating the game). Therefore,

Pr[D = 1|DH] = Pr[b′ = b|A attacks CS] = Pr[PubKcca
A,CS(n) = 1]

58 of 76

Cramer-Shoup: Security Proof

Proof.
Proof of Fact 3 (a bit longer...)

When D gets a random tuple, it will look like

(g1, g2 = gγ1 , g3 = gr
1, g4 = gr′

2)

where γ 6= 0 and r 6= r′ with overwhelming probability
((2q2 − 1)/q3).

We show that, even if A can compute discrete logarithms (in real
world, it cannot, since it runs in polynomial time), we have∣∣Pr[D = 1|Random]

∣∣ ≤ 1
2

+ negl(n)

if A can make a polynomial number `(n) of decryption queries.
59 of 76

Cramer-Shoup: Security Proof

Proof.
The only value in CT∗ which directly depends on mb is e∗. If e∗ is
uniformly distributed from the point of view of A, then A has no
information about which message was encrypted.

What does A learn about z1, z2?

From the public key PK, A learns

logg1
h = z1 + γz2. (4)

60 of 76

Cramer-Shoup: Security Proof

From the decryption oracle on CT = (u1, u2, e, v).

We distinguish between two cases, legal and illegal ciphertexts. In
particular, CT is
• illegal if logg1

u1 6= logg4
u2;

• legal otherwise.
We will prove that
1 A learns nothing from legal ciphertexts and from illegal

ciphertext for which Dec(SK, ·) returns ⊥;
2 the probability that D decrypts illegal ciphertexts is negligible.

61 of 76

Cramer-Shoup: Security Proof

Assuming the validity of the above two points, consider an
arbitrary µ ∈ G. We are interested in the probability that µ = gz1

3 gz2
2 .

In order for this to occur, we must have:

logg1
µ = rz1 + γr′z2 (5)

Equations (4) and (5) form a system of linear equations in z1 and
z2 (over Zq) with matrix of coefficients

B =

(
1 γ
r γr′

)
which is non singular since r′ 6= r.

62 of 76

Cramer-Shoup: Security Proof

Each arbitrary µ ∈ G is a possible value for gz1
3 gz2

4 , and each value
is equally likely. Indeed, we have q possible values for z1, z2 from
(4), and the map sending (z1, z2) in gz1

3 gz2
4 is a bijection.

The adversary A cannot predict the value of gz1
3 gz2

4 with probability
better than 1/q.

Since gz1
3 gz2

4 is uniformly distributed in G, also gz1
3 gz2

4 mb is uniformly
distributed, thus A has no information about mb.

63 of 76

Cramer-Shoup: Security Proof

Proof.
1 When logg1

u1 = logg2
u2 = r′′, then A learns from m that

logg1
m = logg1

e− r′′z1 − r′′γz2 (6)

But equation (6) is linearly dependent with equation (4), so no
extra information about z1, z2 in this case.

When Dec(SK, ·) returns ⊥, it means that

v 6= ux1+y1H(u1,u2,e)
1 ux2+y2H(u1,u2,e)

2

But z1, z2 are not involved in this check, so no information about
them also in this case.

64 of 76

Cramer-Shoup: Security Proof

Proof.
1 We consider two phases: before the challenge ciphertext is

given, and after.

Before the challenge ciphertext

From the public key PK, A learns the following about
x1, x2, y1, y2:

logg1
c = x1 + γx2 (7)

logg1
d = y1 + γy2 (8)

So there are exactly q2 possibilities for x1, x2, y1, y2. Each of
them is equally likely from the point of view of A.

65 of 76

Cramer-Shoup: Security Proof

Given an arbitrary µ ∈ G, we are interested in the probability that
µ = ux1+αy1

1 ux2+αy2
2 . In order for this to occur, we must have:

logg1
µ = r(x1 + αy1) + γr′(x2 + αy2) (9)

Equations (7), (8) and (9) form a system of linear equations in
x1, x2, y1, y2 (over Zq) with matrix of coefficients

C =

1 γ 0 0
0 0 1 γ
r γr′ αr αγr′


which has rank 3 since r′ 6= r.

66 of 76

Cramer-Shoup: Security Proof

Each arbitrary µ ∈ G is a possible value for ux1+αy1
1 ux2+αy2

2 , and
each value is equally likely. Indeed, we have q2 possible values for
x1, x2, y1, y2 from (7), (8), and the map sending (x1, x2, y1, y2) in
ux1+αy1

1 ux2+αy2
2 is surjective, and the preimage of each µ ∈ G

contains q distinct elements.

Fixed u1, u2, e, the adversary A cannot predict the value of
ux1+αy1

1 ux2+αy2
2 with probability better than 1/q.

If the first illegal decryption query (u1, u2, e, v) is rejected, A learns
that v 6= ux1+αy1

1 ux2+αy2
2 . This eliminates q of q2 possibilities for

(x1, x2, y1, y2). The `(n)-th decryption queries of this form will be
rejected except with probability 1/(q2 − (`(n)− 1)q). Thus the
probability that one of these queries is not rejected is at most
`(n)/(q2 − (`(n)− 1)q) (q is exponential in n, `(n) is polynomial).

67 of 76

Cramer-Shoup: Security Proof

Proof.
After the challenge ciphertext

From the challenge ciphertext, A learns:

logg1
v∗ = (x1 + α∗y1)r + (x2 + α∗y2)γr′ (10)

Given the challenge ciphertext CT∗ = (u∗1, u
∗
2, e
∗, v∗), we have three

possible types of illegal queries (u1, u2, e, v):
• (u1, u2, e) = (u∗1, u

∗
2, e
∗) with v 6= v∗. Since the computed hash

values are equal but v 6= v∗, the decryption oracle will reject it.
• (u1, u2, e) 6= (u∗1, u

∗
2, e
∗) and α = α∗. It means a collision in H has

been found, but H is collision-resistant, so this happens only
with negligible probability.

68 of 76

Cramer-Shoup: Security Proof

Proof.
• (u1, u2, e) 6= (u∗1, u

∗
2, e
∗) and α 6= α∗. The decryption oracle will

accept the query only if

logg1
v = (x1 + αy1)r̃ + (x2 + αy2)γr̃′ (11)

where r̃ = logg1
u1 6= r̃′ = logg2

u2.
BUT, in this case, the equations (7),(8),(10) and (11) having
unknowns x1, x2, y1, y2 are linearly independent because

det


1 γ 0 0
0 0 1 γ
r r′γ rα∗ r′α∗γ
r̃ r̃′γ r̃α r̃′αγ

 = (γ2)(r′ − r)(r̃ − r̃′)(α− α∗) 6= 0

69 of 76

Cramer-Shoup: Security Proof

Proof.

Each arbitrary v ∈ G is a possible value for ux1+αy1
1 ux2+αy2

2 , and
each value is equally likely. Indeed, we have q possible values for
x1, x2, y1, y2 from (7),(8),(10), and the map sending (x1, x2, y1, y2) in
ux1+αy1

1 ux2+αy2
2 is surjective, and hence a bijection.

Fixed u1, u2, e, the adversary A cannot predict the value of
ux1+αy1

1 ux2+αy2
2 with probability better than 1/q.

If the first illegal decryption query (u1, u2, e, v) is rejected, A learns
that v 6= ux1+αy1

1 ux2+αy2
2 . This eliminates 1 of q possibilities for

(x1, x2, y1, y2). The `(n)-th decryption queries of this form will be
rejected except with probability 1/(q− (`(n)− 1)). The probability
that one of these queries is not rejected is at most
`(n)/(q− (`(n)− 1)) (q is exponential in n, `(n) is polynomial).

70 of 76

Collision-Resistant Hash Functions based on
Dlog

Theorem
If the discrete logarithm is hard, then collision-resistant hash
functions exist.

We define a fixed-length hash function based on the
discrete-logarithm assumption in prime order groups. It consists of
the algorithms (KeyGen,H) as follows:
• KeyGen(1n): It runs G(n) to obtain a description of a cyclic

group G of prime order q - with ‖q‖ = n - and a generator g. It
then selects a uniform h ∈ G. It outputs the key s = (G, q, g, h).

• H(s, (x1, x2) ∈ Zq × Zq): It outputs Hs(x1, x2) := gx1hx2 ∈ G.

71 of 76

Collision-Resistant Hash Functions based on
Dlog

• Can you solve the Dlog problem if a collision in Hs is found?

• Hs(x1, x2) = Hs(x′1, x
′
2), with (x1, x2) 6= (x′1, x

′
2) =⇒ gx1hx2 = gx′1hx′2

=⇒ gx1−x′1 = h;x
′
2−x2 =⇒ logg h = [(x− x′1) · (x′2 − x2)−1 mod q].

• Note that x′2 − x2 6= 0 mod q, otherwise we will have x1 = x′1
mod q and therefore no collision is found.

• As q is prime, the inverse of (x′2 − x2) exists.

72 of 76

Collision-Resistant Hash Functions based on
Dlog

• Can you solve the Dlog problem if a collision in Hs is found?

• Hs(x1, x2) = Hs(x′1, x
′
2), with (x1, x2) 6= (x′1, x

′
2) =⇒ gx1hx2 = gx′1hx′2

=⇒ gx1−x′1 = h;x
′
2−x2 =⇒ logg h = [(x− x′1) · (x′2 − x2)−1 mod q].

• Note that x′2 − x2 6= 0 mod q, otherwise we will have x1 = x′1
mod q and therefore no collision is found.

• As q is prime, the inverse of (x′2 − x2) exists.

72 of 76

Gap Diffie-Hellman Assumption

Definition
A group generation algorithm G is a gap-DH if the DDH problem in
relative to G is easy but the CDH problem is still hard.

73 of 76

Further Reading (1)

Mihir Bellare, Alexandra Boldyreva, and Silvio Micali.
Public-key encryption in a multi-user setting: Security proofs
and improvements.
In Bart Preneel, editor, Advances in Cryptology —
EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 259–274. Springer Berlin
Heidelberg, 2000.

Dan Boneh.
Simplified OAEP for the RSA and Rabin Functions.
In Joe Kilian, editor, Advances in Cryptology — CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science,
pages 275–291. Springer Berlin Heidelberg, 2001.

74 of 76

Further Reading (2)

Ronald Cramer and Victor Shoup.
Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.

Whitfield Diffie and Martin E Hellman.
New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644–654,
1976.

75 of 76

Further Reading (3)

Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir.
New attacks on feistel structures with improved memory
complexities.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, pages 433–454, 2015.

Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi
Satoh, and Adi Shamir.
Collision-based power analysis of modular exponentiation
using chosen-message pairs.
In Cryptographic Hardware and Embedded Systems - CHES
2008, 10th International Workshop, Washington, D.C., USA,
August 10-13, 2008. Proceedings, pages 15–29, 2008.

76 of 76

	New directions in Cryptography
	Discrete Logarithm and Diffie-Hellman Algorithm
	Public Key Encryption: security notions
	ElGamal Encryption Scheme
	Cramer-Shoup Encryption Scheme

