Public Key Cryptography

Federico Pintore¹

¹Mathematical Institute, University of Oxford

Outline

New directions in Cryptography

2 Discrete Logarithm and Diffie-Hellman Algorithm

Public Key Encryption: security notions

ElGamal Encryption Scheme

5 Cramer-Shoup Encryption Scheme

Course main reference

Outline

- 2 Discrete Logarithm and Diffie-Hellman Algorithm
- 3 Public Key Encryption: security notions
- 4 ElGamal Encryption Scheme
- 5 Cramer-Shoup Encryption Scheme

• Assuming that two communicating parties share a secret key, private-key cryptography ensures secrecy and integrity.

- Assuming that two communicating parties share a secret key, private-key cryptography ensures secrecy and integrity.
- How can communicating parties share a secret key?

- Assuming that two communicating parties share a secret key, private-key cryptography ensures secrecy and integrity.
- How can communicating parties share a secret key?
- They may have access to a secure channel (e.g. being in the same place at some time, or using a trusted courier).

- Assuming that two communicating parties share a secret key, private-key cryptography ensures secrecy and integrity.
- How can communicating parties share a secret key?
- They may have access to a secure channel (e.g. being in the same place at some time, or using a trusted courier).
- A secure channel is usually slow and costly!

- Assuming that two communicating parties share a secret key, private-key cryptography ensures secrecy and integrity.
- How can communicating parties share a secret key?
- They may have access to a secure channel (e.g. being in the same place at some time, or using a trusted courier).
- A secure channel is usually slow and costly!
- It does not work well for open systems.

- Assuming that two communicating parties share a secret key, private-key cryptography ensures secrecy and integrity.
- How can communicating parties share a secret key?
- They may have access to a secure channel (e.g. being in the same place at some time, or using a trusted courier).
- A secure channel is usually slow and costly!
- It does not work well for open systems.
- Each user has to securely store a big number of private keys.

Key-Distribution Centers (KDCs)

- A KDC is a trusted third party.
- Each user can share a key with the KDC through a secure channel.
- When Alice and Bob want to communicate, they query the KDC, which chooses a new, random key *k* and sends it over (encrypted using *k*_A to Alice, encrypted using *k*_B to Bob).
- · Each user has to store only one long-term secret key.
- However, each user must trust the KDC. Furthermore the KDC is a single point of failure and a high-value target.
- Still requires the use of a private channel!

In 1976, Diffie and Hellman published a paper, titled *New Directions in Cryptography*, that revolutionised Cryptography.

- They proposed an interactive protocol allowing two parties to share a secret key via communication over a public channel.
- They posed the first steps toward Public-key Cryptography, but they did not give any candidate construction.
- In 1977, Ron Rivest, Adi Shamir and Len Adleman introduced the RSA problem, and presented the first public-key encryption and digital signature schemes based on its hardness.

Outline

2 Discrete Logarithm and Diffie-Hellman Algorithm

- 3 Public Key Encryption: security notions
- 4 ElGamal Encryption Scheme
- 5 Cramer-Shoup Encryption Scheme

It is a probabilistic protocol Π to generate a shared, secret key.

- Alice and Bob begin by holding the security parameter *n*.
- They run Π using independent random bits.
- At the end of the protocol, they output k_A and k_B , respectively.

Correctness: with overwhelming probability $k_A = k_B$.

The key-exchange Experiment $\mathsf{KE}^{eav}_{\mathcal{A},\Pi}$

Challenger ChAdversary \mathcal{A} Execution of Π Access to the transcript trans $b \leftarrow \{0, 1\}$ If $b = 0, \hat{k} = k$ else $\hat{k} \leftarrow \{0, 1\}^n$ \hat{k} Outputs his guess b'

Definition

The key-exchange protocol Π is secure if, for all PPT $\mathcal{A},$ the following holds:

$$\mathsf{Adv}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = \Pr[\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1] \le 1/2 + \mathsf{negl}(n)$$

The Discrete Logarithm Problem (Dlog)

Let \mathcal{G} be a PPT group generation algorithm:

- On input *n*, it outputs a description of a cyclic group G, its order *q* and a generator *g* ∈ G.
- $||q|| = \lfloor \log_2 q \rfloor + 1 = n$
- The group operation is efficient in \mathbb{G} .
- Given $h \in \mathbb{G}$, $\log_g h$ denotes the unique $x \in \mathbb{Z}_q$ s.t. $h = g^x$.
- Discrete logarithm (DLog) problem relative to *G*: given (G, q, g) ← *G*(n) and a uniform h = g^x, compute x.
- The DLog problem is hard relative to \mathcal{G} if, for all PPT adversaries \mathcal{A} , the success probability is negligible in *n*.

Variants of Diffie-Hellman Problem

- Computational Diffie-Hellman (CDH): given uniform $g^a, g^b \in \mathbb{G}$, compute g^{ab} .
- If the DLog problem is easy relative to \mathcal{G} , then also the CDH problem is.
- The reverse implication is not clear.
- Decisional Diffie-Hellman (DDH): given $h, g^a, g^b \in \mathbb{G}$, decide if $h = g^{ab}$ or it is a uniform bit-string.
- If the CDH problem is easy relative to \mathcal{G} , then also the DDH problem is.
- The reverse implication does not appear to be true.
- There is a huge list of members in the DH family of problems!

Diffie-Hellman Key Exchange Algorithm

- Public elements: $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(n)$.
- Alice chooses random $a \in \mathbb{Z}_q$ and sends $h_A = g^a$ to Bob.
- Bob chooses random $b \in \mathbb{Z}_q$ and sends $h_B = g^b$ to Alice.
- Alice computes $(g^b)^a = g^{ab}$.
- Bob computes $(g^a)^b = g^{ab}$.

- The hardness of the DLog problem is necessary for the security of the Diffie-Hellman key exchange.
- It may be not sufficient.
- The security follows *almost* directly from the hardness of the DDH problem.

Outline

2 Discrete Logarithm and Diffie-Hellman Algorithm

3 Public Key Encryption: security notions

- 4 ElGamal Encryption Scheme
- 5 Cramer-Shoup Encryption Scheme

Public Key Cryptosystems

In the public-key setting, a party generates a pair of keys: a public key and a private key.

They can be used for obtaining:

- secrecy for messages it receives using a public-key encryption scheme,
- integrity for messages it sends using a **digital signature** scheme.

Key distribution can be done over public, but authenticated channels. The need to store many secret keys is reduced. Suitable for *open systems*.

Public Key Cryptosystems

A public-key encryption scheme consists of the following algorithms:

- KeyGen(1^{*n*}): is a randomised algorithm that takes the security parameters as input and returns a pair of keys (PK, SK), the public key PK and its matching secret key SK, respectively.
- Enc(PK, *m*): An algorithm (possibly randomised) that takes a public key PK, a plaintext *m* and returns a ciphertext *c*.
- Dec(SK, *c*): A deterministic algorithm that takes the secret key SK and a ciphertext *c*, and returns a message $m \in \mathcal{M} \cup \bot$.

Correctness:

 $\forall m \in \mathcal{M}, \Pr[(\mathsf{SK},\mathsf{PK}) \leftarrow \mathsf{KeyGen}(n) : \mathsf{Dec}(\mathsf{Enc}(\mathsf{PK},m),\mathsf{SK}) = m] = 1$

The eavesdropping indistinguishability Experiment PubK^{eav}_{A,E}

Challenger Ch PK, SK \leftarrow KeyGen (1^n) Adversary AAccess to PK

 $m_0, m_1, |m_0| = |m_1|$

 $b \leftarrow \{0,1\}$

$$\xrightarrow{c=\mathsf{Enc}(\mathsf{PK},m_b)}$$
 Outputs his guess b'

Definition

An encryption scheme E has indistinguishable encryptions in the presence of an eavesdropper if for all PPT adversaries A the following holds:

$$\mathsf{Adv}^{\mathsf{eav}}_{\mathcal{A}, E}(n) = \Pr[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A}, E}(n) = 1] \le 1/2 + \mathsf{negl}(n)$$

PubK^{eav}_{\mathcal{A}, E}(n) = 1 if b' = b; it is 0 otherwise.

Since the adversary \mathcal{A} knows the public key PK, it has access to an encryption oracle for free.

Consequently, if E has indistinguishable encryptions in the presence of an eavesdropper, then it is CPA-secure.

This is in contrast to the private-key setting.

Also in the public-key setting, a deterministic encryption scheme cannot be CPA-secure.

CCA Indistinguishability Experiment PubK^{cca}_{A,E}

 $\begin{array}{ll} \textbf{Challenger Ch} & \textbf{Adversary } \mathcal{A} \\ \mathsf{PK},\mathsf{SK} = \mathsf{KeyGen}(n) & \mathsf{Access to } \mathsf{PK} \text{ and to the oracle } \mathsf{Dec}(\mathsf{SK},\cdot) \\ & \swarrow^{m_0,m_1,|m_0|=|m_1|} \\ b \leftarrow \{0,1\} & \xrightarrow{c=\mathsf{Enc}(\mathsf{PK},m_b)} & \mathsf{Access to the oracle } \mathsf{Dec}(\mathsf{SK},\cdot)^c \\ & \mathsf{Outputs his guess } b' \end{array}$

Definition

An encryption scheme is CCA-secure if for all PPT adversaries \mathcal{A} the following holds:

$$\mathsf{Adv}^{\mathsf{cca}}_{\mathcal{A}, E}(n) = \Pr[\mathsf{PubK}^{\mathsf{cca}}_{\mathcal{A}, E}(n) = 1] \le 1/2 + \mathsf{negl}(n)$$

Dealing with arbitrary-length messages

In the indistinguishability of multiple encryptions experiment, the adversary is given access to a *letf-or-right* encryption oracle which, on input a pair of messages m_0, m_1 (with $|m_0| = |m_1|$), returns $c \leftarrow \text{Enc}(\text{PK}, m_b)$.

Theorem

If a public-key encryption scheme is CPA-secure, then it also has indistinguishable multiple encryptions.

• As a consequence, any CPA-secure public-key encryption scheme for fixed-length messages (down to one bit!) can be used as a CPA-secure public key-encryption scheme for arbitrary-length messages.

Hybrid Encryption

- Let *E* be a public-key encryption scheme for ℓ -bit messages. Using *E* for encrypting an ℓ' -bit message requires $\gamma = \lceil \ell' / \ell \rceil$ applications of *E*.
- A better approach to deal with arbitrary-length messages is possible.
- Exploit a private-key encryption scheme to obtain a public-key encryption scheme.
- Private-key encryption schemes are significantly faster (2 or 3 orders of magnitude) than public ones.
- This approach is called *key-encapsulation mechanism* (KEM), and *data-encapsulation mechanism* (DEM).

KEM

A key-encapsulation mechanism (KEM) consists of the following PPT algorithms:

- KeyGen(1^{*n*}): takes the security parameter as input and returns a pair of keys (PK, SK), the public key PK and its matching secret key SK, respectively, each of length *n*.
- Encaps(PK, 1^n): it returns a ciphertext c and a key $k \in \{0, 1\}^{\ell(n)}$.
- Decaps(SK, *c*): a deterministic algorithm that takes a secret key SK and a ciphertext *c*, and returns a key *k* or ⊥.

Correctness:

$$Pr[(\mathsf{SK},\mathsf{PK}) \leftarrow \mathsf{KeyGen}(n), (c,k) \leftarrow \mathsf{Encaps}(\mathsf{PK}, 1^n) :$$

: $\mathsf{Decaps}(\mathsf{SK}, c) = k] = 1$

Hybrid Encryption

A hybrid encryption scheme (KeyGen^{hy}, Enc^{hy}, Dec^{hy}) is a public-key encryption scheme obtained combining a KEM (KeyGen, Encaps, Decaps) and a private-key encryption scheme (KeyGen', Enc, Dec) as follows:

- KeyGen^{hy}(1ⁿ): is a randomized algorithm that takes the security parameter as input and returns a pair of keys (PK, SK).
- Enc^{hy}(PK, m ∈ {0,1}*): takes a public key PK, a plaintext m and does the following:
 - Compute $(c, k) \leftarrow \text{Encaps}(\mathsf{PK}, 1^n)$.
 - Compute $c' \leftarrow \text{Enc}(k, m)$.
 - Output the ciphertext (c, c').
- $\text{Dec}^{hy}(\text{SK}, (c, c'))$: takes a secret key SK and a ciphertext (c, c') and does the following:
 - Compute $k \leftarrow \mathsf{Decaps}(\mathsf{SK}, c)$.
 - Output $m \leftarrow \mathsf{Dec}(k, c')$.

• Fix *n*. Let $\alpha = \text{cost}(\text{Encaps}(\cdot, 1^n))$ and $\beta = \text{cost}(\text{Enc}(\cdot, 1 \text{ bit}))$. Suppose |m| > n. Then

$$cost(Enc^{hy}(\cdot, 1 \text{ bit})) = \frac{\alpha + \beta \cdot |m|}{|m|} = \frac{\alpha}{|m|} + \beta$$

 For sufficiently long *m*, cost(Enc^{hy}(1 bit)) approaches β, i.e. cost(Enc^{hy}(1 bit)) ≈ cost(Enc(1 bit)). In other words, the cost of encrypting one bit using the constructed public-key encryption scheme is approximately the cost of encrypting one bit using the private-key encryption scheme!

Security of KEM

Intuitively speaking, for a KEM to be CPA-secure, we require the encapsulated key to be indistinguishable from a uniform key that is independent of the ciphertext.

Experiment (CPA Indistinguishability $KEM_{A,\Pi}^{cpa}(n)$)

- Run KeyGen(1ⁿ) to get (PK, SK), then run Encaps(PK, 1ⁿ) to generate (c, k), where we assume k ∈ {0, 1}ⁿ.
- Choose random $b \in \{0, 1\}$: if b = 0 set $\bar{k} := k$, otherwise choose \bar{k} uniformly at random from $\{0, 1\}^n$.
- The tuple $(\mathsf{PK}, c, \overline{k})$ is given to \mathcal{A} , who outputs a bit b'.
- Experiment output: 1 if b' = b, 0 otherwise.

A KEM Π is CPA-secure if, for all PPT adversaries $\mathcal A,$ we have

$$\mathsf{Adv}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = \Pr[\mathsf{KEM}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] \le 1/2 + \mathsf{negl}(n)$$

Theorem

If Π is a CPA-secure key-encapsulation mechanism and *E* is a private-key encryption scheme which has indistinguishable encryptions in the presence of an eavesdropper, the corresponding hybrid encryption scheme E^{hy} is a CPA-secure public-key encryption scheme.

Let \mathcal{A}^{hy} be an adversary playing the PubK^{*eav*}_{\mathcal{A}^{hy} ,S^{*hy*}(n) game. We need to prove the following:}

$$\Pr[\mathsf{PubK}^{eav}_{\mathcal{A}^{hy},S^{hy}}(n) = 1] \le \frac{1}{2} + \mathsf{negl}(n)$$

where

$$\Pr[\mathsf{PubK}^{eav}_{\mathcal{A}^{hy},S^{hy}}(n) = 1] = \frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } 0 | m = m_0] \\ + \frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } 1 | m = m_1]$$

 $Pr[A'_{1}s output = 0|b = 0] = Pr[A^{hy'}s output = 0|\overline{k} = k, m = m_{0}]$ $Pr[A'_{1}s output = 1|b = 1] = Pr[A^{hy'}s output = 1|\overline{k} = k', m = m_{0}]$

Since the key-encapsulation scheme Π is CPA-secure, we have:

$$\begin{aligned} \Pr[\mathsf{KEM}_{\mathcal{A}_1,\Pi}^{\mathsf{cpa}}(n) &= 1] &= \frac{1}{2} \Pr[\mathcal{A}_1 \text{ outputs } \mathbf{0}|b = 0] + \\ &+ \frac{1}{2} \Pr[\mathcal{A}_1 \text{ outputs } \mathbf{1}|b = 1] = \\ &= \frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } \mathbf{0}|\bar{k} = k, m = m_0] + \\ &+ \frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } \mathbf{1}|\bar{k} = k', m = m_0] \leq \\ &\leq \frac{1}{2} + \mathsf{negl}_1(n) \end{aligned}$$

 $\begin{aligned} &\Pr[A_2's \ output = 0 | b = 0] = \Pr[A^{hy'}s \ output = 1 | \overline{k} = k, m = m_1] \\ &\Pr[A_2's \ output = 1 | b = 1] = \Pr[A^{hy'}s \ output = 0 | \overline{k} = k', m = m_1] \end{aligned}$
Since the key-encapsulation scheme Π is CPA-secure, we have:

$$\begin{aligned} \Pr[\mathsf{KEM}_{\mathcal{A}_2,\Pi}^{\mathsf{cpa}}(n) &= 1] &= \frac{1}{2} \Pr[\mathcal{A}_2 \text{ outputs } \mathbf{0}|b = 0] + \\ &+ \frac{1}{2} \Pr[\mathcal{A}_2 \text{ outputs } \mathbf{1}|b = 1] = \\ &= \frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } \mathbf{1}|\bar{k} = k, m = m_1] + \\ &+ \frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } \mathbf{0}|\bar{k} = k', m = m_1] \leq \\ &\leq \frac{1}{2} + \mathsf{negl}_2(n) \end{aligned}$$

 $\begin{aligned} &\Pr[A' \ output = 0 | b = 0] = \Pr[A^{hy'} s \ output = 0 | \overline{k} = k', m = m_0] \\ &\Pr[A' \ output = 1 | b = 1] = \Pr[A^{hy'} s \ output = 1 | \overline{k} = k', m = m_1] \end{aligned}$

Since the private-key encryption scheme E has indistinguishable encryptions in the presence of an eavesdropper, we have:

$$\begin{aligned} &\Pr[\mathsf{PrivK}_{\mathcal{A}',E}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} \Pr[\mathcal{A}' \text{ outputs } 0|b = 0] + \\ &+ \frac{1}{2} \Pr[\mathcal{A}' \text{ outputs } 1|b = 1] = \\ &= \frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } 0|\bar{k} = k', m = m_0] + \\ &+ \frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } 1|\bar{k} = k', m = m_1] \leq \\ &\leq \frac{1}{2} + \mathsf{negl}_3(n) \end{aligned}$$

The sum of negligible functions is negligible as well. Summing all the above inequalities we obtain:

$$\frac{1}{2} \operatorname{Pr}[\mathcal{A}^{hy} \text{ outputs } 0|\bar{k}=k, m=m_0] + \frac{1}{2} \operatorname{Pr}[\mathcal{A}^{hy} \text{ outputs } 1|\bar{k}=k', m=m_0]$$

$$\frac{1}{2} \operatorname{Pr}[\mathcal{A}^{hy} \text{ outputs } 1|\bar{k}=k, m=m_1] + \frac{1}{2} \operatorname{Pr}[\mathcal{A}^{hy} \text{ outputs } 0|\bar{k}=k', m=m_1]$$

$$\frac{1}{2} \operatorname{Pr}[\mathcal{A}^{hy} \text{ outputs } 0|\bar{k}=k', m=m_0] + \frac{1}{2} \operatorname{Pr}[\mathcal{A}^{hy} \text{ outputs } 1|\bar{k}=k', m=m_1]$$

$$\leq \frac{3}{2} + \operatorname{negl}(n)$$

Furthermore, we have:

$$\frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } 1 | \bar{k} = k', m = m_0] + \frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } 0 | \bar{k} = k', m = m_0] = \frac{1}{2}$$

and

$$\frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } \mathbf{0} | \bar{k} = k', m = m_1] + \frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } \mathbf{1} | \bar{k} = k', m = m_1] = \frac{1}{2}$$

Hence it remains

$$\frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } \mathbf{0} | \bar{k} = k, m = m_0] + \frac{1}{2} \Pr[\mathcal{A}^{hy} \text{ outputs } \mathbf{1} | \bar{k} = k, m = m_1] = \Pr[\operatorname{PubK}_{\mathcal{A}^{hy}}^{eav}] \le \frac{1}{2} + \operatorname{negl}(n)$$

which concludes the proof.

For the CCA-security of a key-encapsulation mechanism, we consider an experiment similar to $\mathsf{KEM}_{\mathcal{A},\Pi}^{\mathsf{cpa}}(n)$, where the adversary \mathcal{A} is also given access to a decapsulation oracle $\mathsf{Decaps}(\mathsf{SK},\cdot)$.

Theorem

If KEM is a CCA-secure key-encapsulation mechanism and E is a CCA-secure private-key encryption scheme, the corresponding hybrid encryption scheme E^{hy} is a CCA-secure public-key encryption scheme.

Outline

- 2 Discrete Logarithm and Diffie-Hellman Algorithm
- 3 Public Key Encryption: security notions
- ElGamal Encryption Scheme
- 5 Cramer-Shoup Encryption Scheme

The security of the scheme relies on the following main result.

- Lemma: Let G be a finite group. Given an arbitrary element *m* ∈ G, if *m* is multiplied by an uniform group element *k* ∈ G, the result *k* · *m* is a uniform group element as well.
- **Proof**: let *g* be an arbitrary element of G, then

$$\Pr[k \cdot m = g] = \Pr[k = g \cdot m^{-1}].$$

and, because k is uniform, we obtain

$$\Pr[k = g \cdot m^{-1}] = 1/|\mathbb{G}|.$$

ElGamal Encryption Scheme - Construction

The ElGamal public-key encryption scheme is defined as follows:

- KeyGen(1ⁿ): on input 1ⁿ, it runs G to generate a description of a cyclic group G having order q, with ||q|| = n together with a generator g. Then, it picks a uniform x ∈ Zq to compute h ← g^x. The public key is PK = (G, g, q, h) and the private/secret key is SK = x. The message space is G.
- Enc(PK, m ∈ G): it chooses a uniform y ∈ Z_q, and outputs the following ciphertext

$$c = (c_1, c_2) \leftarrow (g^y, h^y \cdot m).$$

Dec(SK, c): it outputs

$$m'=c_2/c_1^x$$

Correctness: $c_2/c_1^x = h^y \cdot m/(g^y)^x = m$.

ElGamal Encryption scheme - Example

Example (Katz-Lindell book)

Let q = 83 and p = 2q + 1 = 167. Let \mathbb{G} denote the group of quadratic residues mod p. Both p and q are primes, and \mathbb{G} is a subgroup of \mathbb{Z}_p^* with order q. Then, any element $g \in \mathbb{G} \setminus \{1\}$ is a generator. Take $g = 2^2 = 4 \mod 167$, pick $x = 37 \in \mathbb{Z}_{83}$, compute $h = g^x = 4^{37} \mod 167 = 76$. The public key becomes $\mathsf{PK} = (p, q, g, h) = (167, 83, 4, 76)$

• Enc(PK, *m* = 65 ∈ G): ^a it picks *y* = 71 and compute the ciphertext,

$$c = (c_1, c_2) = (4^{71}, 76^{71} \cdot 65) = (132, 44) \mod 167$$

^a65 is indeed in \mathbb{G} as $65 = 30^2 \mod 167$.

ElGamal Encryption Scheme - Example

Example (Katz-Lindell book)

• Dec(SK, c):

$$n = c_2/c_1^x$$

=44/132³⁷ mod 167
=44/124 mod 167
=44 \cdot 124^{-1} mod 167
=44 \cdot 66 mod 167
=65

Security of the ElGamal Encryption Scheme

Theorem

If the DDH problem is hard relative to *G*, then the ElGamal encryption scheme is CPA-secure.

Sketch Proof.

Idea: we consider a PPT adversary A who is attacking the ElGamal scheme S, and we construct a PPT distinguisher D that attempts to solve the DDH problem relative to G. D first receives an instance of the DDH problem, i.e. $(\mathbb{G}, q, g, h_1 = g^{x_1}, h_2 = g^{x_2}, h_3)$, and its challenge is to determine whether $h_3 = g^{x_1x_2}$ or $h_3 = g^z$ for uniform $z \in \mathbb{Z}_q$.

Security of ElGamal Encryption Scheme

Sketch Proof.

Algorithm \mathcal{D} will simulate the ElGamal scheme to \mathcal{A} as follows:

- On input $(\mathbb{G}, q, g, h_1, h_2, h_3)$, it sets $\mathsf{PK} = (\mathbb{G}, q, g, h_1)$.
- On input (m_0, m_1) received from A, it picks $b \in \{0, 1\}$, sets $c_1 = h_2$ and $c_2 = h_3 \cdot m_b$, and sends (c_1, c_2) to A.
- It receives the bit *b*' from *A*, and outputs 1 if *b*' = *b*, 0 otherwise. Now, let *S*' be a modified version of ElGamal, working as follows:
- It has the same key generation algorithm.
- Encryption algorithm: it chooses uniform y, z ∈ Z_q, and outputs the ciphertext (g^y, g^z · m). Note that the decryption algorithm doesn't work here, but we don't actually need it in the experiment PubK^{eav}_{A,S'}(n) = 1.

Security of ElGamal Encryption Scheme

Sketch Proof.

For the modified encryption scheme S', since c_2 is a uniformly distributed group element, we have

 $\Pr[\mathsf{PubK}^{eav}_{\mathcal{A},S'}(n) = 1] = 1/2$

Case 1 - random tuple: the view of the adversary \mathcal{A} when run as a subroutine by \mathcal{D} is distributed identically to its view in experiment PubK^{*eav*}_{\mathcal{A},S'}. Therefore

$$\Pr[\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^z) = 1] = \Pr[\mathsf{PubK}^{eav}_{\mathcal{A}, S'}(n) = 1] = 1/2 \quad (1)$$

Security of ElGamal Encryption Scheme

Sketch Proof.

Case 2 - DH tuple: the view of the adversary \mathcal{A} when run as a subroutine by \mathcal{D} is distributed identically to its view in experiment PubK^{*eav*}_{\mathcal{A},S}. Therefore

$$\Pr[\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^{xy}) = 1] = \Pr[\mathsf{PubK}^{eav}_{\mathcal{A}, S}(n) = 1]$$
(2)

Concluding, if the DDH problem is hard relative to \mathcal{G} , then

 $|\Pr[\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^z) = 1] - \Pr[\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^{xy}) = 1]| \le \operatorname{\mathsf{negl}}(n)$ (3)

From equations (1), (2) and (3) we deduce

 $\Pr[\mathsf{PubK}^{eav}_{\mathcal{A},S}(n)] \le 1/2 + \mathsf{negl}(n)$

ElGamal Encryption Scheme - CCA-secure?

- The ElGamal encryption scheme is malleable, hence it is not CCA-secure.
- **Malleability**: given a ciphertext *c*, which is the encryption of a message *m*, it is possible to generate the encryption *c'* of a message *m'* having some known relation with *m*.
- Consider the public key (\mathbb{G}, q, g, h) , the ciphertext $c = (c_1, c_2)$ and its modification $c' = (c_1, c'_2 = \alpha \cdot c_2)$, where $\alpha \in \mathbb{G}$. If *c* is the encryption of *m*, we have $c_1 = g^y, c_2 = h^y \cdot m$. Hence *c'* is a valid encryption of $\alpha \cdot m$.

A CPA-secure KEM based on DDH

Consider the key-encapsulation mechanism defined as follows:

- KeyGen(1ⁿ): it runs G to generate (G, q, g). It then chooses x ∈ Z_q and computes h = g^x. It also specifies a hash function H: G → {0,1}^{ℓ(n)}. The public key is PK = (G, q, g, h, H) and the private key is x.
- Encaps(PK): it chooses a uniform *y* ∈ Z_q and outputs the ciphertext *c* := g^y and the key *H*(*h*^y).
- Decaps(SK, c): it outputs $H(c^x)$.

If *H* is modelled as a random oracle, then the above KEM is CPA-secure based on the hardness of the CDH problem relative to \mathcal{G} (weaker assumption).

Outline

- New directions in Cryptography
- 2 Discrete Logarithm and Diffie-Hellman Algorithm
- 3 Public Key Encryption: security notions
- 4 ElGamal Encryption Scheme
- 5 Cramer-Shoup Encryption Scheme

Cramer-Shoup Encryption Scheme

- The first public-key encryption scheme that can be proven CCA-secure in the standard model.
- It is based on the ElGamal Encryption Scheme.
- Its CCA-security relies on the hardness of the DDH problem.

Cramer-Shoup Encryption Scheme

KeyGen(n): first, it runs G(n) to obtain a description of a cyclic group G - having prime order q, where ||q|| = ⌊log₂ q + 1⌋ = n - and a couple of generators g₁, g₂ for G. Then, it picks uniform x₁, x₂, y₁, y₂, z₁, z₂ ∈ Z_q and computes:

$$\circ \quad c \leftarrow g_1^{x_1} g_2^{x_2} \\ \circ \quad d \leftarrow g_1^{y_1} g_2^{y_2} \\ \circ \quad h \leftarrow g_1^{z_1} g_2^{z_2} \end{cases}$$

The public key is $\mathsf{PK} = (\mathbb{G}, q, g_1, g_2, c, d, h, H)$, where $H : \{0, 1\}^* \to \mathbb{Z}_q$ is a collision-resistant hash function. The private/secret key is $\mathsf{SK} = (x_1, x_2, y_1, y_2, z_1, z_2)$. The message space is \mathbb{G} .

• Enc(PK, $m \in \mathbb{G}$): it chooses a uniform $k \in \mathbb{Z}_q$, and computes:

$$\circ u_1 = g_1^k, u_2 = g_2^k$$

$$\circ e = h^k m$$

$$\circ \alpha = H(u_1, u_2, e)$$

$$\circ v = c^k d^{k\alpha}$$

The ciphertext is $CT = (u_1, u_2, e, v)$

Cramer-Shoup Encryption Scheme

- Dec(*CT*, SK):
 - It computes $\alpha = H(u_1, u_2, e)$.
 - If $u_1^{x_1}u_2^{x_2}(u_1^{y_1}u_2^{y_2})^{\alpha} \neq v$, it outputs \perp .
 - Otherwise it outputs $m' = e/(u_1^{z_1}u_2^{z_2})$

Correctness:

$$m' = e/(u_1^{z_1}u_2^{z_2}) = h^k m/g_1^{kz_1}g_2^{kz_2} = h^k m/h^k = m$$

Let \mathcal{A} be an arbitrary PPT adversary in experiment PubK^{cca}_{\mathcal{A},CS}, where *CS* it the Cramer-Shoup scheme. \mathcal{A} is exploited to construct a distinguisher \mathcal{D} for the DDH problem relative to \mathcal{G} .

Proof.

Distinguisher $\mathcal{D}(\mathbb{G}, q, g_1, g_2, g_3, g_4)$

•
$$x_1, x_2, y_1, y_2, z_1, z_2 \leftarrow \mathbb{Z}_q$$
.

•
$$\mathsf{PK} = (\mathbb{G}, q, g_1, g_2, c := g_1^{x_1} g_2^{x_2}, d := g_1^{y_1} g_2^{y_2}, h := g_1^{z_1} g_2^{z_2}, H).$$

•
$$(m_0, m_1) \leftarrow \mathcal{A}(\mathsf{PK}, \mathsf{Dec}(\mathsf{SK}, \cdot)).$$

• $b \leftarrow \{0,1\}$.

•
$$e^* = g_3^{z_1} g_4^{z_2} m_b, \ \alpha^* = H(g_3, g_4, e^*),$$

 $CT^* = (g_3, g_4, g_3^{z_1} g_4^{z_2} m_b, g_3^{x_1 + \alpha^* y_1} g_4^{x_2 + \alpha^* y_2}).$

• $b' \leftarrow \mathcal{A}(\mathsf{PK}, CT^*, \mathsf{Dec}(\mathsf{SK}, \cdot)^{CT^*}).$

so The distinguisher outputs 1 if b' = b, otherwise 0.

Proof.

Decryption queries:

On input $(u_1, u_2, e, v) \in \mathbb{G}^4$, \mathcal{D} computes $\alpha = H(u_1, u_2, e)$. If

$$u_1^{x_1+\alpha y_1}u_2^{x_2+\alpha y_2}\neq v$$

it outputs \perp , otherwise it outputs

$$m' = \frac{e}{u_1^{z_1} u_2^{z_2}}.$$

Proof.

Fact 1:

$$\Pr[\mathcal{D} = 1|DH] - \Pr[\mathcal{D} = 1|\text{Random}] \le \operatorname{negl}(n)$$

[It follows from the DDH assumption.]

Fact 2:

$$\Pr[\mathcal{D} = 1 | \mathsf{DH}] = \Pr[b' = b | \mathcal{A} \text{ attacks } CS]$$

Fact 3:

$$\left| \Pr[\mathcal{D} = 1 | \mathsf{Random}] \right| \le \frac{1}{2} + \mathsf{negl}(n)$$

Proof.

Proof of Fact 2;

When \mathcal{D} gets a valid DH tuple, then there exist γ , *r* s.t.:

$$(g_1, g_2 = g_1^{\gamma}, g_3 = g_1^r, g_4 = g_2^r).$$

It is easy to verify that the distribution of PK, CT^* and the decryption answers are exactly the same of those obtained from the proper Cramer-Shoup challenger (and not from the distinguisher who is simulating the game). Therefore,

$$\Pr[\mathcal{D} = 1 | \mathsf{DH}] = \Pr[b' = b | \mathcal{A} \text{ attacks } CS] = \Pr[\mathsf{PubK}^{cca}_{\mathcal{A}, CS}(n) = 1]$$

Proof.

Proof of Fact 3 (a bit longer...)

When $\ensuremath{\mathcal{D}}$ gets a random tuple, it will look like

$$(g_1, g_2 = g_1^{\gamma}, g_3 = g_1^{r}, g_4 = g_2^{r'})$$

where $\gamma \neq 0$ and $r \neq r'$ with overwhelming probability $((2q^2 - 1)/q^3)$.

We show that, even if \mathcal{A} can compute discrete logarithms (in real world, it cannot, since it runs in polynomial time), we have

$$\left| \Pr[\mathcal{D} = 1 | \mathsf{Random}] \right| \le \frac{1}{2} + \mathsf{negl}(n)$$

if $\mathcal{A}_{59 \text{ of } 76}$ can make a polynomial number $\ell(n)$ of decryption queries.

Proof.

The only value in CT^* which directly depends on m_b is e^* . If e^* is uniformly distributed from the point of view of A, then A has no information about which message was encrypted.

What does A learn about z_1, z_2 ?

From the public key PK, \mathcal{A} learns

$$\log_{g_1} h = z_1 + \gamma z_2.$$

(4)

From the decryption oracle on $CT = (u_1, u_2, e, v)$.

We distinguish between two cases, legal and illegal ciphertexts. In particular, *CT* is

- illegal if $\log_{g_1} u_1 \neq \log_{g_4} u_2$;
- legal otherwise.

We will prove that

- 2 the probability that \mathcal{D} decrypts illegal ciphertexts is negligible.

Assuming the validity of the above two points, consider an arbitrary $\mu \in \mathbb{G}$. We are interested in the probability that $\mu = g_3^{z_1} g_2^{z_2}$. In order for this to occur, we must have:

$$\log_{g_1} \mu = rz_1 + \gamma r' z_2 \tag{5}$$

Equations (4) and (5) form a system of linear equations in z_1 and z_2 (over \mathbb{Z}_q) with matrix of coefficients

$$B = \begin{pmatrix} 1 & \gamma \\ r & \gamma r' \end{pmatrix}$$

which is non singular since $r' \neq r$.

Each arbitrary $\mu \in \mathbb{G}$ is a possible value for $g_3^{z_1}g_4^{z_2}$, and each value is equally likely. Indeed, we have q possible values for z_1, z_2 from (4), and the map sending (z_1, z_2) in $g_3^{z_1}g_4^{z_2}$ is a bijection.

The adversary A cannot predict the value of $g_3^{z_1}g_4^{z_2}$ with probability better than 1/q.

Since $g_3^{z_1}g_4^{z_2}$ is uniformly distributed in \mathbb{G} , also $g_3^{z_1}g_4^{z_2}m_b$ is uniformly distributed, thus \mathcal{A} has no information about m_b .

Proof.

() When $\log_{g_1} u_1 = \log_{g_2} u_2 = r''$, then \mathcal{A} learns from m that

$$\log_{g_1} m = \log_{g_1} e - r'' z_1 - r'' \gamma z_2$$
 (6)

But equation (6) is linearly dependent with equation (4), so no extra information about z_1, z_2 in this case.

When $\text{Dec}(SK, \cdot)$ returns \bot , it means that

$$v \neq u_1^{x_1+y_1H(u_1,u_2,e)}u_2^{x_2+y_2H(u_1,u_2,e)}$$

But z_1, z_2 are not involved in this check, so no information about them also in this case.

Proof.

We consider two phases: before the challenge ciphertext is given, and after.

Before the challenge ciphertext

From the public key PK, A learns the following about x_1, x_2, y_1, y_2 :

$$\log_{g_1} c = x_1 + \gamma x_2 \tag{7}$$

$$\log_{g_1} d = y_1 + \gamma y_2 \tag{8}$$

So there are exactly q^2 possibilities for x_1, x_2, y_1, y_2 . Each of them is equally likely from the point of view of A.

Given an arbitrary $\mu \in \mathbb{G}$, we are interested in the probability that $\mu = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$. In order for this to occur, we must have:

$$\log_{g_1} \mu = r(x_1 + \alpha y_1) + \gamma r'(x_2 + \alpha y_2)$$
(9)

Equations (7), (8) and (9) form a system of linear equations in x_1, x_2, y_1, y_2 (over \mathbb{Z}_q) with matrix of coefficients

$$C = \begin{pmatrix} 1 & \gamma & 0 & 0 \\ 0 & 0 & 1 & \gamma \\ r & \gamma r' & \alpha r & \alpha \gamma r' \end{pmatrix}$$

which has rank 3 since $r' \neq r$.

Each arbitrary $\mu \in \mathbb{G}$ is a possible value for $u_1^{x_1+\alpha y_1}u_2^{x_2+\alpha y_2}$, and each value is equally likely. Indeed, we have q^2 possible values for x_1, x_2, y_1, y_2 from (7), (8), and the map sending (x_1, x_2, y_1, y_2) in $u_1^{x_1+\alpha y_1}u_2^{x_2+\alpha y_2}$ is surjective, and the preimage of each $\mu \in \mathbb{G}$ contains q distinct elements.

Fixed u_1, u_2, e , the adversary \mathcal{A} cannot predict the value of $u_1^{x_1+\alpha y_1}u_2^{x_2+\alpha y_2}$ with probability better than 1/q.

If the first illegal decryption query (u_1, u_2, e, v) is rejected, \mathcal{A} learns that $v \neq u_1^{x_1+\alpha y_1}u_2^{x_2+\alpha y_2}$. This eliminates q of q^2 possibilities for (x_1, x_2, y_1, y_2) . The $\ell(n)$ -th decryption queries of this form will be rejected except with probability $1/(q^2 - (\ell(n) - 1)q)$. Thus the probability that one of these queries is not rejected is at most $\ell(n)/(q^2 - (\ell(n) - 1)q)$ (q is exponential in n, $\ell(n)$ is polynomial).
Cramer-Shoup: Security Proof

Proof.

After the challenge ciphertext

From the challenge ciphertext, \mathcal{A} learns:

$$\log_{g_1} v^* = (x_1 + \alpha^* y_1)r + (x_2 + \alpha^* y_2)\gamma r'$$
(10)

Given the challenge ciphertext $CT^* = (u_1^*, u_2^*, e^*, v^*)$, we have three possible types of illegal queries (u_1, u_2, e, v) :

- (u₁, u₂, e) = (u₁^{*}, u₂^{*}, e^{*}) with v ≠ v^{*}. Since the computed hash values are equal but v ≠ v^{*}, the decryption oracle will reject it.
- (u₁, u₂, e) ≠ (u₁^{*}, u₂^{*}, e^{*}) and α = α^{*}. It means a collision in *H* has been found, but *H* is collision-resistant, so this happens only with negligible probability.

Cramer-Shoup: Security Proof

Proof.

(u₁, u₂, e) ≠ (u₁^{*}, u₂^{*}, e^{*}) and α ≠ α^{*}. The decryption oracle will accept the query only if

$$\log_{g_1} v = (x_1 + \alpha y_1)\tilde{r} + (x_2 + \alpha y_2)\gamma\tilde{r}'$$
(11)

where $\tilde{r} = \log_{g_1} u_1 \neq \tilde{r}' = \log_{g_2} u_2$. BUT, in this case, the equations (7),(8),(10) and (11) having unknowns x_1, x_2, y_1, y_2 are linearly independent because

$$\det \begin{pmatrix} 1 & \gamma & 0 & 0\\ 0 & 0 & 1 & \gamma\\ r & r'\gamma & r\alpha^* & r'\alpha^*\gamma\\ \tilde{r} & \tilde{r}'\gamma & \tilde{r}\alpha & \tilde{r}'\alpha\gamma \end{pmatrix} = (\gamma^2)(r'-r)(\tilde{r}-\tilde{r}')(\alpha-\alpha^*) \neq 0$$

69 of 76

Cramer-Shoup: Security Proof

Proof.

Each arbitrary $v \in \mathbb{G}$ is a possible value for $u_1^{x_1+\alpha y_1}u_2^{x_2+\alpha y_2}$, and each value is equally likely. Indeed, we have q possible values for x_1, x_2, y_1, y_2 from (7),(8),(10), and the map sending (x_1, x_2, y_1, y_2) in $u_1^{x_1+\alpha y_1}u_2^{x_2+\alpha y_2}$ is surjective, and hence a bijection.

Fixed u_1, u_2, e , the adversary \mathcal{A} cannot predict the value of $u_1^{x_1+\alpha y_1}u_2^{x_2+\alpha y_2}$ with probability better than 1/q.

If the first illegal decryption query (u_1, u_2, e, v) is rejected, \mathcal{A} learns that $v \neq u_1^{x_1+\alpha y_1}u_2^{x_2+\alpha y_2}$. This eliminates 1 of q possibilities for (x_1, x_2, y_1, y_2) . The $\ell(n)$ -th decryption queries of this form will be rejected except with probability $1/(q - (\ell(n) - 1))$. The probability that one of these queries is not rejected is at most $\ell(n)/(q - (\ell(n) - 1))$ (q is exponential in n, $\ell(n)$ is polynomial).

Collision-Resistant Hash Functions based on Dlog

Theorem

If the discrete logarithm is hard, then collision-resistant hash functions exist.

We define a fixed-length hash function based on the discrete-logarithm assumption in prime order groups. It consists of the algorithms (KeyGen, H) as follows:

- KeyGen(1ⁿ): It runs G(n) to obtain a description of a cyclic group G of prime order q with ||q|| = n and a generator g. It then selects a uniform h ∈ G. It outputs the key s = (G, q, g, h).
- $H(s, (x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q)$: It outputs $H^s(x_1, x_2) := g^{x_1} h^{x_2} \in \mathbb{G}$.

Collision-Resistant Hash Functions based on Dlog

• Can you solve the Dlog problem if a collision in *H*^s is found?

Collision-Resistant Hash Functions based on Dlog

• Can you solve the Dlog problem if a collision in *H^s* is found?

•
$$H^{s}(x_{1}, x_{2}) = H^{s}(x'_{1}, x'_{2})$$
, with $(x_{1}, x_{2}) \neq (x'_{1}, x'_{2}) \Longrightarrow g^{x_{1}}h^{x_{2}} = g^{x'_{1}}h^{x'_{2}}$
 $\Longrightarrow g^{x_{1}-x'_{1}} = h^{x'_{2}-x_{2}} \Longrightarrow \log_{g} h = [(x - x'_{1}) \cdot (x'_{2} - x_{2})^{-1} \mod q].$

- Note that x'₂ − x₂ ≠ 0 mod q, otherwise we will have x₁ = x'₁ mod q and therefore no collision is found.
- As *q* is prime, the inverse of $(x'_2 x_2)$ exists.

Gap Diffie-Hellman Assumption

Definition

A group generation algorithm \mathcal{G} is a gap-DH if the DDH problem in relative to \mathcal{G} is easy but the CDH problem is still hard.

Further Reading (1)

Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user setting: Security proofs and improvements.

In Bart Preneel, editor, *Advances in Cryptology* — *EUROCRYPT 2000*, volume 1807 of *Lecture Notes in Computer Science*, pages 259–274. Springer Berlin Heidelberg, 2000.

Dan Boneh.

Simplified OAEP for the RSA and Rabin Functions.

In Joe Kilian, editor, *Advances in Cryptology — CRYPTO 2001*, volume 2139 of *Lecture Notes in Computer Science*, pages 275–291. Springer Berlin Heidelberg, 2001.

Further Reading (2)

Ronald Cramer and Victor Shoup.

Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. *SIAM Journal on Computing*, 33(1):167–226, 2003.

Whitfield Diffie and Martin E Hellman.
 New directions in cryptography.
 Information Theory, IEEE Transactions on, 22(6):644–654, 1976.

Further Reading (3)

Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. New attacks on feistel structures with improved memory complexities.

In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages 433–454, 2015.

Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and Adi Shamir.

Collision-based power analysis of modular exponentiation using chosen-message pairs.

In Cryptographic Hardware and Embedded Systems - CHES 2008, 10th International Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings, pages 15–29, 2008.