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Private keys

• Assuming that two communicating parties share a secret key,
private-key cryptography ensures secrecy and integrity.

• How can communicating parties share a secret key?

• They may have access to a secure channel (e.g. being in the
same place at some time, or using a trusted courier).

• A secure channel is usually slow and costly!

• It does not work well for open systems.

• Each user has to securely store a big number of private keys.
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Key-Distribution Centers (KDCs)

• A KDC is a trusted third party.

• Each user can share a key with the KDC through a secure
channel.

• When Alice and Bob want to communicate, they query the
KDC, which chooses a new, random key k and sends it over
(encrypted using kA to Alice, encrypted using kB to Bob).

• Each user has to store only one long-term secret key.

• However, each user must trust the KDC. Furthermore the KDC
is a single point of failure and a high-value target.

• Still requires the use of a private channel!
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New Directions in Cryptography

In 1976, Diffie and Hellman published a paper, titled New
Directions in Cryptography, that revolutionised Cryptography.

• They proposed an interactive protocol allowing two parties to
share a secret key via communication over a public channel.

• They posed the first steps toward Public-key Cryptography, but
they did not give any candidate construction.

• In 1977, Ron Rivest, Adi Shamir and Len Adleman introduced
the RSA problem, and presented the first public-key encryption
and digital signature schemes based on its hardness.
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Key-exchange protocol

It is a probabilistic protocol Π to generate a shared, secret key.

• Alice and Bob begin by holding the security parameter n.

• They run Π using independent random bits.

• At the end of the protocol, they output kA and kB, respectively.

Correctness: with overwhelming probability kA = kB.
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The key-exchange Experiment KEeav
A,Π

Challenger Ch Adversary A
Execution of Π Access to the transcript trans
b← {0, 1}
If b = 0, k̂ = k

else k̂← {0, 1}n

k̂−−−−→
Outputs his guess b′

Definition
The key-exchange protocol Π is secure if, for all PPT A, the
following holds:

Adveav
A,Π(n) = Pr[KEeav

A,Π(n) = 1] ≤ 1/2 + negl(n)
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The Discrete Logarithm Problem (Dlog)
Let G be a PPT group generation algorithm:

• On input n, it outputs a description of a cyclic group G, its order
q and a generator g ∈ G.

• ||q|| = blog2 qc+ 1 = n

• The group operation is efficient in G.

• Given h ∈ G, logg h denotes the unique x ∈ Zq s.t. h = gx.

• Discrete logarithm (DLog) problem relative to G:
given (G, q, g)← G(n) and a uniform h = gx, compute x.

• The DLog problem is hard relative to G if, for all PPT
adversaries A, the success probability is negligible in n.

• Can be harder or easier depending on the groupG.
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Variants of Diffie-Hellman Problem

• Computational Diffie-Hellman (CDH): given uniform ga, gb ∈ G,
compute gab.

• If the DLog problem is easy relative to G, then also the CDH
problem is.

• The reverse implication is not clear.
• Decisional Diffie-Hellman (DDH): given h, ga, gb ∈ G, decide if

h = gab or it is a uniform bit-string.
• If the CDH problem is easy relative to G, then also the DDH

problem is.
• The reverse implication does not appear to be true.
• There is a huge list of members in the DH family of problems!
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Diffie-Hellman Key Exchange Algorithm

• Public elements: (G, q, g)← G(n).

• Alice chooses random a ∈ Zq and sends hA = ga to Bob.

• Bob chooses random b ∈ Zq and sends hB = gb to Alice.

• Alice computes (gb)a = gab.

• Bob computes (ga)b = gab.
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Diffie-Hellman security

• The hardness of the DLog problem is necessary for the security
of the Diffie-Hellman key exchange.

• It may be not sufficient.

• The security follows almost directly from the hardness of the
DDH problem.

14 of 76



Outline

1 New directions in Cryptography

2 Discrete Logarithm and Diffie-Hellman Algorithm

3 Public Key Encryption: security notions

4 ElGamal Encryption Scheme

5 Cramer-Shoup Encryption Scheme

15 of 76



Public Key Cryptosystems

In the public-key setting, a party generates a pair of keys: a public
key and a private key.

They can be used for obtaining:

• secrecy for messages it receives using a public-key
encryption scheme,

• integrity for messages it sends using a digital signature
scheme.

Key distribution can be done over public, but authenticated
channels. The need to store many secret keys is reduced.
Suitable for open systems.
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Public Key Cryptosystems

A public-key encryption scheme consists of the following
algorithms:

• KeyGen(1n): is a randomised algorithm that takes the security
parameters as input and returns a pair of keys (PK,SK), the
public key PK and its matching secret key SK, respectively.

• Enc(PK,m): An algorithm (possibly randomised) that takes a
public key PK, a plaintext m and returns a ciphertext c.

• Dec(SK, c): A deterministic algorithm that takes the secret key
SK and a ciphertext c, and returns a message m ∈M∪⊥.

Correctness:

∀m ∈M,Pr[(SK,PK)← KeyGen(n) : Dec(Enc(PK,m),SK) = m] = 1
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The eavesdropping indistinguishability Experiment PubKeav
A,E

Challenger Ch Adversary A
PK,SK← KeyGen(1n) Access to PK

m0,m1,|m0|=|m1|←−−−−−−−−−
b← {0, 1}

c=Enc(PK,mb)−−−−−−−−→ Outputs his guess b′

Definition
An encryption scheme E has indistinguishable encryptions in the
presence of an eavesdropper if for all PPT adversaries A the
following holds:

Adveav
A,E(n) = Pr[PubKeav

A,E(n) = 1] ≤ 1/2 + negl(n)

PubKeav
A,E(n) = 1 if b′ = b; it is 0 otherwise.
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CPA security

Since the adversary A knows the public key PK, it has access to
an encryption oracle for free.

Consequently, if E has indistinguishable encryptions in the
presence of an eavesdropper, then it is CPA-secure.

This is in contrast to the private-key setting.

Also in the public-key setting, a deterministic encryption scheme
cannot be CPA-secure.
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CCA Indistinguishability Experiment PubKcca
A,E

Challenger Ch Adversary A
PK,SK = KeyGen(n) Access to PK and to the oracle Dec(SK, ·)

m0,m1,|m0|=|m1|←−−−−−−−−−
b← {0, 1}

c=Enc(PK,mb)−−−−−−−−→ Access to the oracle Dec(SK, ·)c

Outputs his guess b′

Definition
An encryption scheme is CCA-secure if for all PPT adversaries A
the following holds:

Advcca
A,E(n) = Pr[PubKcca

A,E(n) = 1] ≤ 1/2 + negl(n)
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Dealing with arbitrary-length messages

In the indistinguishability of multiple encryptions experiment, the
adversary is given access to a letf-or-right encryption oracle
which, on input a pair of messages m0,m1 (with |m0| = |m1|),
returns c← Enc(PK,mb).

Theorem
If a public-key encryption scheme is CPA-secure, then it also has
indistinguishable multiple encryptions.

• As a consequence, any CPA-secure public-key encryption
scheme for fixed-length messages (down to one bit!) can be
used as a CPA-secure public key-encryption scheme for
arbitrary-length messages.
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Hybrid Encryption

• Let E be a public-key encryption scheme for `-bit messages.
Using E for encrypting an `′-bit message requires γ = d`′/`e
applications of E.

• A better approach to deal with arbitrary-length messages is
possible.

• Exploit a private-key encryption scheme to obtain a public-key
encryption scheme.

• Private-key encryption schemes are significantly faster (2 or 3
orders of magnitude) than public ones.

• This approach is called key-encapsulation mechanism (KEM),
and data-encapsulation mechanism (DEM).
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KEM
A key-encapsulation mechanism (KEM) consists of the following
PPT algorithms:

• KeyGen(1n): takes the security parameter as input and returns
a pair of keys (PK,SK), the public key PK and its matching
secret key SK, respectively, each of length n.

• Encaps(PK, 1n): it returns a ciphertext c and a key k ∈ {0, 1}`(n).

• Decaps(SK, c): a deterministic algorithm that takes a secret key
SK and a ciphertext c, and returns a key k or ⊥.

Correctness:

Pr[(SK,PK)← KeyGen(n), (c, k)← Encaps(PK, 1n) :

: Decaps(SK, c) = k] = 1
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Hybrid Encryption
A hybrid encryption scheme (KeyGenhy,Enchy,Dechy) is a
public-key encryption scheme obtained combining a KEM
(KeyGen,Encaps,Decaps) and a private-key encryption scheme
(KeyGen′,Enc,Dec) as follows:
• KeyGenhy(1n): is a randomized algorithm that takes the security

parameter as input and returns a pair of keys (PK,SK).
• Enchy(PK,m ∈ {0, 1}∗): takes a public key PK, a plaintext m and

does the following:
◦ Compute (c, k)← Encaps(PK, 1n).
◦ Compute c′ ← Enc(k,m).
◦ Output the ciphertext (c, c′).

• Dechy(SK, (c, c′)): takes a secret key SK and a ciphertext (c, c′)
and does the following:
◦ Compute k← Decaps(SK, c).
◦ Output m← Dec(k, c′).
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Hybrid Encryption: Efficiency

• Fix n. Let α = cost(Encaps(·, 1n)) and β = cost(Enc(·, 1 bit)).
Suppose |m| > n. Then

cost(Enchy(·, 1 bit)) =
α+ β · |m|
|m|

=
α

|m|
+ β

• For sufficiently long m, cost(Enchy(1 bit)) approaches β, i.e.
cost(Enchy(1 bit)) ≈ cost(Enc(1 bit)). In other words, the cost of
encrypting one bit using the constructed public-key encryption
scheme is approximately the cost of encrypting one bit using
the private-key encryption scheme!
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Security of KEM
Intuitively speaking, for a KEM to be CPA-secure, we require the
encapsulated key to be indistinguishable from a uniform key that is
independent of the ciphertext.

Experiment (CPA Indistinguishability KEMcpa
A,Π(n))

• Run KeyGen(1n) to get (PK,SK), then run Encaps(PK, 1n) to
generate (c, k), where we assume k ∈ {0, 1}n.

• Choose random b ∈ {0, 1}: if b = 0 set k̄ := k, otherwise choose
k̄ uniformly at random from {0, 1}n.

• The tuple (PK, c, k̄) is given to A, who outputs a bit b′.
• Experiment output: 1 if b′ = b, 0 otherwise.

A KEM Π is CPA-secure if, for all PPT adversaries A, we have

Advcpa
A,Π(n) = Pr[KEMcpa

A,Π(n) = 1] ≤ 1/2 + negl(n)
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Security of the Hyprid Encryption Scheme

Theorem
If Π is a CPA-secure key-encapsulation mechanism and E is a
private-key encryption scheme which has indistinguishable
encryptions in the presence of an eavesdropper, the
corresponding hybrid encryption scheme Ehy is a CPA-secure
public-key encryption scheme.
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Security of the Hybrid Encryption Scheme

Let Ahy be an adversary playing the PubKeav
Ahy,Shy(n) game. We

need to prove the following:

Pr[PubKeav
Ahy,Shy(n) = 1] ≤ 1

2
+ negl(n)

where

Pr[PubKeav
Ahy,Shy(n) = 1] =

1
2

Pr[Ahy outputs 0|m = m0]

+
1
2

Pr[Ahy outputs 1|m = m1]
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Security of the Hybrid Encryption Scheme

𝑏 ← 0,1  
 0: 𝑘 ← 𝐸𝑛𝑐𝑎𝑝𝑠 𝑝𝑘, 1𝑛  

1: 𝑘′ ← {0,1}𝑛 

𝐴ℎ𝑦 𝐴1 
𝐾𝐸𝑀  

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟 

(𝑝𝑘, 𝑐, 𝑘 ) 
(𝑚0, 𝑚1) 

𝑐′ = 𝐸𝑛𝑐(𝑘 ,𝑚0) (𝑐, 𝑐′) 

𝑏′ 𝑏′ 

𝐏𝐫 𝑨𝟏
′ 𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎 𝒃 = 𝟎 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎|𝒌 = 𝒌,𝒎 = 𝒎𝟎] 

𝐏𝐫 𝑨𝟏
′ 𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏 𝒃 = 𝟏 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏|𝒌 = 𝒌′,𝒎 = 𝒎𝟎] 

29 of 76



Security of the Hybrid Encryption Scheme

Since the key-encapsulation scheme Π is CPA-secure, we have:

Pr[KEMcpa
A1,Π

(n) = 1] =
1
2

Pr[A1 outputs 0|b = 0]+

+
1
2

Pr[A1 outputs 1|b = 1] =

=
1
2

Pr[Ahy outputs 0|k̄ = k,m = m0]+

+
1
2

Pr[Ahy outputs 1|k̄ = k′,m = m0] ≤

≤ 1
2

+ negl1(n)
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Security of the Hybrid Encryption Scheme

𝐴ℎ𝑦 𝐴2 
𝐾𝐸𝑀  

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟 

(𝑝𝑘, 𝑐, 𝑘 ) 
(𝑚0, 𝑚1) 

𝑐′ = 𝐸𝑛𝑐(𝑘 ,𝑚1) (𝑐, 𝑐′) 

𝑏′ 1 − 𝑏′ 

𝐏𝐫 𝑨𝟐′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎 𝒃 = 𝟎 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏|𝒌 = 𝒌,𝒎 = 𝒎𝟏] 

𝐏𝐫 𝑨𝟐′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏 𝒃 = 𝟏 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎|𝒌 = 𝒌′,𝒎 = 𝒎𝟏] 

𝑏 ← 0,1  
 0: 𝑘 ← 𝐸𝑛𝑐𝑎𝑝𝑠 𝑝𝑘, 1𝑛  

1: 𝑘′ ← {0,1}𝑛 
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Security of the Hybrid Encryption Scheme

Since the key-encapsulation scheme Π is CPA-secure, we have:

Pr[KEMcpa
A2,Π

(n) = 1] =
1
2

Pr[A2 outputs 0|b = 0]+

+
1
2

Pr[A2 outputs 1|b = 1] =

=
1
2

Pr[Ahy outputs 1|k̄ = k,m = m1]+

+
1
2

Pr[Ahy outputs 0|k̄ = k′,m = m1] ≤

≤ 1
2

+ negl2(n)
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Security of the Hybrid Encryption Scheme

 
𝑏 ← 0,1  
𝑘′ ← 0,1 𝑛 

c′ ← 𝐸𝑛𝑐(𝑘′, 𝑚𝑏) 
 
 
 

𝐴ℎ𝑦 𝐴′ 
𝑃𝑟𝑖𝑣𝐾 

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟 

(𝑚0, 𝑚1) 

𝑐 = 𝐸𝑛𝑐𝑎𝑝𝑠(𝑝𝑘, 1𝑛) 
(𝑐, 𝑐′) 

𝑏′ 𝑏′ 

(𝑚0, 𝑚1) 

𝑐′ 

𝐏𝐫 𝑨′ 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎 𝒃 = 𝟎 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎|𝒌 = 𝒌′,𝒎 = 𝒎𝟎] 

𝐏𝐫 𝑨′ 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏 𝒃 = 𝟏 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏|𝒌 = 𝒌′,𝒎 = 𝒎𝟏] 
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Security of the Hybrid Encryption Scheme

Since the private-key encryption scheme E has indistinguishable
encryptions in the presence of an eavesdropper, we have:

Pr[PrivKeav
A′,E(n) = 1] =

1
2

Pr[A′ outputs 0|b = 0]+

+
1
2

Pr[A′ outputs 1|b = 1] =

=
1
2

Pr[Ahy outputs 0|k̄ = k′,m = m0]+

+
1
2

Pr[Ahy outputs 1|k̄ = k′,m = m1] ≤

≤ 1
2

+ negl3(n)
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Security of the Hybrid Encryption Scheme

The sum of negligible functions is negligible as well. Summing all
the above inequalities we obtain:

1
2

Pr[Ahy outputs 0|k̄ = k,m = m0] +
1
2

Pr[Ahy outputs 1|k̄ = k′,m = m0]

1
2

Pr[Ahy outputs 1|k̄ = k,m = m1] +
1
2

Pr[Ahy outputs 0|k̄ = k′,m = m1]

1
2

Pr[Ahy outputs 0|k̄ = k′,m = m0] +
1
2

Pr[Ahy outputs 1|k̄ = k′,m = m1]

≤ 3
2

+ negl(n)
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Security of the Hybrid Encryption Scheme

Furthermore, we have:

1
2

Pr[Ahy outputs 1|k̄ = k′,m = m0]+

+
1
2

Pr[Ahy outputs 0|k̄ = k′,m = m0] =
1
2

and

1
2

Pr[Ahy outputs 0|k̄ = k′,m = m1]+

+
1
2

Pr[Ahy outputs 1|k̄ = k′,m = m1] =
1
2
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Security of the Hybrid Encryption Scheme

Hence it remains

1
2

Pr[Ahy outputs 0|k̄ = k,m = m0]+

1
2

Pr[Ahy outputs 1|k̄ = k,m = m1] =

Pr[PubKeav
Ahy ] ≤

1
2

+ negl(n)

which concludes the proof.
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Security of the Hybrid Encryption Scheme

For the CCA-security of a key-encapsulation mechanism, we
consider an experiment similar to KEMcpa

A,Π(n), where the
adversary A is also given access to a decapsulation oracle
Decaps(SK, ·).

Theorem
If KEM is a CCA-secure key-encapsulation mechanism and E is a
CCA-secure private-key encryption scheme, the corresponding
hybrid encryption scheme Ehy is a CCA-secure public-key
encryption scheme.
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ElGamal Encryption Scheme

The security of the scheme relies on the following main result.

• Lemma: Let G be a finite group. Given an arbitrary element
m ∈ G, if m is multiplied by an uniform group element k ∈ G, the
result k · m is a uniform group element as well.

• Proof: let g be an arbitrary element of G, then

Pr[k · m = g] = Pr[k = g · m−1].

and, because k is uniform, we obtain

Pr[k = g · m−1] = 1/|G|.

40 of 76



ElGamal Encryption Scheme - Construction

The ElGamal public-key encryption scheme is defined as follows:
• KeyGen(1n): on input 1n, it runs G to generate a description of a

cyclic group G - having order q, with ||q|| = n - together with a
generator g. Then, it picks a uniform x ∈ Zq to compute h← gx.
The public key is PK = (G, g, q, h) and the private/secret key is
SK = x. The message space is G.

• Enc(PK,m ∈ G): it chooses a uniform y ∈ Zq, and outputs the
following ciphertext

c = (c1, c2)← (gy, hy · m).

• Dec(SK, c): it outputs
m′ = c2/cx

1

Correctness: c2/cx
1 = hy · m/(gy)x = m.
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ElGamal Encryption scheme - Example

Example (Katz-Lindell book)
Let q = 83 and p = 2q + 1 = 167. Let G denote the group of
quadratic residues mod p. Both p and q are primes, and G is a
subgroup of Z∗p with order q. Then, any element g ∈ G \ {1} is a
generator. Take g = 22 = 4 mod 167, pick x = 37 ∈ Z83, compute
h = gx = 437 mod 167 = 76. The public key becomes
PK = (p, q, g, h) = (167, 83, 4, 76)

• Enc(PK,m = 65 ∈ G): a it picks y = 71 and compute the
ciphertext,

c = (c1, c2) = (471, 7671 · 65) = (132, 44) mod 167

a65 is indeed in G as 65 = 302 mod 167.
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ElGamal Encryption Scheme - Example

Example (Katz-Lindell book)
• Dec(SK, c):

m =c2/cx
1

=44/13237 mod 167

=44/124 mod 167

=44 · 124−1 mod 167

=44 · 66 mod 167

=65
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Security of the ElGamal Encryption Scheme

Theorem
If the DDH problem is hard relative to G, then the ElGamal
encryption scheme is CPA-secure.

Sketch Proof.
Idea: we consider a PPT adversary A who is attacking the
ElGamal scheme S, and we construct a PPT distinguisher D that
attempts to solve the DDH problem relative to G. D first receives
an instance of the DDH problem, i.e. (G, q, g, h1 = gx1 , h2 = gx2 , h3),
and its challenge is to determine whether h3 = gx1x2 or h3 = gz for
uniform z ∈ Zq.
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Security of ElGamal Encryption Scheme

Sketch Proof.
Algorithm D will simulate the ElGamal scheme to A as follows:
• On input (G, q, g, h1, h2, h3), it sets PK = (G, q, g, h1).
• On input (m0,m1) received from A, it picks b ∈ {0, 1}, sets

c1 = h2 and c2 = h3 · mb, and sends (c1, c2) to A.
• It receives the bit b′ from A, and outputs 1 if b′ = b, 0 otherwise.
Now, let S′ be a modified version of ElGamal, working as follows:
• It has the same key generation algorithm.
• Encryption algorithm: it chooses uniform y, z ∈ Zq, and outputs

the ciphertext (gy, gz · m). Note that the decryption algorithm
doesn’t work here, but we don’t actually need it in the
experiment PubKeav

A,S′(n) = 1.
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Security of ElGamal Encryption Scheme

Sketch Proof.
For the modified encryption scheme S′, since c2 is a uniformly
distributed group element, we have

Pr[PubKeav
A,S′(n) = 1] = 1/2

Case 1 - random tuple: the view of the adversary A when run as
a subroutine by D is distributed identically to its view in experiment
PubKeav

A,S′ . Therefore

Pr[D(G, q, g, gx, gy, gz) = 1] = Pr[PubKeav
A,S′(n) = 1] = 1/2 (1)
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Security of ElGamal Encryption Scheme

Sketch Proof.
Case 2 - DH tuple: the view of the adversary A when run as a
subroutine by D is distributed identically to its view in experiment
PubKeav

A,S. Therefore

Pr[D(G, q, g, gx, gy, gxy) = 1] = Pr[PubKeav
A,S(n) = 1] (2)

Concluding, if the DDH problem is hard relative to G, then

|Pr[D(G, q, g, gx, gy, gz) = 1]−Pr[D(G, q, g, gx, gy, gxy) = 1]| ≤ negl(n)
(3)

From equations (1), (2) and (3) we deduce

Pr[PubKeav
A,S(n)] ≤ 1/2 + negl(n)
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ElGamal Encryption Scheme - CCA-secure?

• The ElGamal encryption scheme is malleable, hence it is not
CCA-secure.

• Malleability: given a ciphertext c, which is the encryption of a
message m, it is possible to generate the encryption c′ of a
message m′ having some known relation with m.

• Consider the public key (G, q, g, h), the ciphertext c = (c1, c2)
and its modification c′ = (c1, c′2 = α · c2), where α ∈ G. If c is the
encryption of m, we have c1 = gy, c2 = hy · m. Hence c′ is a valid
encryption of α · m.
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A CPA-secure KEM based on DDH

Consider the key-encapsulation mechanism defined as follows:

• KeyGen(1n): it runs G to generate (G, q, g). It then chooses
x ∈ Zq and computes h = gx. It also specifies a hash function
H : G→ {0, 1}`(n). The public key is PK = (G, q, g, h,H) and the
private key is x.

• Encaps(PK): it chooses a uniform y ∈ Zq and outputs the
ciphertext c := gy and the key H(hy).

• Decaps(SK, c): it outputs H(cx).

If H is modelled as a random oracle, then the above KEM is
CPA-secure based on the hardness of the CDH problem relative
to G (weaker assumption).
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Cramer-Shoup Encryption Scheme

• The first public-key encryption scheme that can be proven
CCA-secure in the standard model.

• It is based on the ElGamal Encryption Scheme.

• Its CCA-security relies on the hardness of the DDH problem.
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Cramer-Shoup Encryption Scheme

• KeyGen(n): first, it runs G(n) to obtain a description of a cyclic
group G - having prime order q, where ||q|| = blog2 q + 1c = n -
and a couple of generators g1, g2 for G. Then, it picks uniform
x1, x2, y1, y2, z1, z2 ∈ Zq and computes:

◦ c← gx1
1 gx2

2
◦ d ← gy1

1 gy2
2

◦ h← gz1
1 gz2

2

The public key is PK = (G, q, g1, g2, c, d, h,H), where
H : {0, 1}∗ → Zq is a collision-resistant hash function. The
private/secret key is SK = (x1, x2, y1, y2, z1, z2). The message
space is G.
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Cramer-Shoup Encryption Scheme

• Enc(PK,m ∈ G): it chooses a uniform k ∈ Zq, and computes:

◦ u1 = gk
1, u2 = gk

2
◦ e = hkm
◦ α = H(u1, u2, e)
◦ v = ckdkα

The ciphertext is CT = (u1, u2, e, v)
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Cramer-Shoup Encryption Scheme

• Dec(CT,SK):
◦ It computes α = H(u1, u2, e).
◦ If ux1

1 ux2
2 (uy1

1 uy2
2 )α 6= v, it outputs ⊥.

◦ Otherwise it outputs m′ = e/(uz1
1 uz2

2 )

Correctness:

m′ = e/(uz1
1 uz2

2 ) = hkm/gkz1
1 gkz2

2 = hkm/hk = m
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Cramer-Shoup: Security Proof
Let A be an arbitrary PPT adversary in experiment PubKcca

A,CS,
where CS it the Cramer-Shoup scheme. A is exploited to construct
a distinguisher D for the DDH problem relative to G.

Proof.
Distinguisher D(G, q, g1, g2, g3, g4)

• x1, x2, y1, y2, z1, z2 ← Zq.
• PK = (G, q, g1, g2, c := gx1

1 gx2
2 , d := gy1

1 gy2
2 , h := gz1

1 gz2
2 ,H).

• (m0,m1)← A(PK,Dec(SK, ·)).
• b← {0, 1}.
• e∗ = gz1

3 gz2
4 mb, α∗ = H(g3, g4, e∗),

CT∗ = (g3, g4, g
z1
3 gz2

4 mb, g
x1+α∗y1
3 gx2+α∗y2

4 ).
• b′ ← A(PK,CT∗,Dec(SK, ·)CT∗).
• The distinguisher outputs 1 if b′ = b, otherwise 0.55 of 76



Cramer-Shoup: Security Proof

Proof.
Decryption queries:

On input (u1, u2, e, v) ∈ G4, D computes α = H(u1, u2, e). If

ux1+αy1
1 ux2+αy2

2 6= v

it outputs ⊥, otherwise it outputs

m′ =
e

uz1
1 uz2

2
.
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Cramer-Shoup: Security Proof

Proof.
Fact 1: ∣∣Pr[D = 1|DH]− Pr[D = 1|Random]

∣∣ ≤ negl(n)

[It follows from the DDH assumption.]

Fact 2:
Pr[D = 1|DH] = Pr[b′ = b|A attacks CS]

Fact 3: ∣∣Pr[D = 1|Random]
∣∣ ≤ 1

2
+ negl(n)
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Cramer-Shoup: Security Proof

Proof.
Proof of Fact 2;

When D gets a valid DH tuple, then there exist γ, r s.t.:

(g1, g2 = gγ1 , g3 = gr
1, g4 = gr

2).

It is easy to verify that the distribution of PK, CT∗ and the
decryption answers are exactly the same of those obtained from
the proper Cramer-Shoup challenger (and not from the
distinguisher who is simulating the game). Therefore,

Pr[D = 1|DH] = Pr[b′ = b|A attacks CS] = Pr[PubKcca
A,CS(n) = 1]
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Cramer-Shoup: Security Proof

Proof.
Proof of Fact 3 (a bit longer...)

When D gets a random tuple, it will look like

(g1, g2 = gγ1 , g3 = gr
1, g4 = gr′

2 )

where γ 6= 0 and r 6= r′ with overwhelming probability
((2q2 − 1)/q3).

We show that, even if A can compute discrete logarithms (in real
world, it cannot, since it runs in polynomial time), we have∣∣Pr[D = 1|Random]

∣∣ ≤ 1
2

+ negl(n)

if A can make a polynomial number `(n) of decryption queries.
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Cramer-Shoup: Security Proof

Proof.
The only value in CT∗ which directly depends on mb is e∗. If e∗ is
uniformly distributed from the point of view of A, then A has no
information about which message was encrypted.

What does A learn about z1, z2?

From the public key PK, A learns

logg1
h = z1 + γz2. (4)
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Cramer-Shoup: Security Proof

From the decryption oracle on CT = (u1, u2, e, v).

We distinguish between two cases, legal and illegal ciphertexts. In
particular, CT is
• illegal if logg1

u1 6= logg4
u2;

• legal otherwise.
We will prove that
1 A learns nothing from legal ciphertexts and from illegal

ciphertext for which Dec(SK, ·) returns ⊥;
2 the probability that D decrypts illegal ciphertexts is negligible.
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Cramer-Shoup: Security Proof

Assuming the validity of the above two points, consider an
arbitrary µ ∈ G. We are interested in the probability that µ = gz1

3 gz2
2 .

In order for this to occur, we must have:

logg1
µ = rz1 + γr′z2 (5)

Equations (4) and (5) form a system of linear equations in z1 and
z2 (over Zq) with matrix of coefficients

B =

(
1 γ
r γr′

)
which is non singular since r′ 6= r.
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Cramer-Shoup: Security Proof

Each arbitrary µ ∈ G is a possible value for gz1
3 gz2

4 , and each value
is equally likely. Indeed, we have q possible values for z1, z2 from
(4), and the map sending (z1, z2) in gz1

3 gz2
4 is a bijection.

The adversary A cannot predict the value of gz1
3 gz2

4 with probability
better than 1/q.

Since gz1
3 gz2

4 is uniformly distributed in G, also gz1
3 gz2

4 mb is uniformly
distributed, thus A has no information about mb.
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Cramer-Shoup: Security Proof

Proof.
1 When logg1

u1 = logg2
u2 = r′′, then A learns from m that

logg1
m = logg1

e− r′′z1 − r′′γz2 (6)

But equation (6) is linearly dependent with equation (4), so no
extra information about z1, z2 in this case.

When Dec(SK, ·) returns ⊥, it means that

v 6= ux1+y1H(u1,u2,e)
1 ux2+y2H(u1,u2,e)

2

But z1, z2 are not involved in this check, so no information about
them also in this case.
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Cramer-Shoup: Security Proof

Proof.
1 We consider two phases: before the challenge ciphertext is

given, and after.

Before the challenge ciphertext

From the public key PK, A learns the following about
x1, x2, y1, y2:

logg1
c = x1 + γx2 (7)

logg1
d = y1 + γy2 (8)

So there are exactly q2 possibilities for x1, x2, y1, y2. Each of
them is equally likely from the point of view of A.
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Cramer-Shoup: Security Proof

Given an arbitrary µ ∈ G, we are interested in the probability that
µ = ux1+αy1

1 ux2+αy2
2 . In order for this to occur, we must have:

logg1
µ = r(x1 + αy1) + γr′(x2 + αy2) (9)

Equations (7), (8) and (9) form a system of linear equations in
x1, x2, y1, y2 (over Zq) with matrix of coefficients

C =

1 γ 0 0
0 0 1 γ
r γr′ αr αγr′


which has rank 3 since r′ 6= r.
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Cramer-Shoup: Security Proof

Each arbitrary µ ∈ G is a possible value for ux1+αy1
1 ux2+αy2

2 , and
each value is equally likely. Indeed, we have q2 possible values for
x1, x2, y1, y2 from (7), (8), and the map sending (x1, x2, y1, y2) in
ux1+αy1

1 ux2+αy2
2 is surjective, and the preimage of each µ ∈ G

contains q distinct elements.

Fixed u1, u2, e, the adversary A cannot predict the value of
ux1+αy1

1 ux2+αy2
2 with probability better than 1/q.

If the first illegal decryption query (u1, u2, e, v) is rejected, A learns
that v 6= ux1+αy1

1 ux2+αy2
2 . This eliminates q of q2 possibilities for

(x1, x2, y1, y2). The `(n)-th decryption queries of this form will be
rejected except with probability 1/(q2 − (`(n)− 1)q). Thus the
probability that one of these queries is not rejected is at most
`(n)/(q2 − (`(n)− 1)q) (q is exponential in n, `(n) is polynomial).
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Cramer-Shoup: Security Proof

Proof.
After the challenge ciphertext

From the challenge ciphertext, A learns:

logg1
v∗ = (x1 + α∗y1)r + (x2 + α∗y2)γr′ (10)

Given the challenge ciphertext CT∗ = (u∗1, u
∗
2, e
∗, v∗), we have three

possible types of illegal queries (u1, u2, e, v):
• (u1, u2, e) = (u∗1, u

∗
2, e
∗) with v 6= v∗. Since the computed hash

values are equal but v 6= v∗, the decryption oracle will reject it.
• (u1, u2, e) 6= (u∗1, u

∗
2, e
∗) and α = α∗. It means a collision in H has

been found, but H is collision-resistant, so this happens only
with negligible probability.
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Cramer-Shoup: Security Proof

Proof.
• (u1, u2, e) 6= (u∗1, u

∗
2, e
∗) and α 6= α∗. The decryption oracle will

accept the query only if

logg1
v = (x1 + αy1)r̃ + (x2 + αy2)γr̃′ (11)

where r̃ = logg1
u1 6= r̃′ = logg2

u2.
BUT, in this case, the equations (7),(8),(10) and (11) having
unknowns x1, x2, y1, y2 are linearly independent because

det


1 γ 0 0
0 0 1 γ
r r′γ rα∗ r′α∗γ
r̃ r̃′γ r̃α r̃′αγ

 = (γ2)(r′ − r)(r̃ − r̃′)(α− α∗) 6= 0
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Cramer-Shoup: Security Proof

Proof.

Each arbitrary v ∈ G is a possible value for ux1+αy1
1 ux2+αy2

2 , and
each value is equally likely. Indeed, we have q possible values for
x1, x2, y1, y2 from (7),(8),(10), and the map sending (x1, x2, y1, y2) in
ux1+αy1

1 ux2+αy2
2 is surjective, and hence a bijection.

Fixed u1, u2, e, the adversary A cannot predict the value of
ux1+αy1

1 ux2+αy2
2 with probability better than 1/q.

If the first illegal decryption query (u1, u2, e, v) is rejected, A learns
that v 6= ux1+αy1

1 ux2+αy2
2 . This eliminates 1 of q possibilities for

(x1, x2, y1, y2). The `(n)-th decryption queries of this form will be
rejected except with probability 1/(q− (`(n)− 1)). The probability
that one of these queries is not rejected is at most
`(n)/(q− (`(n)− 1)) (q is exponential in n, `(n) is polynomial).
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Collision-Resistant Hash Functions based on
Dlog

Theorem
If the discrete logarithm is hard, then collision-resistant hash
functions exist.

We define a fixed-length hash function based on the
discrete-logarithm assumption in prime order groups. It consists of
the algorithms (KeyGen,H) as follows:
• KeyGen(1n): It runs G(n) to obtain a description of a cyclic

group G of prime order q - with ‖q‖ = n - and a generator g. It
then selects a uniform h ∈ G. It outputs the key s = (G, q, g, h).

• H(s, (x1, x2) ∈ Zq × Zq): It outputs Hs(x1, x2) := gx1hx2 ∈ G.
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Collision-Resistant Hash Functions based on
Dlog

• Can you solve the Dlog problem if a collision in Hs is found?

• Hs(x1, x2) = Hs(x′1, x
′
2), with (x1, x2) 6= (x′1, x

′
2) =⇒ gx1hx2 = gx′1hx′2

=⇒ gx1−x′1 = h;x
′
2−x2 =⇒ logg h = [(x− x′1) · (x′2 − x2)−1 mod q].

• Note that x′2 − x2 6= 0 mod q, otherwise we will have x1 = x′1
mod q and therefore no collision is found.

• As q is prime, the inverse of (x′2 − x2) exists.
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Gap Diffie-Hellman Assumption

Definition
A group generation algorithm G is a gap-DH if the DDH problem in
relative to G is easy but the CDH problem is still hard.
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