
Cryptographic Engineering
Challenges in Embedded and Hardware Cryptography

Markku‐Juhani O. Saarinen
mjos@pqshield.com

PQShield Ltd. – Oxford, UK

Introduction to Cryptology
November 21, 2019 – Mathematical Institute, Oxford, UK

Talk Outline

I Introduction

II Symmetric Algorithms – Reasonably Stable

III Asymmetric (Public Key) Algorithms – In Transition

IV Engineering Case Study – PQC Energy [skimming]

V Measuring NIST Post‐Quantum Crypto [skimming]

VI Final Notes

Cryptographic Engineering: My Day Job for 20 Years

Cryptographic Engineering

1 Specification: Actual algorithms and protocols are not just “mathematical
discoveries”, but carefully engineered to meet a wide range of requirements.

2 Architecture: The entire system needs to be designed to be secure: User
access control, Key lifecycle (generation, storage), target platform, etc.

3 Implementation: Robustness, (formal) correctness, mitigating side‐channel
leakage from timing and other channels, tamper‐proofing hardware etc.

4 Evolution: Bugs are found, attacks improve, requirements change. Security is a
continuous process and every change requires equivalent, careful attention.

Designing and applying cryptography for real‐world products and services.

Requirements: Security

Security is #1 and usually depends on the weakest link of the entire system.
In addition to cryptanalytic strength (“bits”) one may use “insurance” risk metrics:

Risk =
∑

Attacks

Pr(Attack success) × Resulting loss £.

The adversary will use the easiest attack – typically the endpoint / implementation.
Security can be measured by estimating theminimum cost of a successful attack.

Algorithms and “key bits” are free but high‐quality implementation work requires
skill, effort, and money. However, security investments are intended to save money.

Consider remediation costs, product recall, reputation, etc. Despite costs it it is
usually cheaper to engineer good cryptography to products than bad – or none.

Implementation Vulnerabilities: Some Terminology

Logical error is a failure in failure in program flow or other logic. Often caused by a
failure to correctly validate input (checking for errors and special conditions).

Side‐channel attack derives a secret information from implementation channels
such as timing variance (most targets), electromagnetic emissions (esp. RF devices
such as phones), or fluctuations in power use (esp. smart cards).

Timing attack is a leak of confidential information via timing – often based on cache
access patterns. Therefore “constant time” execution is a cryptographic design goal.

Static analysis is an automated method for examining program logic directly from
source code (without execution). Data‐flow analysis (secret→ non‐secret) and
abstract model checking (code = model) most relevant in cryptography.

Fuzzing is an automated method for rapidly trying out a large number of inputs to a
function and observing behavior (flow, crashes, memory leaks, and other failures).

Requirements: Software Implementation Targets

Unit
Price

Representative
CPU / MCU

Cores /
Threads

Example applications

In
te
ro
pe
ra
bi
lit
y!

←−
−−
−−
−−
−−
−−
−−
→

£1 Cortex M0 1 SoC Toaster, lightbulb, cheap toy.
£3 M4, RV32 1 MCU Home Appliance, Smart Card.
£10 ARMv7 (32 bit) 1 CPU Automotive, Security Element.
£30 ARMv8 (64 bit) 4 Low‐end phone / Raspberry Pi.
£100 Celeron N3060 2/2 Consumer desktop or laptop.
£300 CORE i7‐8700 6/12 Professional desktop or laptop.
£1000 CORE i9‐7940X 14/28 High‐end gamer, designer.
£10000 XEON 8180 28/56 Amazon AWS Data Center.

“Internet of Things” – interoperable cryptography everywhere.

Implementations: Basic Efficiency Metrics

Cycle counts. For public key operation (encrypt / verify), private key operation
(decrypt / sign). These are dependant on the capabilities of CPU/CPU.
Throughput. Cycles per byte for symmetric encryption, decryption, keyed
authentication, and hashing. Parallelism helps (e.g. SIMD vector instructions).
Footprint. For MCUs, implementation footprint (bytes in Flash) and stack /
RAM usage in bytes. Typically restricted to few kB (S)RAM and 10s kB Flash.
Circuit Area in terms of Gate Equivalents (GE). Gates do not have unit cost:
NOT ≈ 1/2 GE. NAND, NOR ≈ 1 GE. AND, OR ≈ 1 1/3 GE. XOR ≈ 2 2/3 GE.
Power is the product of voltage and current: P(Watts,W) = V(Volts,V) × I(Amps,A).

For many (CMOS) circuits the current draw is almost linearly dependent upon
the clock frequency and circuit area for a fixed voltage. Trade‐offs are possible.

Hardware: Chip & Pin cards, Car Keys, RFID tokens, etc.

Physically secure and uncloneable. Cards, keys, and SIMs protect their secret
keys even against attacks by sophisticated adversaries in a laboratory setting.
Fast. Time for key exchange or authentication is limited – from tens or
hundreds of μs in RFID up to about 200 ms for smooth end‐user experience.
Power efficient. Proximity‐based passive RFID authentication tokens are
powered by backscatter radiation from the reader. Battery powered
authentication devices must run for years without a charge.
Cheap to manufacture. It’s a big, highly competitive market (few £ per unit).

A cryptographic algorithm must fit all of these software and hardware targets
and simultaneously satisfy all of the security, efficiency, price requirements.

Talk Outline

I Introduction

II Symmetric Algorithms – Reasonably Stable

III Asymmetric (Public Key) Algorithms – In Transition

IV Engineering Case Study – PQC Energy [skimming]

V Measuring NIST Post‐Quantum Crypto [skimming]

VI Final Notes

Symmetric Encryption

Advanced Encryption Standard (AES, FIPS 197)
Secure against all known forms of mathematical
cryptanalysis, recommended for use everywhere.
Result of a competition to replace an older standard.

DES (Data Encryption Standard) – Lucifer 1975.
AES (Advanced Encryption Standard) – Rijndael 1998.

Child of 1990’s: Designed for 32‐bit arch (“T‐table”).
AES has 8‐bit S‐Boxes, difficult to implement in
secure way (no table look‐ups) without AES‐NI
instructions; AESENC (full AES round) in CPUs.
Some TLS implementations switch from AES‐GCM
AEAD to ChaCha20‐Poly1305 AEAD if there is no
hardware support for AES and GCM – for security.

Fresh PhDs in 90s:

Now Professors
Daemen and Rijmen

The AES Timing Problem

Final round AES Proposal, September 1999
Joan Daemen and Vincent Rijmen: Rijndael.
“To prevent timing attacks, attention must be paid that xtime
is implemented to take a fixed number of cycles [..] in practice
this can be achieved by using a dedicated table‐lookup.”

· · · few years pass · · ·

After standardization, April 2005
Daniel J. Bernstein: Cache‐timing attacks on AES
“This paper demonstrates complete AES key recovery from
known‐plaintext timings of a network server on another
computer. This attack should be blamed on the AES design..” Don’t implement AES if you’re

not 100% sure you know how..

The agreement: http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Specially Designed Lightweight Ciphers

NSA: Simon (and Speck)
Designed by a group within NSA.
https://eprint.iacr.org/2013/404

Detailed design methodology is
classified. Hence rejected from ISO.
However these algorithms have
withstood public cryptanalysis.
Hardware profile is significantly
smaller and more secure than AES.

NSA allows use for securing classified:

“Simon 128/256 and Speck 128/256 have
been deemed to provide the security
necessary for National Security Systems.”

Comparison
“GIFT: A Small Present.” CHES 2017
https://eprint.iacr.org/2017/622.

128/128 Gift Simon AES
Area (GE) 1997 2064 7215
Delay (ns) 1.85 1.87 3.83
Cycles 41 69 11

TP (Gbit/s) 1.730 1.007 3.038
Power (μW) 116.6 105.6 730.3
Energy (pJ) 478.1 728.6 803.3

Notes: Synthesized with STM 90nm Standard cell
library. The throughput is absolute peak. Power
consumption @ 10 Mhz.
Data from Thomas Peyrin (NTU, Singapore), 2018.

https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2017/622

Summary: Symmetric Cryptography

Symmetric cryptography has well understood cryptanalytic security criteria.
Reject any algorithm whose security < key brute force or hash birthday attack.
When in doubt, use AES. Don’t implement AES yourself. It’s difficult to do
right and it is already implemented in the processor and standard libraries.
Use Authenticated Encryption modes (AEADs) such as AES‐GCM for
transport. There are special modes such as AES‐XTX for data storage.
For hashing use SHA‐2 or SHA‐3. SHA algorithms fortunately don’t have
timing problems but a library implementation is probably better for speed.
Stream ciphers. AES‐CTR is a stream cipher; GCM just adds authentication to
it. ChaCha20 is popular semi‐standard (RFC 7539) if no AES‐NI.
Lightweight ciphers are evolving as the NIST standardization work is ongoing.
https://csrc.nist.gov/projects/lightweight-cryptography
NSA’s SIMON/SPECK are reasonable but can be “politically” bad for some.

https://csrc.nist.gov/projects/lightweight-cryptography

Talk Outline

I Introduction

II Symmetric Algorithms – Reasonably Stable

III Asymmetric (Public Key) Algorithms – In Transition

IV Engineering Case Study – PQC Energy [skimming]

V Measuring NIST Post‐Quantum Crypto [skimming]

VI Final Notes

Best Known “Classical” Factoring Algorithm

20
232
264
296
2128
2160
2192

0 1024 2048 3072 4096 5120 6144 7168

time

n bits

General Number Field Sieve has O
(
exp

(
3
√

64
9 n(log n)2

))
complexity. This curve

matches NIST’s RSA key size recommendations (SP 800‐57 Pt. 1 Rev. 4, Jan 2016).

Factoring with a Quantum Computer

20
28
216
224
232
240
248

0 1024 2048 3072 4096 5120 6144 7168

time

size

n bits

Shor’s quantum factoring algorithm requires O(n3 log n) time with a quantum
circuit of O(n2 log n log log n) gates. It therefore has polynomial complexity.

Post‐Quantum Cryptography: Background and Terminology

Quantum Computing (QC) uses quantum superpositions, rather than binary digits,
to perform computations. This computational model was first considered in 1980s.

Quantum Algorithms are algorithms for Quantum Computers. They often have
different performance asymptotics from classical algorithms.
Shor’s Algorithm (1994) can factor integers and compute discrete logarithms
efficiently (polytime). It also applies to the the Elliptic Curve DL Problem. Shor’s
algorithms can be devastating to most of current public key cryptography.
Grover’s Search Algorithm (1996) can be used to search for a k‐bit secret key with√
2k = 2k/2 quantum effort. It effectively doubles the required key sizes for

ciphers. However, symmetric crypto is much safer against QC than RSA, (EC)DL.

Post‐Quantum or “Quantum Resistant” cryptography consists of algorithms that
run efficiently on classical computers but are hard to break with QC.

August 2015: Official Post‐Quantum Transition Starts

In August 2015 the Committee on National Security Systems
(CNSS) and National Security Agency (NSA) suddenly revised
their cryptographic recommendations in CNSSAM 02‐15.

“Based on analysis of the effect of quantum computing [..] the set of
authorized algorithms is [changed] as we anticipate a need to shift
to quantum‐resistant cryptography in the near future.”

The recommendation also killed off shorter key lengths (AES‐128,
SHA‐256, RSA‐2048, DL‐2048, ECC P‐256) allowed in “Suite B”.

The interim set of algorithms is called “Commercial National
Security Algorithm Suite” and is approved up to TOP SECRET:

RSA 3072, DH 3072, ECDH/DSA P‐384, SHA‐384, AES‐256.
(Only these algorithms, only these key sizes are in CNSA)

NIST Post‐Quantum Cryptography Project

A NIST‐run project to develop quantum‐resistant
Public Key Encryption and Digital Signature
standards for to replace RSA and ECDSA.

20.12.2016: Call for proposals released.
30.11.2017: Candidate submission deadline.
21.12.2017: 82 69 submissions accepted.
11‐13.04.2018: First standardization conf.
30.01.2019: 26 semifinalists announced.
22‐24.08.2019: Second standardization conf.
– – – We are here. Evaluation is ongoing. – – –
2020 / 2021: Round 3 begins.
2022 / 2024: Draft standards available.

Classification of Candidates

There are 17 public‐key encryption key establishment algorithms (replacement for
ECDH and RSA), and 9 signature algorithms (replacement for ECDSA and RSA).

Lattice based: 12 (9 KEM + 3 Sig.) Based on problems analogous to quantum
shortest vector and other lattice problems, known to be hard. Fastest.
Code‐Based: 7 (KEM). These algorithms are based on coding theory problems.
McEliece (1978) is in this set. Also QC‐MDPC, QCSD, QC‐LDPC, LRPC, IRSD ..
Multi‐Variate: 4 (Sig). Based on systems of equations, previously seen as
rather ad hoc. Some interesting signature algorithms.
Symmetric‐based: 2 (Sig). There are two hash based signature proposals in the
competition, but some additional ones are already being standardized (XMSS,
LMH). Often seen as having best security assurances for signatures.
Isogenies: 1 KEM. SIKE is based on isogeny problem of supersingular curves.
ECC people love Isogeny systems because they use elliptic curves. Slowest.

Engineering Assumptions

November 2019: The NIST PQC submission deadline was two years ago, and we’re
roughly halfway through the project. Standards will be among these 26 algorithms.

Assumption 1: Little impact on symmetric cryptography
Grover: Most bulk data transfer still with AEADs (e.g. AES‐GCM) and stream
ciphers (e.g. ZUC). PQC Impacts mainly handshake and authentication.

Assumption 2: No fundamental protocol re‐engineering
IETF and ETSI have been sitting on the fence, waiting for NIST to finish.
Quantum‐secure signature and KEM algorithms can use equivalent external
APIs to current standard ECDSA, ECDH, RSA cryptography.
Drop‐in replacement to most current applications and protocols.

Quantification of Post‐Quantum Security

Five categories of NIST: “Any attack [...] must require computational resources
comparable to or greater than those required for ...
1 ... key search on a block cipher with a 128‐bit key (e.g. AES‐128)”
2 ... collision search on a 256‐bit hash function (e.g. SHA‐256 / SHA3‐256)”
3 ... key search on a block cipher with a 192‐bit key (e.g. AES‐192)”
4 ... collision search on a 384‐bit hash function (e.g. SHA‐384/ SHA3‐384)”
5 ... key search on a block cipher with a 256‐bit key (e.g. AES‐256)”

NIST suggests considering attacks “limited by MAXDEPTH” (analogous to constant
runtime of attack < 296) and estimating the number of quantum gates.

Which gates ? What is MAXDEPTH ? What is “time” ? What about reliability ?

So how secure is AES‐256? (Against Quantum Computing)

Grover’s complexity is O(2
n
2) so rule of thumb estimates “128 quantum bit security”.

The cipher itself needs to implemented as an oracle; NIST states an estimate of
2298/MAXDEPTH quantum gates for 2272 classical gate operations.

Note! The best attack technique against [PQC] may depend on completely different
features of a quantum computer than the best quantum circuit for breaking AES.

(Quantum) Complexity Estimation

In most cases the method is exactly the same as with RSA and ECDL:
1 Find the best classical and best quantum methods to break X.
2 Estimate their computational requirements in different (quantum) cost models.

Example: The Learning With Errors (LWE) problem was invented by Oded Regev
[Re05,Re09] who showed its connection to worst case shortest vector problems in
a quantum setting. These ideas were extended to ring setting (RLWE) with [LPR10].
The connection between a uniform secret s and a secret chosen from χ is provided
by Applebaum et al. [ACP+09] for LWE case, and for the ring setting in [LPR13].

(R)LWE and NTRU parameter selection is typically based on estimating the
complexity of the Schnorr‐Euchner BKZ [SE94] algorithm in classical and quantum
setting under a number of different cost models. I use Albrecht’s estimation scripts
[ACD+18]: https://estimate-all-the-lwe-ntru-schemes.github.io/docs/

https://estimate-all-the-lwe-ntru-schemes.github.io/docs/

(Quantum) Cryptanalysis

Often breaking the “hard problem” isn’t the easiest way of breaking a scheme!

Example [Sa17]: The BLISS signature algorithm [DDLL13] is based on the Ring‐SIS
– with appropriate lattice parameters. (Note: Not proposed as Post‐Quantum!)

The signature consists of various pieces of data, including ring values. However,
examining the signature verification algorithm, we observe that after some trivially
forgeable checks, a signature is considered valid when an “verification oracle”
agrees with a verification vector consisting of κ out of n elements.

Attack: An exhaustive search on
(n
κ
)
signature component values with Grover’s

algorithm requires O(
√(n

κ
)
) time. This is faster than breaking the lattice problem.

Summary: Asymmetric Cryptography is in Transition

RSA: From 1990s to 2015 public‐key cryptography standards were stable and
RSA dominated both digital signatures and public key encryption. Key sizes
were regularly bumped upwards up to current requirement of 2048/3072.
ECC: From 2005 onwards ECDH was used ephemeral (forward secure) key
exchange and ECDSA (with various standard curves) for digital signatures.
PQC: In 2015 National security authorities (NSA and NCSA/GCHQ)
determined in that it was necessary to start a post‐quantum transition and
phase out RSA and ECDSA/ECDH. NIST started a standardization process for
Post‐Quantum Cryptography that will finish up in early 2020s.

Prediction: Post‐quantum transition challenges will dominate
public‐key cryptography engineering until end of 2020s.

Talk Outline

I Introduction

II Symmetric Algorithms – Reasonably Stable

III Asymmetric (Public Key) Algorithms – In Transition

IV Engineering Case Study – PQC Energy [skimming]

V Measuring NIST Post‐Quantum Crypto [skimming]

VI Final Notes

Engineering Case Study: PQC Energy

Since this is just a single talk, I can’t cover hugely important and complex topics like
protocol implementation techniques and EM/DPA attacks and countermeasures.
However I’d like to talk about a current issue that (sometimes) forces real‐world
cryptographers to have their feet firmly on the ground: actual power consumption.

Battery life of mobile devices and IoT sensors during the RSA/ECDL⇒ PQC
transition / standardization process has raised questions from the industry.
Example: How many times a key fob can be used without changing batteries?
This is pretty important to the makers of key fobs (authentication tokens) !
Academic cryptographers: “It’s polytime whatever

_
("))/

_
”

What was problematic is an apples/oranges thing caused by the fact that the
slowest KEM proposal also has the shortest messages: “Transmitting by radio is
so much more expensive than computation that you actually save power!”

Quick recap: Power and Energy

These physical measures are surprisingly often confused..
Electrical Power and Energy

P = V × I Power (W: Watt) = Voltage (V: Volt) × Current (A: Ampere)
E = P × t Energy (J: Joule) = Power (W: Watt) × Time (s: Second)

Lovely older units: Calorie (1 cal = 4.184 J), horsepower (1 hp = 764 W), etc.
Power is momentary, energy is cumulative (think velocity vs. distance).
To measure energy (J) we integrate (or “sum”) power (W) over time.
Voltage (V) is usually a known, regulated value (such as 3 V). We can use an
ammeter to measure the current (Amps). Power is the product.

Common Derived Units

An older energy integrator (meter) using kWh = 3.6 MJ. 3.85 V× 3 Ah× 3600 s/h = 41.6 kJ.

Derived units: e.g. kWh (kilowatt hour) = 1000 W × 3600 s/h = 3.6 MJ.
Batteries are often specified in mAh (milliampere hour). One needs to know
the voltage to compute the actual energy that the battery has.

PQC Computations: Dynamic power

From integrated circuit theory:
Dynamic Power Equation

Pdyn = α · C · V2 · f
P = Power, α = activity, C = Capacitance, V = Voltage, f = Frequency.

Dynamic power dissipation Pdyn is caused by activity in the circuit.
Pdyn is generally linear to frequency and area, quadratic to voltage.
Activity α is sometimes called “switching factor” as the energy is consumed
when the circuit transitions from one state to another.
The α of a processor can vary a lot, depending on what it is doing.
Static power dissipation Pstat when the circuit is idle. P = Pstat + Pdyn.

Sleep States and Power Management

Most CPUs have one or more sleep states, also affecting peripherals.
When asleep, instructions are not executed: Pdyn is very low.
MCUs typically wake up only via an interrupt (timer or external event).
Modern CPUs can also control (“scale”) their clock frequency f (and V).

Sleep

Ac
tiv
e

Sleep

Ac
tiv
e

Sleep

Ac
tiv
e

Energy (J)

Power (W)
Time (s)

A typical power consumption model for IoT microcontrollers (“sleepy edge node”).

Reality: 60 ms of NTRU‐HPS 4096‐821

0.00000 0.01000 0.02000 0.03000 0.04000 0.05000 0.06000
0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

0.06000

0.07000

0.08000

0.09000

0.10000

0.00000

0.00050

0.00100

0.00150

0.00200

0.00250

0.00300

0.00350

0.00400

0.00450

0.00500

Time - Seconds

P
o

w
er

-
W

at
ts

E
n

er
g

y
-

Jo
u

le
s

This is what “active” can look like on a real MCU (ARM Cortex M4).
Power is rapidly fluctuating between 35mW and 100mW (3× range).
Cycle count is clearly not telling the full story about this algorithm.

Talk Outline

I Introduction

II Symmetric Algorithms – Reasonably Stable

III Asymmetric (Public Key) Algorithms – In Transition

IV Engineering Case Study – PQC Energy [skimming]

V Measuring NIST Post‐Quantum Crypto [skimming]

VI Final Notes

Cortex M4: Post‐Quantum Power Sandwich

New PQC “IoT” Energy Measurements

LPM01A “PowerShield” £50 power
measurement board is also used for the
EEMBC IoTConnect™ benchmarks.
STM32F411RE target has a Cortex M4
core, the reference embedded platform of
the NIST PQC project.
I measured PQC implementations from the
PQM4 project, also Ken MacKay’s
“micro‐ecc” ECDSA & ECDH code.
Goal: Precise, independently repeatable.

Source code and a description of the lab:
https://github.com/mjosaarinen/pqps It’s a dev board sandwich: LPM01A sits on

top of the Nucleo64 target.

https://github.com/mjosaarinen/pqps

STM32F411RE: Average Power @ 96 MHz

Let me filter this data for you..

0.001 0.01 0.1 1 10 100
40

50

60

70

80

90

ECDH-secp256k1ECDH-secp256k1ECDH-secp256k1

ECDH-secp256r1
ECDH-secp256r1ECDH-secp256r1

FireSaberFireSaber
FireSaber

FrodoKEM-640-AES

FrodoKEM-640-AESFrodoKEM-640-AES

FrodoKEM-640-SHAKE

FrodoKEM-640-SHAKEFrodoKEM-640-SHAKE
Kyber1024

Kyber1024Kyber1024
Kyber512

Kyber512Kyber512

Kyber768
Kyber768Kyber768

LightSaberLightSaber
LightSaber

NewHope1024-CCAKEM
NewHope1024-CCAKEMNewHope1024-CCAKEMNewHope512-CCAKEMNewHope512-CCAKEMNewHope512-CCAKEM

NTRU-HPS2048509

NTRU-HPS2048509

NTRU-HPS2048509

NTRU-HPS2048677

NTRU-HPS2048677

NTRU-HPS2048677

NTRU-HPS4096821

NTRU-HPS4096821

NTRU-HPS4096821

NTRU-HRSS701

NTRU-HRSS701

NTRU-HRSS701

R5N1_1KEM_0d

R5N1_1KEM_0dR5N1_1KEM_0d

R5N1_3KEM_0d

R5N1_3KEM_0d
R5N1_3KEM_0d

R5N1_5KEM_0d

R5N1_5KEM_0d
R5N1_5KEM_0d

R5ND_1KEM_0d
R5ND_1KEM_0d

R5ND_1KEM_0dR5ND_1KEM_5d

R5ND_1KEM_5d

R5ND_1KEM_5d

R5ND_3KEM_0dR5ND_3KEM_0d
R5ND_3KEM_0d

R5ND_3KEM_5d
R5ND_3KEM_5d

R5ND_3KEM_5d

R5ND_5KEM_0d
R5ND_5KEM_0d

R5ND_5KEM_0d
R5ND_5KEM_5dR5ND_5KEM_5d

R5ND_5KEM_5d

SaberSaber
Saber

BabyBear

BabyBear

BabyBear

LAC128
LAC128

LAC128
LAC192

LAC192 LAC192
LAC256 LAC256 LAC256

MamaBear

MamaBear

MamaBear

ntrulpr653 ntrulpr653ntrulpr653
ntrulpr761 ntrulpr761

ntrulpr761ntrulpr857 ntrulpr857ntrulpr857

PapaBear
PapaBear

PapaBear SIKEp434 SIKEp434SIKEp434
SIKEp503 SIKEp503SIKEp503SIKEp610 SIKEp610SIKEp610

SIKEp751
SIKEp751SIKEp751

sntrup653

sntrup653

sntrup653 sntrup761
sntrup761

sntrup761 sntrup857

sntrup857

sntrup857

ECDSA-secp256k1
ECDSA-secp256k1ECDSA-secp256k1

ECDSA-secp256r1
ECDSA-secp256r1ECDSA-secp256r1

Dilithium2 Dilithium2Dilithium2Dilithium3

Dilithium3
Dilithium3

Dilithium4

Dilithium4
Dilithium4

Falcon-1024

Falcon-1024

Falcon-1024

Falcon-512

Falcon-512

Falcon-512

Falcon-512-tree

Falcon-512-tree

Falcon-512-tree

Time [s] (logarithmic)

Av
er
ag
e
Po
w
er
[m
W
]

KeyGen Sign
Encaps Verify
Decaps

Cortex M4: Distinctive KEM Clusters (1/3)

ECDH‐p256 (reference)

Kyber and NewHope

Three Bears

NTRU Prime

Individual algorithm functions are clearly clustered.

0.001 0.01 0.1 1 10 100
40

50

60

70

80

90

ECDH-secp256k1ECDH-secp256k1ECDH-secp256k1

ECDH-secp256r1
ECDH-secp256r1ECDH-secp256r1

Kyber1024
Kyber1024Kyber1024

Kyber512

Kyber512Kyber512

Kyber768
Kyber768Kyber768

NewHope1024-CCAKEM
NewHope1024-CCAKEMNewHope1024-CCAKEMNewHope512-CCAKEMNewHope512-CCAKEMNewHope512-CCAKEM

BabyBear

BabyBear

BabyBear

MamaBear

MamaBear

MamaBear

PapaBear
PapaBear

PapaBear

ntrulpr653 ntrulpr653ntrulpr653
ntrulpr761 ntrulpr761

ntrulpr761ntrulpr857 ntrulpr857ntrulpr857
sntrup653

sntrup653

sntrup653 sntrup761
sntrup761

sntrup761 sntrup857

sntrup857

sntrup857

Time [s] (logarithmic)

Av
er
ag
e
Po
w
er
[m
W
]

KeyGen Sign
Encaps Verify
Decaps

Cortex M4: Distinctive KEM Clusters (2/3)

Round5 (ring)

SABER

LAC

SIKE (SIDH)

0.001 0.01 0.1 1 10 100
40

50

60

70

80

90

FireSaberFireSaber
FireSaberLightSaberLightSaber

LightSaber

R5ND_1KEM_0d
R5ND_1KEM_0d

R5ND_1KEM_0dR5ND_1KEM_5d

R5ND_1KEM_5d

R5ND_1KEM_5d

R5ND_3KEM_0dR5ND_3KEM_0d
R5ND_3KEM_0d

R5ND_3KEM_5d
R5ND_3KEM_5d

R5ND_3KEM_5d

R5ND_5KEM_0d
R5ND_5KEM_0d

R5ND_5KEM_0d
R5ND_5KEM_5dR5ND_5KEM_5d

R5ND_5KEM_5d

SaberSaber
Saber

LAC128
LAC128

LAC128
LAC192

LAC192 LAC192
LAC256 LAC256 LAC256

SIKEp434 SIKEp434SIKEp434
SIKEp503 SIKEp503SIKEp503SIKEp610 SIKEp610SIKEp610

SIKEp751
SIKEp751SIKEp751

Time [s] (logarithmic)

Av
er
ag
e
Po
w
er
[m
W
]

KeyGen Sign
Encaps Verify
Decaps

Cortex M4: Distinctive KEM Clusters (3/3)

Round5 (non‐ring)

FrodoKEM

NTRUNTRU

NTRU (KeyGen)

0.001 0.01 0.1 1 10 100
40

50

60

70

80

90

FrodoKEM-640-AES

FrodoKEM-640-AESFrodoKEM-640-AES

FrodoKEM-640-SHAKE

FrodoKEM-640-SHAKEFrodoKEM-640-SHAKE

NTRU-HPS2048509

NTRU-HPS2048509

NTRU-HPS2048509

NTRU-HPS2048677

NTRU-HPS2048677

NTRU-HPS2048677

NTRU-HPS4096821

NTRU-HPS4096821

NTRU-HPS4096821

NTRU-HRSS701

NTRU-HRSS701

NTRU-HRSS701

R5N1_1KEM_0d

R5N1_1KEM_0dR5N1_1KEM_0d

R5N1_3KEM_0d

R5N1_3KEM_0d
R5N1_3KEM_0d

R5N1_5KEM_0d

R5N1_5KEM_0d
R5N1_5KEM_0d

Time [s] (logarithmic)

Av
er
ag
e
Po
w
er
[m
W
]

KeyGen Sign
Encaps Verify
Decaps

Cortex M4: Some Signature Algorithms

Dilithium

FALCON (sign, kg)

FALCON (verify)

ECDSA‐p256 (reference)

0.001 0.01 0.1 1 10 100
40

50

60

70

80

90

ECDSA-secp256k1
ECDSA-secp256k1ECDSA-secp256k1

ECDSA-secp256r1
ECDSA-secp256r1ECDSA-secp256r1

Dilithium2 Dilithium2Dilithium2Dilithium3

Dilithium3
Dilithium3

Dilithium4

Dilithium4
Dilithium4

Falcon-1024

Falcon-1024

Falcon-1024

Falcon-512

Falcon-512

Falcon-512

Time [s] (logarithmic)

Av
er
ag
e
Po
w
er
[m
W
]

KeyGen Sign
Encaps Verify
Decaps

Cortex M4: Energy vs Time – Sub‐mJ (μJ) Range

In “microjoule” range there are
cases where algorithm’s timing
rank is different from energy rank.

Meaningful, but:
Are there general techniques to
trade power for time?

Do the very distinctive power
profiles translate to other
microcontroller targets?

4 6 8 10 12 14

200

400

600

800

1,000

R5ND_1KEM_0d

R5ND_1KEM_5d

NTRU-HRSS701

Falcon-512-tree

Falcon-512

R5ND_1KEM_0d

LightSaber

NTRU-HPS2048509

R5ND_1KEM_5d

R5ND_1KEM_0d

Kyber512

NTRU-HPS2048509

NewHope512-CCAKEM

BabyBear

R5ND_3KEM_5d

Kyber512

R5ND_1KEM_5d

Kyber512

LightSaber

NTRU-HPS2048677

LightSaber

BabyBear

Falcon-1024

R5ND_3KEM_0d

NTRU-HPS4096821

NewHope512-CCAKEM

NTRU-HPS2048677

R5ND_3KEM_5d

NewHope512-CCAKEM

Saber

Kyber768

NTRU-HRSS701

R5ND_5KEM_5d

Kyber768

BabyBear

Kyber768

R5ND_5KEM_0d

MamaBear

R5ND_3KEM_5d

NTRU-HPS4096821

NewHope1024-CCAKEM

Time [ms]

En
er
gy

[μ
J]

KeyGen Sign
Encaps Verify
Decaps

Cortex M4: Energy vs Time –Whole Range

There is a range of over four
orders of magnitude in the
complexity of PQC algorithms.

This completely dwarfs the
observed ≈ 50% range in power.
So “cycle counts” can be used to
estimate energy, but results have
less than one digit of precision.

A log‐log plot of the NIST PQC 2nd
round set looks quite linear.

10−3 10−2 10−1 100 101 102
10−4

10−3

10−2

10−1

100

101

Time [s] (logarithmic)

En
er
gy

[J
](
lo
ga
rit
hm

ic
)

KeyGen Sign
Encaps Verify
Decaps

Intel PCs: RAPL (Running Average Power Limit)

Intel PC/Server Measurements
Inspired by [1], I modified the “official”
SUPERCOP benchmarking system to
record energy usage via Intel’s RAPL.
Profiled 159 variants of about 20 NIST
PQC algorithms in the benchmark.
Power is highly dependent on target, but
within that target not as varied as with IoT
MCUs. Platform [nJ/cycle] and cycle count
leads to a good estimate.

https://github.com/mjosaarinen/pqps/
tree/master/suppercop

[1] C. A. Roma, C. A. Tai, and M. A. Hasan:
”Energy Consumption of Round 2 Submissions for
NIST PQC Standards”, NIST PQC 2019.

Number of Algorithms Measured

4.5
4.7
4.9
5.1
5.3
5.5
5.7
5.9
6.1
6.3
6.5
6.7
6.9
7.1
7.3
7.5
7.7
7.9
8.1
8.3
8.5
8.7
8.9
9.1
9.3
9.5
9.7
9.9

0 10 20 30 40 50 60 70 80 90

n
J
/c
yc
le

Blue: i7‐8700 @ 4.6 GHz (Desktop)
Green: i5‐8250U @ 3.4 GHz (Laptop)

https://github.com/mjosaarinen/pqps/tree/master/suppercop
https://github.com/mjosaarinen/pqps/tree/master/suppercop

A very Simplistic Model for Wireless

All PQC candidate algorithms have larger key‐ and message sizes than current
RSA and Elliptic Curve cryptography. Howmuch is too much?

Total Energy: Compute it + Transmit it

EKG + etx|pubkey| Key generation.
EEnc + etx|ciphertext| Encapsulation.
ESign + etx|signature| Authentication.

.. or whatever is relevant in the protocol in question.

Uplink (transmit) energy etx ≫ erx downlink (receive), both in Joule/bit.
Two algorithm factors (complexity, message sizes) and two platform factors
(computational efficiency and communication efficiency).
We need measurement data to determine their relative importance.

Communication efficiency etx ≈ 0.1μJ/bit (pre 5G)

ZigBee (Ti SoC)

ZigBee (Ti SoC)

EDGE (HTC Hero)

Uplink

HSPA (HTC Hero)

802.11g (HTC Hero)

802.11g (N95)

802.11g (Nexus S)

802.11g (HTC Hero)

802.11g (N95)

802.11g (Nexus S)

BT 2.0 (Samsung i900)

LTE smartphone (1st gen) 20 dBm

LTE smartphone (1st gen) 2 40 dBm

LTE smartphone (1st gen) 2 40 dBm

LTE smartphone (1st gen) 20 dBm

HSPA (HTC Hero)

802.11g (Samsung i900)

BT 4 LE (TI SoC)

BT 4 LE (TI SoC)

BT 4.0 LE (TI datasheet) 0 dBm

BT 4.0 LE (TI datasheet) 2 20 dBm
LTE dongle 2 40 dBm

LTE dongle 2 40 dBm

LTE dongle 20 dBm

LTE dongle 20 dBm

EDGE (HTC Hero)
101

100

10-1

10-2

10-2 10-1 101 102

Uplink data rate [kpbs]

E
ne

rg
y

ef
fic

ie
nc

y
[μ

J/
bi

t]

103 104 105100

(Source: Mads Lauridsen, Aalborg University, 2013)

Energy and Message Lengths: “It Depends”

KEMs: Need to relate KG, Enc,
Dec computation energy to
transmit energy of Public Key
and Ciphertext (PK, CT).

For ephemeral key exchange we
may consider total energy
EKG + EEnc + EDec + etx(PK+CT).

For signer (auth): Consider
ESign + etx · SL, where SL is
signature length. Verifier EVer
also downloads (erx) some
certificates which have public
keys and signatures.. depends.

1,000 10,000 100,000

0.001

0.01

0.1

1

10

ECDH-secp256k1

ECDH-secp256k1ECDH-secp256k1

ECDH-secp256r1

ECDH-secp256r1ECDH-secp256r1

FireSaber

FireSaber

FireSaber

FrodoKEM-640-AES

FrodoKEM-640-AES

FrodoKEM-640-AES

FrodoKEM-640-SHAKE

FrodoKEM-640-SHAKE

FrodoKEM-640-SHAKE

Kyber1024

Kyber1024

Kyber1024

Kyber512

Kyber512

Kyber512

Kyber768

Kyber768

Kyber768LightSaber

LightSaber

LightSaber

NewHope1024-CCAKEM

NewHope1024-CCAKEM

NewHope1024-CCAKEM
NewHope512-CCAKEM

NewHope512-CCAKEM

NewHope512-CCAKEM

NTRU-HPS2048509

NTRU-HPS2048509

NTRU-HPS2048509

NTRU-HPS2048677

NTRU-HPS2048677

NTRU-HPS2048677

NTRU-HPS4096821

NTRU-HPS4096821

NTRU-HPS4096821

NTRU-HRSS701

NTRU-HRSS701

NTRU-HRSS701

R5N1_1KEM_0d

R5N1_1KEM_0d

R5N1_1KEM_0d

R5N1_3KEM_0d

R5N1_3KEM_0d

R5N1_3KEM_0d

R5N1_5KEM_0d

R5N1_5KEM_0d

R5N1_5KEM_0d

R5ND_1KEM_0d

R5ND_1KEM_0d

R5ND_1KEM_0d

R5ND_1KEM_5d

R5ND_1KEM_5d

R5ND_1KEM_5d

R5ND_3KEM_0d

R5ND_3KEM_0d

R5ND_3KEM_0dR5ND_3KEM_5d

R5ND_3KEM_5d

R5ND_3KEM_5d

R5ND_5KEM_0d

R5ND_5KEM_0d

R5ND_5KEM_0d

R5ND_5KEM_5d

R5ND_5KEM_5d

R5ND_5KEM_5d Saber

Saber

Saber
BabyBear

BabyBear

BabyBear

LAC128

LAC128

LAC128

LAC192

LAC192

LAC192

LAC256

LAC256

LAC256

MamaBear

MamaBear

MamaBear

ntrulpr653

ntrulpr653

ntrulpr653

ntrulpr761

ntrulpr761

ntrulpr761

ntrulpr857

ntrulpr857

ntrulpr857

PapaBear

PapaBear

PapaBear

SIKEp434

SIKEp434

SIKEp434

SIKEp503

SIKEp503

SIKEp503

SIKEp610

SIKEp610

SIKEp610

SIKEp751

SIKEp751

SIKEp751

sntrup653

sntrup653

sntrup653

sntrup761

sntrup761

sntrup761

sntrup857

sntrup857

sntrup857

ECDSA-secp256k1
ECDSA-secp256r1 Dilithium2

Dilithium3Dilithium4

Falcon-1024

Falcon-512

Falcon-512-tree

Bandwidth [bits] (logarithmic)

En
er
gy

[J
](
lo
ga
rit
hm

ic
)

EKG + EEnc + EDec vs. PK+CT
EEnc vs. CT

EKG + EDec vs. PK
ESign vs. SL

Example: Ephemeral Key Exchange

Use Case Observations

PQC Lattice (RLWR) can be
≈ 10× more efficient than
current ECDHE but needs
≈ 10× bytes.
PQC Isogeny (SIDH) needs
30‐60% of RLWR Lattice
bytes, 300‐2000 times more
energy.

We can determine energy
crossover points for etx [J/bit]
from lattice schemes to elliptic
curves and SIDH. 0 5 10 15 20

0.0001

0.001

0.01

0.1

1

10

SIKEp434, uncompressed
EΣ=2.1 J, PK+CT=676 B

ECDHE secp256r1, no pt.c. (TLS)
EΣ=14.5 mJ, keyshares=128 B

Round5 R5ND_1 CCA KEM
EΣ=1.12 mJ, PK+CT=1010 B

ECDH-secp256k1

ECDH-secp256k1ECDH-secp256k1

ECDH-secp256r1

ECDH-secp256r1ECDH-secp256r1

R5ND_1KEM_5d

R5ND_1KEM_5d

R5ND_1KEM_5d

R5ND_3KEM_5d

R5ND_3KEM_5d

R5ND_3KEM_5d

R5ND_5KEM_5d

R5ND_5KEM_5d

R5ND_5KEM_5d

SIKEp434

SIKEp434

SIKEp434

SIKEp503

SIKEp503

SIKEp503

SIKEp610

SIKEp610

SIKEp610

SIKEp751

SIKEp751

SIKEp751

Bandwidth [kbits]

En
er
gy

[J
](
lo
ga
rit
hm

ic
)

EKG + EEnc + EDec vs. PK+CT
EEnc vs. CT

EKG + EDec vs. PK

Crossover from Round5 to ECDHE at etx ≈ 2μJ/bit

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

L1: 1.88 μJ/bit

L3: 2.72 μJ/bit

L5: 3.18 μJ/bit

Transmission cost [μJ/bit]

To
ta
lK
EX

En
er
gy

[m
J]

ECDHE‐p512∗ R5ND_5
ECDHE‐p384∗ R5ND_3
ECDHE‐p256 R5ND_1

∗Estimated average for a “random” curve.

(L1/L3/L5 = 128/192/256‐bit classical security.)

Crossover from Round5 to SIKE at etx ≈ 1mJ/bit

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

L1: 0.77 mJ/bit

L3: 1.10 mJ/bit

L5: 1.44 mJ/bit

Transmission cost [mJ/bit]

To
ta
lK
EX

En
er
gy

[J
]

SIKEp751 R5ND_5
SIKEp610 R5ND_3
SIKEp434 R5ND_1

(L1/L3/L5 = classical and quantum security.)

Summary: PQC Energy

What we found out:

PQC algorithms have really distinctive “IoT” MCU power profiles !
Energy usage range is 4 orders of magnitude in NIST PQC 2nd round.

Energy ranking differs from time ranking most with < 1mJ algorithms.
Some PQC schemes actually need significantly less energy than ECC.

Not so much power variation in our Intel PC / Server measurements.
Consider both transmission cost [J/bit] and computation cost [J/cycle].
Plotting total energy cost as a function of etx is a good way to compare
algorithms A and B, where other is faster but needs more bandwidth.

Cryptography engineering needs real‐life measurements and data!

Talk Outline

I Introduction

II Symmetric Algorithms – Reasonably Stable

III Asymmetric (Public Key) Algorithms – In Transition

IV Engineering Case Study – PQC Energy [skimming]

V Measuring NIST Post‐Quantum Crypto [skimming]

VI Final Notes

Recap

Security has a cost. Implementation cost, non‐implementation cost (loss),
re‐implementation cost, user experience cost, energy cost, ..
Use standard algorithms and protocols. These have deep analysis, are
understood by clients, and will reduce specification & implementation effort.
Avoid implementing cryptography yourself. Use standard, frequently updated
security providers and libraries like Microsoft CryptoAPI or OpenSSL.
Key generation and storage needs special attention: Pseudorandom number
generators and their seeds, handling of secret keys, tokens, and metadata.
Secure coding practices and/or safer languages (rust) and platforms are helpful.
Automated tools like static analysis and fuzzing help to catch bugs.
Independent outside assessment before and after implementation, updates.

Use cryptography if you can. But don’tmake it unless you have to.

“Don’t roll your own crypto”

“One of the most singular characteristics of the art of deciphering is the strong
conviction possessed by every person, even moderately acquainted with it, that
he is able to construct a cipher which nobody else can decipher.”

– Charles Babbage (1864)

However – if designing cryptosystems is your job:

Map out the actual technical requirements of target platforms and applications.
Design in a way that makes security proofs and arguments easy to make.
Design for secure, efficient hardware and software implementation techniques.
Security proofs have limited value against unknown attacks – attackers do not
care about your “security model”. Think with adversarial mindset, outside box.
Try all known attacks, publish, and trust peer review – Kerchoff’s principle.
Only few percent of cryptographic proposals end up in “production use”.

	Introduction
	Symmetric Algorithms – Reasonably Stable
	Asymmetric (Public Key) Algorithms – In Transition
	Engineering Case Study – PQC Energy [skimming]
	Measuring NIST Post-Quantum Crypto [skimming]
	Final Notes

